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SUMMARY 

The operation of the elastohydrodynamic lubricated step bearing is analytically investigated when 

operating with low clearance and surface roughness. In this bearing, there is a sandwich film 

containing two adsorbed layers and an intermediate fluid film. Using Zhang’s multiscale flow 

model, the calculations were performed numerically to determine the film pressure and lubricating 

film thickness distributions. The results show that the elastic deformations of the coupled surfaces 

greatly affect the performance of the bearing, especially when the adsorption of the adhering layer 

is stronger or/and the surface is rougher; For a given load, it significantly reduces the magnitude 

of the highest pressure and modifies the pressure distribution, and it also reduces the minimum 

clearance and modifies the surface separation profil. 

KEY WORDS: adhering layer; elastic deformation; hydrodynamic; mixed lubrication; step 

bearing. 

1. INTRODUCTION 

There are numerous studies on mixed lubrication in slider bearings that take into account the 

effect of surface roughness [1-8]. They assume the lubricating film in the whole bearing is a 

continuum despite the film thickness value. This is obviously inadequate when the lubricating 

film thickness is so low that the effect of adsorbed layer is included [9]. The performance of the 

hydrodynamic slider bearing in this regime considering the surface roughness has not been 

investigated before. 

Classical theories for hydrodynamic thrust bearings assume rigid bearing surfaces as the surface 

elastic deformation resulting from low film pressures (often no more than 10MPa) to be far 

smaller than the bearing clearance [10-12]. However, when the film thickness is decreased to 

the same scale as the adsorbed layer thickness, even in normal operating conditions the surface 

elastic deformation resulting from hydrodynamic pressures is surely comparable to the bearing 

clearance. In this case, the surface elastic deformation must also be considered. There are many 

studies on hydrodynamic thrust bearings which take into account surface elasticity [13-17]. 
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However, those researchers assumed the continuum film in the whole bearing which is 

inadequate for low bearing clearances. 

This study analyses the mixed elastohydrodynamic lubrication in the step bearing considering 

the effect of adsorbed layer. In this bearing, there is a previously described sandwich film. The 

studied hydrodynamics is thus complicated and multiscale. The problem is highly non-linear, 

and the numerical approach is thus required (by finite difference method). The study is new and 

important for recognizing the operation of the step bearing in mixed lubrication. 

2. LUBRICATION STATUS 

The investigated step bearing is shown in Figure 1. It survives the sandwich film due to the low 

lubricating film thickness. The surface roughness is sinusoidal and present on the static surface. 

The lower surface moves at the speed u; It is assumed to be ideally polished. hbf is the thickness 

of the adhering layer; h is the thickness of the intermediate film; tot ,ih  is the surface gap at the 

inlet; tot ,oh  is the surface gap at the outlet. Rz is the surface roughness magnitude. l1 and l2 are 

the widths of the two sub-zones, respectively. ∆h is the step size. 

 

Fig. 1  Lubrication status instudied bearing 

3. MATHEMATICAL ANALYSIS 

In this bearing, only some lubricant molecules can be adsorbed on the solid surface in the normal 

direction. Due to the lubricant-surface interaction potential, the discontinuity in the adhering 

layer is varied, which causes both the variation of the local density and the variation of the local 

viscosity. The flow of the adsorbed layer is essentially molecular in nature. The intermediate 

fluid flow is macroscopic and is essentially part of the continuum. Here, the equations of Zhang 

[9] are used to model the flows of the adhering layer and the intermediate fluid. 

This analysis assumes that: 
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(a) The two surface materials are the same; 

(b) the fluid rheology follows the Newton's law; 

(c) No side flow occurs; 

(d) No slip occurs at the interfaces; 

(e) The viscous heating of the liquid film is negligible. 

There are +( 2N 1)  discrete points in the bearing, as shown in Figure 1. The coordinate of each 

point is: δ=J xx J , where δ = +x 1 2( l l ) / ( 2N )  and J is the order number. 

The basic mathematical equation for the flow is [9]: 
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where qm is mass flow rate, λ =bf bfh / h , p is film pressure, ρ  is lubricant density, η  is lubricant 

viscosity, ρeff
bf  is adhering layer density, ηeff

bf  is adhering layer viscosity, D is fluid molecule 

diameter, ∆x is the molecular separation in the flow direction in the adhering layer, qo is average 

value of ∆ ∆+j 1 j/ , ∆ j  is separation between the (j+1)th and jth molecules in a normal 

adhering layer to the solid surface), η Ψ Φ= +eff 2 3
1 bf bfF (12D 6D ) / h , 

ε ∆ η −= + −bf l line ,l avr ,n 1( 2DI II ) / [ h (n 1)( / ) ] , η ∆ η− − −= −eff 2
2 bf l 1 line ,l 1 avr ,n 1 bfF 6 D( n 1)( l / ) / h , n  is 

the number of fluid molecule in the adhering layer thickness, ∆ −n 2 -molecule separation in the 

adhering layer thickness on the adhering layer-fluid boundary. The formulations of I, II, Ѱ and 

Φ are shown in Ref. [9]. It is presumed that γη η + =line , j line , j 1 0/ q , where Υ is constant and η −line , j 1  

is the local viscosity between the jth and (j-1)th molecules in the adhering layer thickness. 

The lubricant bulk viscosity is：η η η −= + + × −9 G
a aexp{(ln 9.67 )[(1 5.1 10 p) 1]} , where 

ζ η−= × +9
aG / [ 5.1 10 (ln 9.67 )]  and ηa - lubricant atmospheric viscosity. The lubricant density 

is: ρ ρ β= + ⋅a (1 p ) , where β -constant and ρa -lubricant bulk atmospheric density. 

Eq. (1) is rewritten as: 
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It is formulated that: 
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By forward difference, it is obtained that: 
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for J=1, 2, 3, …, 2N (9) 

The bearing load is: 
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4. CALCULATION METHOD 

4.1 NUMERICAL CALCULATION OF SURFACE ELASTIC DEFORMATION 

The integration in Eq. (5), as shown below, cannot be calculated precisely owing to the unknown 

function for the film pressure: 
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Here, by putting the film pressures in the sectional area [ −i 1s , is ] as −i 1p , it is numerically 

obtained that: 
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It is integrated from Eq. (13) that: 

 

π

π

π

+ +

− −

+ −

+ +   
= − − −   

   

+ +   
+ − −   

   

+ + 
+ − 

 

2
I I 1 I I 1

JI J J
v

2
I I 1 I I 1

J J
v

I I 1 I I 1

v

x x x x2
K ln x x

E 2 2

x x x x2
ln x x

E 2 2

x x x x4

E 2 2
 (14) 

4.2 NUMERICAL APPROACH 

TheMATLAB calculation software was programmed and the used numerical procedure we used 

is shown in Figure 2. Rigid surface: ( 0 )p  is the pressure, ( 0 )
toth  is the lubricating film thickness, 

( 0 )w is the bearing load, tot ,o ,rh  is the lubricating film thickness at the bearing outlet. Elastic 

surface: ( 1)
maxw is bearing load for =oo oo,maxh h , ( 1)

midw  is bearing load for =oo oo,midh h . k is the 

ordinal number of the iterative calculation. Θ ( k ) , ( k )p  and ( k )
toth  are the values of Θ , p and htot 

in the kth iterative calculation. ϑ  is the relaxation factor. 
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Fig. 2  Numerical program flow chart 
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4.3 INPUT PARAMETRIC VALUES 

It was assumed that: 

N = 3000, ϑ = 0.2 , ∆ ∆− = =n 2 x 0.15D , =1l 15μm , =2l 15μm , ∆ =h 15nm , η = ⋅a 0.03Pa s , 

β −= − 1( 4E 10 )Pa , = −u 1.2E 2m/s , δ = 5nm , 

ω = × 56.28 10 rad / m ,ϕ π=  

It is formulated that η η= ⋅eff
bf Cy  and ρ ρ= ⋅eff

bf Cq . The formulations of Cy and Cq are given in 

Ref. [18]. Reference [9] shows the formulations of F1, F2 and ε. The weak, medium and strong 

lubricant-surface interactions were considered. The corresponding parameter values for these 

interactions are given in Ref. [19]. Different bearing surface materials were used. Table 1 shows 

the corresponding physical quantities. 

Table 1  Physical quantities for different materials 

Parameter 

Substance 

Elastic modulus (GPa) Poisson's ratio 
v

E  (GPa) 

Non crystalline silica 73 0.17 75.17 

Bronze 108 0.32 120.32 

Silicon 190 0.1 191.91 

Steel 193 0.3 212.09 

Carbonized silicon 450 0.25 480 

5. NUMERICAL CALCULATION RESULTS 

According to the above numerical calculation method and the input operational parameter 

values, the obtained numerical calculation results are discussed as follows. 

5.1 EFFECT OF THE SURFACE ELASTIC DEFORMATION 

Figures 3(a)-(c) compare the film pressure distributions respectively for rigid surfaces and the 

elastic steel bearing surfaces for w=288 N/m and Rz=3 nm. The surface elastic deformation 

significantly reduces the maximum pressure and changes the film pressure distribution very 

clearly. For a given load, the effect of surface elastic deformation on the hydrodynamic pressure 

appears hardly relevant to the adsorption strength of the adhering layer. If the bearing is rigid 

or elastic, the surface roughness leads to significant pressure ripples. In Figures 4(a)-(c), the 

surface separation distributions are compared respectively for rigid surfaces and the elastic 

steel bearing surfaces for different adsorption strengths of the adhering layer for w=288 N/m 

and Rz =3 nm. (Under the same load) the bearing elastic deformation decreases both for the 

smallest bearing clearance and for the total lubricating film thicknesses. Also, for a given load, 

the effect of bearing elastic deformation on the lubricating film thickness is hardly dependent 

on the physical adsorption strength of the adhering layer. 
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Fig. 3  Comparisons between film pressure distributions for rigid surfaces and elastic steel bearing surfaces 

when w=288 N/m and Rz=3 nm 
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(c) 

Fig. 4  Comparisons between surface separation profiles for rigid surfaces and elastic steel bearing 

surfaces for different adsorption strengths of the adsorbed layer when w=288 N/m and Rz=3 nm 
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Figures 5(a)-(c) compare the film pressure distributions for rigid surfaces and elastic steel 

bearing surfaces for different surface roughnesses at tot ,oh =19 nm, and weak, medium and 

strong adsorption strength. can be seen that for a given value of tot ,oh , the film pressures are 

significantly increased by the surface roughness if the surfaces are rigid or in elastic 

deformation. However, when the elastic deformations of the steel surfaces are considered, the 

influence of the surface protrusion on the hydrodynamic pressure is weakened, and 

hydrodynamic pressure waviness is significantly weakened at a relatively high surface 

protrusion. When tot ,oh  is given, the surface elastic deformation reduces the maximum pressure 

more and changes the pressure distribution when the adsorption strength is higher. If the 

bearing surfaces are elastic, the effect of the adsorption strength on the pressure is weaker than 

with rigid surfaces. 
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Fig. 5  Comparisons between hydrodynamic pressure distributions for rigid surfaces and for elastic steel 

bearing surfaces for different surface roughness when 
,tot o

h =19 nm 

5.2 INFLUENCE OF BEARING ELASTICITY ON THE LOAD 

In Figure 6, the bearing load is increased by the surface roughness for tot ,oh =19 nm, where by 

the gradient of the load with surface roughness is smaller for the elastically deformed steel 

bearing surfaces than for rigid surfaces, especially with the strong physical adsorption of the 

adhering layer. With elastically deformed bearing surfaces, the effect of physical adsorption on 

the load is weaker than with rigid surfaces. For given values of tot ,oh  and Rz, the bearing surface 

elastic deformation reduces the bearing load considerably, especially with strong physical 

adsorption and greater surface roughness. 
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Fig. 6  Variations of bearing load with surface roughness for rigid surfaces and elastic steel bearing 

surfaces for different physical adsorptions when 
,tot o

h =19 nm 
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5.3. BEARING PERFORMANCE WITH DIFFERENT MATERIALS 

Figure 7 indicates that for a given load and surface roughness, the pressure profiles quite differ 

for different bearing materials. For carbonized silicon, which has the largest Young’s modulus of 

elasticity, the film pressure profile is close to that for rigid surfaces. For non-crystalline silica, 

which has high elasticity, the hydrodynamic pressure profile flattens with a reduction of 

maximum film pressure. The lower the elastic modulus of the surface, the lower the maximum 

pressure, and the greater the deviation of the pressure distribution from that of rigid surfaces, 

the more flattens the film pressure. 
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Fig. 7  Film pressure distributions for different bearing materials for the medium-level physical adsorption 

when w=187.2 N/m and Rz=3 nm 

Figure 8 shows that that for a given load and surface roughness, the bearing material has a 

significant influence on the surface separation profile due to the elastic deformation of the 

bearing. The lower the modulus of elasticity of the bearing, the smaller the minimum surface 

separation and total surface separation. For non-crystalline silica, the minimum bearing 

clearance is significantly lower and the surface separation profile differs significantly from that 

for rigid surfaces. 

Figure 9 shows the w versus tot ,minh  curves for different bearing materials when the bearing 

elastic deformation is considered. These curve slopes represent the film stiffness. For a given 

operating condition, when the elastic modulus of the bearing is lower, the film stiffness becomes 

smaller. The film stiffness for carbonized silicon is obviously greater than that for non-

crystalline silica, especially at lower values of tot ,minh . 
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Fig. 8  Comparisons of the lubricating film thickness distributions for different bearing materials for the 

medium-level physical adsorption when w=187.2 N/m and Rz=3 nm 
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Fig. 9  The w versus tot,minh  curves for different bearing materials for the medium-level physical adsorption 

when Rz=3 nm 
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6. CONCLUSIONS 

Mixed lubrication is investigated theoretically in the step bearing, considering the influences of 

the adhering layer, the surface protrusion and the bearing elastic deformation. Both the 

adhering layer and the intermediate fluid are present throughout the bearing. In this bearing, 

the sandwich film flow should be modeled mathematically correctly. 

The numerical calculations were performed, and it was found that: 

(1) The effect of surface roughness is weaker for elastically deformed surfaces than for rigid 

surfaces. For a given operating condition, a bearing surface with a low Young’s modulus 

greatly reduces the maximum pressure and minimum bearing clearance, greatly changes 

both the film pressure profile and the lubricating film thickness distribution, and 

significantly reduces the film stiffness. 

(2) If the elasticity of the steel bearing is taken into account, both the film pressures and load 

increase less due to the surface roughness when compared to rigid surfaces, especially for 

strong physical adsorption. It is more evident for the bearing with a low elastic modulus. 

(3) If the bearing surfaces are rigid or elastic, surface roughness leads to the film pressure 

ripples. If the surface roughness is a relatively high, the surface elastic deformation 

considerably reduces the waviness of the pressure film. 

(4) When modelling the mixed lubrication in a thrust bearing with very small clearances, 

factors of adhering layer, surface roughness and surface elastic deformation ought to be 

considered, since the sizes of these three elements are all comparable to the bearing 

clearance. 
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