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Abstract: The dependence of symmetry conditions related to the exchange of electron and nuclei between atoms in a Girardeau's theory for many atom problem, is studied. Effects of interatomic exchange of electrons are incorpo­rated into the >>projected Hamiltonian<< so that, when exchanges of electrons between atoms vanish, it tends to the Hamiltonian in which only the permu­tations of atoms as a whole are incorporated. 

1 .  Introduction 

Recently, in a series of papers, 1 • 2• 3> M. D. Girardeau has formulated a repre­senta1;ion of second quantisation for the nonrelativistic system of composite particles, in such a way as to take into account the existence of composite particles. We think that some proofs from that theory can be generalised and several remarks can be made. Therefore, we will express the principal ideas and results of papers 1• 2• 3> 
together with our new results. For the sake of definiteness, as composite particles are considered identical atoms, each containing one nucleus and l electrons. The wave function for the system of n such atoms is a function of position and one spin component (z component) of all nuclei X, = (R,, L) and electrons Xj = (r1, u1) and can be expanded in terms of the single atom wave functions as follows 
'P (X1 . . .  Xn X1 . . .  Xzn) = � C (a1 . . .  a n) <{Ja1 (X1 X1 . . .  Xz) . . .  'Pan (Xn Xin - l + t  . . .  Xzn),

a1 , .. an 

( I .  I . )  
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with coefficients 

( 1.2) 

Single atom wave functions 'Pa (X x1 • • •  x,) form an ortonormal and complete set 

L <p: (X X1 • • • x,) <fJa (X' x; . . .  xD = (l!)- 1 d (X - X') · 
(1 .3) 

(P') · L (- l)P P' [ d  (x1 - x;) . . .  d (x1 - x;)].
P' 

Symbol f stands for the integration over space coordinates and summation over spins, I: denotes a sum over all permutations p' of primed variables, p (P') is the
P' parity of the permutation P'. 

In order that the functions 1/J (X1 • . •  Xn x1 • • • x,n) would be symmetric or antisymmetric in nuclear coordinates and antisymmetric in electron coordinates, author of referenced papers shows that it is necessary th.at functions C ( a1 • • •  an) satisfy the following conditions 
C (a1 . . .  a, . . .  ak . . .  an) = ( - 1)2J

+ l  C (a1 . • .  ak . . .  a, . . .  an), (1 .4) 

L (aP a4 I Icicc I aP) C (a1 • • • ap- 1  a ap+ l  · ·  aq_ 1  /3a4 + 1 • • •  a,.) = 
a{J 

= - C ( a1 . . .  aP •. .  aq . . . an),
L (aP aq I lnui: I a /3) C (a1 • • •  ap- l  a aP+ l · · · aq- i  /3 aq + l  .. .  an) = ap 

(1 .5) 

( 1.6) 
J is the nuclear spin. 
Matrix elements of the exchange operators lnuc and Ic1cc for nuclei and electrons are defined in terms of nucleus and electron exchange integrals 

(ap a4 I lctcc I a/3)= J 'P:P (X X1 . . .  x,) tp:11 (X' x; . . .  x;)
· 'Pa (X x; x2 • • •  x,) <pp (X' x1 x; . . .  x;) d X d x1 • • •  d x, d X' d x: . . .  d x;

(1 .7) 
( aP aq I lnuc I a/3) = J <p:P (X X1 • • • x,) tp� (X' x; . . .  x;) ·

· 'Pa (X' x1 • • •  x,) <pp (X x; x; . . .  xz) d X d x1 • • •  d x, d X' d x; .. .  d xi. 
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In that paper we will prove that the above three conditions are not mutually 
independent and we shall show to which consequences, in connection with the 
other results of the original theory, this leads. 

In referenced papers has been developed a representation in terms of atomic 
annihilation and creation operators aa and a! for atoms in single atom states 
'Pa (X x1 • • •  x1). These operators satisfy Bose or Fermi commutation relations 

( 1 .8) 
aa ap - (- 1 )21 + 1 ap aa = 0.

Hamiltonian and total atom number operator in that representation are given by 

where matrix elements are 

H = T + V0 + V', 

T = :E ( a \ T I P) a! ap , 
a{J 

V = :E ( a I V I P) a! ap,
afJ 

( 1 .9)

( 1 . 10) 

( 1 . 1 1 )  

l (ap \ V' I y�) = f <p: (X X1 . . .  x,) tpp (X' x: . . .  x;) [v (XX') + �.cv (X xj) +
( 1 . 1 2) 

+ V(X' xi) ) + :E V (x1 Xk)] <py (X x1 . . . x,) 'PiJ (X' x; . . .  x;) d X d x1 . . .
i,k= l  

. . . d x1 d X' d x �  . . .  d xf .  
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Subsidiary conditions (1.5) and ( I .6) can be written in a new representation too : 
I,,,. I c. > = [ � .t, (ap I I,,,, I y<l) a! ai a• a,,) I c. > =

= - [ n (n - 1) / 2] I Cn > , (1. 13) 
lnuc l Cn > = [ 21 l: (aP ! lnuc ! Yc5)a!atac5a,,] I C11 > =(- 1) 2J n (n ;- l) I Cn > · ( 1 . 14)

a{Jy6 

The space of all n atom wave functions C (a 1 . . .  an) = (a1 . . .  a,, I Cn) sa­tisfying the last equations is completly equivalent to the space of all n nuclei, In electrons wave functions 1P (X1 • • •  Xn x1 . . . x,11) (with proper statistics). 

2. The determination of independent symmetry conditions

Affirmation : 
If functions C (a1 . • •  an) satisfy Equs. ( 1 .4) and ( 1 .5) they satisfy automatically Equ. ( 1 .6). 
Proof: 
As in Ref. 3 > we define 

. Pa (X X1 . . .  XJ X1 + 1 • . .  X1) <pp (X X1 , , ,Xj xJ + 1 . .  ,x;). d X dx1 . .  ,dx, dX' dx; . . .  d Xz . (2. 1)
Also, we have 

(ap aq I lnuc I a P) = (ap aq I I, I P a) = (aq aP I I, I a P), (2.2) 
(a P I / o I Y c5) = c5ay bpt,, (2.3) 

Using the completeness relation for the functions 'Pa (X x1 • • •  x,) and their antisymmetry properties with respect to x,, one shows that there exist some re­lations between matrix elements (a P I 11 I y b) for different j. We will use therelation3 > 

(a P I 11 li p I y t:5) = L (a P I  I1 I ap aq) (ap aq I 11 I y 6) =
apaq (2.4) 

= ( 1  / /2) { (/ - j)2 (ap I JJ+ 1 I y c5) - 2j (l - j) (a P I 11 I y b) + j2 (aP I 11 - 1  I 
1 r c5)}, i < z, u, + 1 = o).

Now we can proceed in two steps. First, we prove : 
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If functions C (a1 . . .  an) satisfy ( 1.5) they satisfy also the equation 

(2.5) 
= - L (a" aq I /1 _1 I a P) C (a1 . • . a.r>- 1 a a.r> + t  . • •  aq - l  P aq + i . . .  an),

afJ 

for all j = 1 . . .  , /. 
From the fact that Equ. (2.5) is true for j = 1 (Equ. ( 1 .5)) and the prediction that it is true for some j, we prove that Equ. (2.5) is true also for j + 1. 

Multiplying Equ. ( 1 .5) with (y tJ I 11 I a" aq) and summing over a11, aq oneobtains 

� - L C (a1 . . .  aP . . . aq . . . a11) (y /J I  11 I a,, aq) .  (2.6) 
apaq 

With the aid of Equ. (2.4), Equ. (2.6) becomes 
:E C (a1 . . •  a.r>- t  a a.r> + I  • • • aq - l  P aq + t . . . an) [ l - 2j (l - j) / 12] (y /J I 11 I ap) =
a{J (2.7) 

= - ( 1  / 12) L C (a1 . . .  a,,_ 1  a ap + t . . . aq - 1  P aq+ 1 . . .  an) [(l - j)2 (y /J  I /H 1 I 
a{J 

I a P) + j2 (y /J  I 11 - 1 I a P)].
In Equ. (2.7) the expression L C (a1 . . .  a . . .  P . . .  an) (y /J I /1 - 1 I a P) can be

afJ replaced by - L C ( a1 • • •  a . . .  P . . . an) (y /J I 11 I a P). After elementary calcula­
afJ tions one obtains 

(2.8) = - L C (a1 . . .  a.r>- t  a a.r>+ l  . . • aq - 1  P aq + l . . . an) (y /J I  11 I a P).
afJ 

It is proved therefore that: if ( 1.5) is satisfied, from the assumption that (2.5) is valid for arbitrary j follows that it is valid for j + 1 too. 
The second step is to combine Equ. (2.5) and Equ. ( 1 .5) 

(2.9) 
= (- 1}' C (a1 • • •  a" . . . aq . . .  an) .  
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For j = l Equ. (2.9) becomes 

= ( - I )1 C ( a1 . . •  aP . . .  aq . . .  an).

Replacing (ap a4 I /1 I a P) in (2. 1 0) by . (ap a4 I lnu.: I P a) and using Equ. ( 1 .4) 
one obtains Equ. ( 1 .6). 

Therefore, our proof is concluded. 

The consequences are the following : 

- the operator equation ( 1 . 1 3) is equivalent to the set of Equs. ( 1 .4), ( I .  5)
and ( 1 .6) i. e. if I Cn > satisfies eigenvalue problem ( 1 . 1 3) it satisfies ( 1 . 14
automatically; 

- the zero-temperature n atom problem is that of finding simultaneous eigen­
states of Hamiltonian H

of total number operator N with the eigenvalue n
N I  Cn > = n I Cn >,

and of the operator 101cc with the eigenvalue - n (n - 1)/2 

I lclcc I Cn > = -
2

n (n - 1) I Cn > ;

- the identity

(2. 1 1) 

(2. 12) 

(2. 1 3) 

(2. 14)

proved in3> for two atom subspace, is true for any number of atoms in the
system. f!l'nuc and f!l'ctcc are the projection operators which project onto the
subspace of eigenstates of lctcc with eigen value - n (n - I )/2 and of !nuc 
with the eigen value ( - l )u n (n - 1)/2, respectively; 

- since the independent constants of motion are H, N and Icicc the formulation 
of the non zero temperature problem is now some what different from what
was originally given. 

Namely, the usual grand partition function is generalized in the following way 

Z = Tr exp [- P (H - µ N + Yclcc lclcc)] .  (2. 15) 
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The appropriate density operator is defined as 
(] = z- 1 exp [ - /J (H - µ N + i'ele : lelec)], (2. 16)

{J = (kT) - 1
, k 1=Joltzmann constant, T the absolute temperature, µ is the atomic chemical potential, y e1ec is Lagrange multiplier associated with the subsidiary condition ( 1. 13).  µ and i'c1ec are determined by the coupled equations 

- (aa
w) = (N) = n , 
µ /J,"i'etcc 

( a w ) 1 a = (Jclec) = - 2 n (n - 1),
i'clcc {J,µ 

and W is the generalized thermodinamical potential related to Z by 
Z = exp ( - /J W). 

3. The projected Hamiltonian

(2. 17) 

(2. 18) 

(2. 19) 

Since the operator Ie1cc has the same general structure as the interatomic in­teraction Hamiltonian V', to satisfy the subsidiary condition ( l .  5) would be asdifficult as solving interatomic interaction exactly. This is why in the paper3> 

was defined a >>projected Hamiltonian<< in which the subsidiary conditions ( 1.5) and ( I .  6) are incorporated as additional effective interatomic exchange inter­ractions, which can then be treated approximately along, with the interatomic Coulomb interactions V'. The projected Hamiltonian is defined as follows 

where 
B'elcc I Cn > = I Cn >,if 

and 

[H, 9'clecl = [9'elec, H]. 

(3. 1) 
(3.2) 
(3.3) 
(3.4) 
(3.5) 

Using (3.4) and (3.5) one can easily show that for eigenstates of .rt' the following set of equations is valid 
(3.6) 
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We think that two remarks can be made regarding the definition (3. 1 ) of the projected Hamiltonian : 
- the operator &'etec H with &';1ec = &'etec is not the unique operator whoseeigenstates satisfy the subsidiary condition ( 1. 13). Eigenstates of the operator

JIP' = f!l'�lec H = b g, elec H, (3.7) 

where b is a real number, satisfy the subsidiary condition ( 1 . 1 3) too. 
Suppose that I C n> is an eigenstate of :Y/7' with the eigenvalue E'

:YI'' I Cn > = E' I C,, >.
Using (3.4) and (3.5) one gets 

!?l'e1ec I C,, > = f!l>elec �' g,;lec H I  C,, > = !, f!l>!1ec H i C,, > =
b /TJJ 

I C g,;lec H I C I = E' ;;relec H n > = E' n > = C,, > . 

(3.8) 

(3.9) 

Therefore I Cn > satisfies (3.3) because &'etec is defined as the operator which projects onto the subspace of the operator le1ec with eigenvalue - n (n - 1)/2. But eigenvalues of .Ye' for different b have different values. (Especially, for b = l we have the Hamiltonian .Ye as defined in Ref 3>), and 
- Equ. (3.6) as the direct consequence of (3. 1) and (3.4) means that .Ye andH have the same eigenvalue, or that exchanges . of electrons between diffe;.. 

rent atoms do not contribute to the total energy of the system, which, aswe know from more elementary theories on the problem, is not true.
We think that the second problem can be resolved if we define the projected Hamiltonian as in (3. 7) where b i_s to be found from the condition that the limit of the operator J'P' when 11 -+ 0 for all j = 1, .. . l (no exchanges of electrons between different atoms) is equal H 

limJf'' = H. 
/J-+0, i= I • ... , l (3. 10) 

Now, it is necessary to find an explicit expression for &'etei, · In the original paper dealing with this problem, it has been concluded that operators l 0, 11 , • • •  , 11, within the two atom state space form an algebra ; therefore, the projection operator &'eiec (here after we work within a two atom subspace) can be supposed as a linear combination of these operators 
f!l'elec = l Q + � CJ 11, 

j= 1 
(3. 1 1) 
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where IJ = IJ - (- l)i 10• 

Constants c1 > . . .  c1 should be found so that the Equ. (3.4) and the Equ. 
�elec J; = 0,

which is a consequence of Equs. (3.2) and (3.3), are satisfied. 
In fact, it is shown in the Appendix that the operator 

with coefficients 
�etec = m, (I o + L aJ 11),

i= l 

- (/ !)2 . - ( I)J (') 2 m, - (2 l) ! ' aJ - - , ' 
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(3. 12) 

(3. 13) 

(3. 14) 

(3. 15) 
satisfies (3. 13) and (3.4). In the two atom subspace the operator I O is the unit operator. Because of this, it is evident that 

l l 1im H (l0 + l: aj lj) = H + lim :r, aJ H IJ = H.
/J-+0., j= l ,  . . . .  , i= l 11-0 i= l 

Therefore, the operator 
:ff' = H + :r, a1 H 11,

j= l 

(3. 16) 

(3. 17) 
satisfies the condition (3. 10) and its eigenstates have a proper statistics with respect to the exchange of electrons between different atoms. 

Putting all terms into normal order with the aid of ( 1.8) and truncating the terms of the order higher than four (in the two atom subspace these terms do not contribute) we obtain the following expression for the projected Hamiltonian : 
:ff' = H + Vex = Ho + V' + Vez, 

The matrix elements of the exchange interaction Vex are 
I (a P I  Vex I y <5) = L aJ (a P I  VJ I y '5) + (ea + ep) � aJ (aP I I1 I y '5), 

j= l i= l 

(3. 18) 
(3. 19) 

3.21) 
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(aP I VJ I 'Y �) = J <p! (X x1 . . .  x,) <pp (X' x; . . .  x;) V' (XX' X1 • • •  x, x; . . .  xD,
• <p,, (X x: . . . x1 x1 + 1 • • • x,) 'Pd (X' x1 • • •  x1 x1+ 1 . . . x;) dX dx1 . . . dx1 d X' d x; .. . dx,,

(3.22) 
Ea = (a I Ho I a) = (a I T + Vo I a),

V' (XX' x 1 • • •  x, x; . . .  x1) is the interatomic interaction 

I V'(XX' x1 . . . x1 x; . . .  x;) = V (XX') + l: [V (Xx;) + V (X' xJ)] + 
i= I 

(3.23) 

The form of our operator (3. 1 9) is the same as the form of the exchange operator 
given in Ref3>, but the corresponding matrix elements in these two operators are 
not equal. At the same time our exchange operator tends to zero when exchange 
integrals tend to zero, while the original Vex tends under she tame conditions 
to the operator (m1 - 1 )  H. On the other hand, eigenvalues of our operator v.x are 
different from zero, ( exchanges of electrons between atoms contribute to the total 
energy of the system), until all eigenvalues of the original exchange operator are 
equal zero. It is evident that these distinctions come from the difference in the 
definition of the projected Hamiltonian in our and the referenced article. 
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APPENDIX 

If I en > is an eigenstate of 11 with the eigenvalue - n (n - 1)/2 

1; I en > = (/1 +{ n (n - 1) I en > = O, ( 1) 

it is necessary that 

p;elcc I en > = Uo + .l: CJ I';) I en > =  I en >,
J = I 

(2)
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i. e. the first necessary condition which f!/J ctcc has to satisfy is
1; f!jJ clcc = 0. (3) 

Another necessary condition is 
(4) 

Let us prove: the operator f!/Jetec whose coefficients c1 are determined so that it satisfies (3) will satisfy the condition ( 4) as well. 
In the two atom subspace these relations are valid 

u;)2 = 2 1- 2 (l2 - z + 1) 1; + z- 2 cz - 1)2 1;,
1; 1; = - (- 1)1 1; + ( { r 1;_,  + 1-2 (12 

- 2jl + 2j2) !; + 

+ z- 2 (l - j)2 11 + 1 ; j � 2 [forj = l, li + 1 = 0]. 

(5) 

(6) 
Equ. ( 5) means that within the two atom subspace 1; is a second order polinomial in 1: without a zero order term. Using Equs. (5) and (6) for j = 2 we have 

(7) 
where a3 3, a32 and a3 1  are constants. Similarly, using (6) we can show that 

(8) 
Equ. (8) can be written in the form 

(9) 
where AJ - I  is a (j - 1 )-th polinomial in 1;. 

Using the definition (3. 1 1 ) of f!/J etec and the Equ. (9), &'!iec becomes 
(10) 

Now, it is evident that if the coefficients c1 are determined so that Equ (3) is sa­tisfied, &'c1ec satisfies Equ. ( 4) too. 
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Finally, let us determine c1• Substituting (3. 11) in (3), using (5) and (6), equatingthe coefficients of I} (j = 1, 2, . . . , l) to zero, one finds an inhomogeneous set of l linear equations in the l unkowns c1 , . . .  , c1 • 

c1 . z- 2 (l2 - 21 + 2) + 4 c2 • 1- 2 
+ l: c1 c- 1)1+ 1 = - 1, (11) 

i= I 

CJ + l  (j + 1) 2 + Cl · (l2 - 2j/ + 2j2) + Cl - 1  (/ - j + 1) 2 = 0, (12) 
j = 2, 3, . . .  , /. 

The last equation for j = l (we make ci + 1 = 0) takes the following form 
Cz - 1  = - l2 Cz , ( 13) 

Substituting the last equation in ( 12) for j = I - l we obtain relation between 
c,_ 1 and c, _ 2, or finally 

( I )  2 (21) ! '1 = ( - 1)1 
j (1 !)2 .

Using the definition of the operators I} and the identity 
l ( l ) 2 

= 
(21) !

� . (/ 1) 2 '  
1=0 J • 

the terms in &> ctec can be gathered in a following way 
[ (1 !) 2 ( (21) ! )]  (l !)2 l J ( / ) 2  &>elec = lo 1 - (2/) ! (l !) l - 1 + (2l) ! j;I (- 1) j Ii-

The expression (3. 15) then follows immediatly. 
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Sadrza j  
Prouceni su uslovi simetrije koji su  povezani sa izmenom elektrona i jezgara izmedu atoma u Girardeauovoj formulaciji druge kvantizacije za viseatomske sisteme. 
Efekti izmene elektrona izmedu atoma ugradeni su u >>Projektorski Hamiltonijan<< tako da kada matricni elementi koji opisuju izmenu elektrona izmedu atoma teze nuli, >>Projektorski Hamiltonijan<< tezi Hamiltonijanu u kome su uzeti u obzir samo efekti izmene atoma kao celine. 




