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Abstract: Basic characteristic and matching polynomials for benzenoid series are given. Their recursion equations allow one to obtain the 
characteristic and matching polynomials and the number Dewar Resonance Structures (DSs) of very large members not accessible by other 
means. It is shown that conjugation is a stronger stabilizing effect than aromaticity. The success of topological resonance energy (TRE) as an 
index of aromatic stabilization energy (ASE) is because changes in conjugation energy (CE) occur in parallel with changes in aromatic stabilization 
energy. In the absence of ASE, CE becomes decisive. 
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INTRODUCTION 
HE characteristic and matching polynomials provide a 
powerful molecular orbital based indices for studying  

π–electronic trends in homologous series of conjugated 
polyene hydrocarbons. The advantage to studying homolog-
ous series is that for the discerned trends, one can use known 
properties of a few lower members and reliably predict 
unknown properties for higher members. This is made 
possible because at the HMO level, analytical and recursion 
equations can be derived for these homologous series. 
Frequent themes include relative aromaticity, bandgaps, 
conjugation, magnetotropiciy, stability, and reactivity in 
regard to their observed and predicted chemical and physical 
properties. The matching polynomial (also, called acyclic 
polynomial) has been useful in determining topological 
resonance energy (TRE)[1,2] and the number of Dewar 
resonance structures (DSs)[3–5] of polycyclic conjugated 

hydrocarbons (PCHs). While the coefficients of characteristic 
polynomial can be computed by summing all the Sachs 
graphs, the coefficients of the matching polynomial are 
computed by summing all the Sachs without cyclic 
components. The matching polynomial is a characteristic 
polynomial of the hypothetical acyclic reference structure 
devoid of cyclic contributions against which the characteristic 
polynomial of a cyclic/polycyclic structure can be compared 
for purposes of determining resonance energy. Thus,  
TRE represents stabilization energy solely due to cyclic  
π–contributions because the π–binding energy determined 
by the matching polynomial of the hypothetical polyene 
reference is devoid of cyclic contributions. Both the actual 
molecule and its hypothetical polyene reference molecule 
have the same graph theoretical weights of their edges and 
vertices. Thus, they have the same geometry, electronic 
configuration, atomic hybridization, number of π-electrons, 
and same degree of steric strain.[6] 

T 
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 The characteristic and matching polynomials for 
acyclic conjugated polyenes are identical whereas for 
cyclic/polycyclic systems they are different. The matching 
polynomial does not include cyclic contributions, only 
adjacent conjugation interactions (so called dimer 
covering), whereas the characteristic polynomial includes 
both kinds of contributions. Thus, the matching polynomial 
can also be used to determine a HMO-like energy [Eπ(ref)] 
for the hypothetical polyene reference molecule which 
when subtracted from the HMO total π energy (Eπ) of a PAH 
molecule will give its topological resonance energy [TRE = 
Eπ – Eπ(ref)] which emanates principally from its cyclic 
contributions.[1,2] The TRE of different PAH molecules can 
be compared via their percentage TRE (%TRE) which is 100 
times TRE divided by total binding energy [Eπ(ref)] of the 
polyene reference. Aihara’s %TRE is used as a measure of 
global aromaticity normalized with respect to the 
molecular size. The hypothetical polyene reference 
molecule above can be used to obtain a hypothetical 
HOMO-LUMO gap which when divided into the HOMO-
LUMO gap of the actual molecule gives a quantity used as 
an index of kinetic stability called reduced HOMO-LUMO 
gap; in general, reduced HOMO-LUMO gaps < 1.30 are very 
reactive molecules.[7] Using benzene as an example, TRE = 
Eπ(characteristic polynomial for benzene) – Eπ(matching 
polynomial for benzene) = Eπ(benzene) – Eπ(ref) = 8.0000 – 
7.7274 = 0.2726 β, %TRE = (0.2726 / 7.7274) × 100 = 3.53. 
The ΔEπ(benzene) = HOMO-LUMO gap = 2.0 β for the 
benzene and for its reference ΔEπ(ref) = HOMO-LUMO 
reference gap = 1.0353 β. The reduced HOMO-LUMO gap = 
2.0000 / 1.0353 = 1.9318. All total resonant sextet benzen-
oids (benzenoids having their number of carbons divisible 
by 6, are totally covered by disjoint Clar sextets, and have 
number of bay regions given by ηo(max) = ½NH ‒ 3)[8] have 
reduced HOMO-LUMO gaps > 1.932. 
 The resonance energy of a benzenoid is the sum of 
aromatic stabilization energy (ASE) and conjugation energy 
(CE). Since TRE is an index measuring ASE, Eπ(ref) 
determined from the matching polynomial minus the 
number of isolated ethene pπ-bonds is an index measuring 
topological conjugation energy (TCE). Hückel resonance 
energy (HRE) is then given by 

HRE = TRE + TCE 

 Benzene for example has TRE = 0.2726 β and TCE = 
7.7274 β – 6.0 β = 1.7274 β and HRE = 0.2726 β + 1.7274 β 
= 2.0 β. Thus, at the HMO level, TCE is larger than TRE. At 
the BLW-B3LYP/pVTZ level of theory, ASE = 25.7 kcal/mol, 
CE = 3 × 12.7 = 38. 1 kcal/mol, and RE = 65.4, i.e., ASE + CE 
= 63.8 kcal/mol which compares favorably with RE = 65.4 
kcal/mol.(Table 7. in ref.; also see Scheme 2).[9] Again, CE is 
larger than ASE for benzene at the BLW-B3LYP/pVTZ level 
of theory. Given the large success using TRE for measuring 

relative ASE, we will employ TCE as an index for measuring 
relative CE. What Eq (1) further shows is that both TRE and 
TCE change proportionally. This explains why TRE is so 
successful as an index for ASE and why CE does not need to 
be explicitly considered at the HMO level of theory. 
 Both the linear polyacene series and the zigzag 
polyphenacene series have been extensively studied, 
separately,[10–17] comparatively,[18–21] and included within a 
broader context.[7,22–26] Quinododimethide analog series of 
linear polyacene and zigzag polyphenacene series have 
been the subject several studies.[5,27,28] The aromaticity and 
magnetotropicity of linear dicyclopenta-fused polyacenes 
have been analyzed.[29] The %TRE is defined as 100 times 
the TRE divided by the total binding energy of the polyene 
reference. TRE is an extensive property (naturally increases 
as molecular size increases) and %TRE is an intensive 
property.[6] Thus, the latter is used when comparing 
polycyclic aromatic molecules of different sizes. TRE and 
%TRE are standard measures of aromatic stabilization 
energy (ASE) and the reduced HOMO-LUMO gap is a 
measure of reactivity of the molecule.[1,7,29]  
 The classical Kekulé-structure-based model works 
well for small to medium sized conjugated systems not 
having essentially single bonds. For small to medium sized 
conjugated systems the classical Kekulé-structure-based 
model works well because Kekulé structures dominate over 
Dewar structures which are only 3 % as important.[3] 
Methods for enumerating Kekulé structures are both easier 
and well-known compared to methods for enumerating 
Dewar resonance structures. But as the benzenoid system 
gets larger, the number of Dewar structures escalates much 
faster than does the number of Kekulé structures. The 
consequence of this is that for small conjugated systems 
Kekulé resonance structures dominate but as the 
conjugated system get larger, Dewar resonance structures 
become more dominant by their sheer numbers. As two 
extreme examples, linear polyenes (C2nH2n+2) all have K = 1 
but DS = ½ [n2 − n] and monocyclic polyenes (C2nH2n) all have 
K = 2 but DS = [n2 – 2n] where n = number of conjugated 
double bonds. The coefficients of both the characteristic 
and matching polynomials contain information on Kekulé 
and Dewar resonance structures. 

Differences Between the Characteristic 
and Matching Polynomials and Their 

Corresponding Graphs 
All the characteristic and matching polynomials in this 
study were obtained by using the programs of 
Balasubramanian.[30,31] Because the matching polynomial is 
devoid of cyclic contributions, it has no odd terms and if 
zero eigenvalue occurs in plus/minus pairs, i.e., the pairing 
theorem[32] applies to matching polynomial for even carbon 
nonAHs as well for AHs molecular graphs whereas for the 
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characteristic polynomial the pairing theorem only applies 
to AH molecular graphs. In addition, the matching 
polynomial of all odd carbon monocyclic molecular graphs 
have a one zero eigenvalue with otherwise paired 
eigenvalues. Another difference between the characteristic 
polynomial and the matching polynomial is for molecular 
graphs having greater than two-fold symmetry, two-thirds 
of the eigenvalues are doubly degenerate for the 
characteristic polynomial but not for the matching 
polynomial. [21,33,34] The same lack of degeneracy will be 
evident from the matching eigenvalues for benzene with 
D6v symmetry. The first two coefficients to both the 
characteristic and matching polynomials of any given 
molecular graph are identical (namely, a0 = 1, a2 = – q =  
No. edges). In addition, our original derivation of a4 and a6 
can be used except the cyclic parameters will need to be 
omitted for the matching polynomial. They are a4ac = 
(1/2)(q2 – 9q + 6Nc) – d1 – d4 – 3d5 – 6d6 – … and a6ac =  
– (1/6)(q3 – 27q +116q) – Nc(3q – 16) – e(3,3) + (q – 6)e(2,1) 
+ (q – 5)e(3,1) where Nc = number of carbon vertices, di = 
number of vertices of degree-i, and e(j,k) = number of edges 
between vertices of degree-j and degree-k; note that a4ac is 
applicable to all graphs whereas a6ac is applicable to all 
molecular graphs of degree-3 or less. The absolute value of 
the tail coefficient (|aNac| = K) is equal to the number of 
Kekulé structures, if any, and aN–2ac = (Nc/2)K + DS where DS 
is the number of Dewar structures. Since the coefficients of 
the characteristic polynomial is the sum (aj = ajc + ajac) of 
the cyclic (ajc) and acyclic (ajac) components with the latter 
given by the matching polynomial if one knows the 
characteristic polynomial value of a8 and a10 one can use 

the equations for a8c and a10c given previously to obtain a8ac 
= a8 – a8c and a10ac = a10 – a10c. Also, the exact values of a8 
and a8ac for catacondensed benzenoids can be computed 
by the relationship given by Dias.[35] For molecular graphs 
of eight vertices or less, it is easy to obtain the matching 
polynomial by inspection from these coefficient relation-
ships; enumeration of Sachs graphs without cyclic 
components will frequently allow one to solve for the 
matching polynomial of slightly larger molecular graphs. 
Because of the general importance of the characteristic and 
matching polynomials and their use in determining relative 
chemical and spectroscopic properties of linear and zigzag 
conjugated polycyclic hydrocarbons, we will present and 
study recursion equations for the characteristic and 
matching polynomials of linear and zigzag conjugated 
polycyclic hydrocarbon series (Figures 1–2.).  

Recursion Equations for the 
Characteristic and Matching Polynomials 

of Linear and Zigzag Conjugated 
Polycyclic Hydrocarbon Series 

Figures 1 and 2 presents the linear polyacene and zigzag 
polyphenacene series and their respective recursion 
equations for their characteristic and matching polynom-
ials. These recursion equations were derived by Hosoya and 
Ohkami using an operator technique.[36] The matching 
recursion equation for linear polyacene series (Figure 1) 

 Mn(X) = (X4 – 5X2 + 3)Mn–1(X) ‒  

                (X4 ‒ 3X2 + 3)Mn–2(X) + Mn-3(X) (1) 

 

Figure 1. The recursion equations for the linear polyacene series along with the initial requisite number of matching and 
characteristic polynomials. The auf bau unit is shown in bold. 
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requires one to know the matching polynomials for the 
three prior linear members of the series [Mn–1(X), Mn–2(X), 
and Mn–3(X)] to obtain the next member [Mn(X)]. The 
characteristic recursion equation for linear polyacene 
series (Figure 1)  

 Pn(X) = (X4 ‒ 5X2 + 4)[Pn–1(X) + Pn–3(X)] ‒  

              (2X4 ‒ 6X2 + 6)Pn–2(X) ‒ Pn–4(X) (2) 

requires one to know the characteristic polynomials for the 
four prior members of the series  
 [Pn–1(X), Pn–2(X), Pn–3(X), and Pn–4(X)] to obtain the 
next member [Pn(X)]. Benzene is the first member, and its 
respective polynomials can be used to start these recursion 
equations.  
 The matching recursion equation for polyphenacene 
series (Figure 2)  

 Mn(X) = (X4 ‒ 5X2 + 3)Mn–1(X) ‒  

                (X4 ‒ 2X2 + 2)Mn–2(X) ‒  

                (X4 ‒ 3X2 + 1)Mn–3(X) + Mn–4(X) (3) 

requires one to know the matching polynomials for the four 
prior member of the series [Mn–1(X), Mn–2(X), Mn–3(X),and 
Mn–4(X)] to obtain the next member [Mn(X)]. The 
characteristic recursion equation for zigzag polyphenacene 
series (Figure 2)  

 Pn(X) = (X4 ‒5X2 + 4)[Pn–1(X) + Pn–4(X)] ‒  

              (2X4 – 5X2 + 3)[Pn–2(X) + Pn–3(X)] ‒ Pn–5(X) (4) 

requires one to know the characteristic polynomials for the 
five prior zigzag members of the series [Pn–1(X), Pn–2(X),  
Pn–3(X), Pn–4(X), and Pn–5(X)] to obtain the next member 
[Pn(X)]. Benzene is the first member, and its respective 
polynomials can be used to start these recursion equations. 
Overall, the phenacene recursion equations require one 
more member term to compute the characteristic and 
matching polynomials for the phenacene series. We will 
show that these recursion equations can be applied directly 
or with some modification to other related series. 

Recursion Equations for the Characteristic 
and Matching Polynomials of Conjugated 

Systems Related to Linear Conjugated 
Polycyclic Hydrocarbon Series 

The linear polyacene related systems given in Figure 3 have 
been studied previously in other regards. All four of the 
linear series in Figure 3 have been studied by Aihara and 
coworkers.[27,29] Eπ is obtained from the characteristic 
polynomial and Eπ(ref) is obtained from the matching 
polynomial. The characteristic and matching polynomials 
for members of the upper two series having up to seven 
rings can be found in the work of Hosoya and 
coworkers.[37,38] The polyacene-2,3-quinododimethide series 

 

Figure 2. The recursion equations for the zigzag polyphenacene series along with the initial requisite number of matching and 
characteristic polynomials. The auf bau unit is shown in bold. 
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(third series in Figure 3) has been studied in terms of 
aromaticity and diatropicity[27] and conjugation and Dewar 
resonance structures.[28] This series has further importance 
in that the eigenvalues of its members correspond to the 
doubly degenerate HMO eigenvalues of the [n]cyclacenes 
where n is an odd number of rings. For n = even number of 
rings Figure 4 illustrates two different right-hand fragments 
that are strongly subspectral. The upper part of Figure 4 
displays two perpendicular mirror-plane fragmentation of 
[10]cyclacene which gives the right-hand mirror-plane 
fragments corresponding the third member of this series. 
In this example, the mirror plane is perpendicular to the 
plane of the paper and bisects through a valley to a valley 
on the left and through a peak to a peak on the right. The 
lower part of Figure 4 gives the corresponding mirror-plane 
fragments for [10]cyclacenes. In this case, perpendicular 
mirror-plane fragmentation leads to right-hand fragments 
that are strongly subspectral mates whose eigenvalues 
correspond to one set of the doubly degenerate eigen-
values.[39] For the perpendicular mirror-plane which goes 
from peak to peak, one will get tetracene which has the 
same eigenvalues, except instead of the doubly degenerate 
zero eigenvalues it has the eigenvalues of ± 1.[40] What this 
mirror-plane fragmentation shows are that cyclacenes with 
an even number of rings are HMO diradicals but can be 
drawn with four different classical structures or Kekulé 

structures (i.e., K = 4). We have previously argued that 
whenever a polycyclic conjugated molecule can be drawn 
with all its π–electrons paired but are computed to be HMO 
diradicals that the actual molecule must be an open-shell 
singlet.[41] This is in complete agreement with higher level 
calculations (UBS-B3LYP).[42] Figure 5 gives the matching 
and characteristic polynomials for the polyacene-2,3-
quinododimethides. Members of this series were 
calculated by the B3LYP method to have substantial 
diradical character with pentacene-2,3-quinododimethide 
having the most diradical character which thereafter 
progressively decreased as the number of rings 
increased.[43] While the members of this series derive from 
mirror-plane fragmentation of cyclacenes with an odd 
number of rings, their bandgap more rapidly approaches 
zero than do the linear polyacenes, e.g., HOMO = –LUMO = 
0.075338 β for tetracene-2,3-quinododimethides (fourth 
structure in Figure 5) compared to HOMO = –LUMO = 
0.2950 β for tetracene (third structure in Figure 1). Since 
the largest linear polyacene, nonacene, is predicted to have 
an open-shell singlet diradical ground state, the 
comparable sized cyclacenes are expected to also be open-
shell singlets. The preparation and characterization of 
nonacene to undecacene have been reported.[44,45] 

However, the preparative scale synthesis of larger linear 
polyacene homologues remain a formidable challenge. 

 

Figure 3. The recursion equations for the linear related polyacene series along with the initial requisite number of members 
whose matching and characteristic polynomials that need to be known. All these series obey the same recursion equations. 
The auf bau unit is shown in bold. In the last series, the auf bau unit involves insertion. 
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Figure 4. Schlegel of [10]cyclacene (C40H20) and its valley-to-valley and peak-to-peak fragmentations. The right-hand fragment 
is shown in bold and is the origin of the antisymmetric eigenvalues and corresponding eigenvectors. The left-hand fragment is 
the origin of the symmetric eigenvalues and corresponding eigenvectors. The 2,3,6,7-tetramethylenylanthracene and tetracene 
are embedding fragments. 

 

Figure 5. Matching and characteristic polynomials for the polyacene-2,3-quinododimethide series for the initial requisite 
number of members that need to be known for application of the listed recursion equations. Compare with the right-hand 
fragment of [9]cyclacene. 
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 The dicyclopenta-fused polyacene series in Figure 6 
begins with pentalene which is antiaromatic and has only 
been synthesized in argon matrices and studied.[46] Since 
pentalene can be written with two classical structures but 
is a HMO diradical, it is predicted to be an open-shell 
singlet. All members of this series have a 4n pπ-electron 
perimeter with two Kekulé resonance structures (K = 2) and 
larger members of this series have been predicted by 
various methods as becoming increasingly aromatic 
because of recovery of aromaticity of the middle section. 
For larger members of this Figure 6 series, it was argued 
that allyl-polyacene-allyl biradical structures prevailed, 
owing to larger resonance energies.[47] It was shown that 
intercalating benzene rings in going from pentalene to 
dicyclopenta[b,g]naphthalene, there was a change from 
the localized structure of pentalene to a delocalized 
structure.of dicyclopenta[b,g]naphthalene.[48] The dicyclo-
penta-fused polyacenes (Figure 6) linear series have been 
studied by Makino and Aihara in regard to their aromaticity 
and magnetotropicity.[29] They showed that the insertion of 
an increasing number of hexagonal rings into the pentalene 
moiety led to higher members of increasing aromaticity and 
diatropicity due to the collective effect of non-conjugated 
circuits. 
 While all the linear related series in Figure 3 obey 
precisely the same recursion equations, the linear series in 
Figures 7 and 8 obey a slightly modified version of these 
recursions with the indicated additional end constant terms. 
The polyacene-2,x-quinododimetide series (Figure 7) has 
been studied in regard their progressive aromaticity and 

diatropicity change with increasing size and in regard to 
their conjugation as a function of their number of Dewar 
resonance structures.[28,29] Both these series possess no 
Hamiltonian circuit or path whereas those in Figure 3 do. 

Recursion Equations for the 
Characteristic and Matching Polynomials 
of Conjugated Systems Related to Zigzag 

Phenacene Conjugated Polycyclic 
Hydrocarbon Series 

The zigzag phenacene related series in Figure 9 all obey the 
same recursion equations for characteristic polynomial; the 
first three series also obey the same matching recursion 
equation. The first phenacene series (uppermost series in 
Figure 9) has been extensively studied by Hosoya and 
coworkers.[36] The polyphenacene-1,x-quinododimethide 
series (second series) have been studied in regard to 
conjugation and were shown to be right-hand mirror-plane 
fragments belonging to a series of fullerenes having 
rotational symmetry that were generated by 
circumscribing.[49] Figure 10 summarizes the matching and 
characteristic polynomials of the first several members and 
respective recursion equations. 
 The last weighted vertex polyphenacene related 
series (Figure 9) are also right-hand mirror-plane fragments 
belonging to a series of carbon clusters and fullerenes 
having rotational symmetry that were generated by 
circumscribing.[50] Here the vertex weights are minus one  
(–1). The third row in Figure 9 are mirror-plane fragments 
to the monocapped nanotubes in Figure 11. Figure 12 

 

Figure 6. Matching and characteristic polynomials for the dicyclopenta-fused polyacene series for the initial requisite number 
of members that need to be known for application of the listed recursion equations. Compare with recursion equations in 
Figure 3. 
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presents the matching and characteristic polynomials of 
the first several mirror-plane members and respective 
recursion equations. These odd carbon clusters are 

precursors to fullerene series generated by successive 
circumscribing where the higher members become 
elongated with increasing size to form bicapped nanotubes. 

 

Figure 7. Polyacene-2,x-quinododimethide series. Note the end terms need to be determined by inspection to bring in 
agreement the recursions equations. These ring structures have no Hamiltonian path. 

 

Figure 8. Polyacene-1,x-quinododimethide series. Note the end terms need to be determined by inspection to bring in 
agreement the recursions equations. Except for the first member, these structures are devoid of Hamiltonian paths. 
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The last row of Figure 9 are mirror-plane fragments 
bicapped fullerene nanotubes. The recursion equation for 
the characteristic polynomial of the last series has been 

published.[50] Figure 13 summarize the eigenvalues for 
these fragments of the bicapped fullerene nanotubes also 
listed in Figure 9. The last three series give the doubly  

 

Figure 9. The recursion equations for the zigzag related polyphenacene series. The initial requisite number of members whose 
polynomials need to be known for the upper three series are given in Figures 2, 10, and 12. The first three series obey the same 
the same recursion equations for the characteristic and matching polynomials. The fourth series obeys the same recursion 
equation for the characteristic polynomial but its compliance with the matching polynomial is unknown. 

 

Figure 10. Matching and characteristic polynomials for the polyphenacene-1,x-quinododimethide series for the initial requisite 
number of members that need to be known for application of the listed recursion equations. Compare with Figure 9. 
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Figure 11. The above monocapped carbon cluster can serve as precursors to bicapped nanotubes through their dimerization. 

 

Figure 12. Matching and characteristic polynomials for the mirror-plane fragments to monocapped carbon clusters in Figure 
11. Also, compare with Figure 9. 
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degenerate eigenvalues to the corresponding nanotube, 
monocapped, and bicapped fullerene nanotubes.[49,50] 
Sufficient amounts of [10]phenacene and [11]phenacene 
have been synthesized using a simple repetition of Wittig 
reactions followed by photocyclization.[51] 
 An alternative method of constructing bicapped 
nanotubes is by joining any two monocapped carbon 
clusters at their open ends in Figure 11. Dimerizing two C15 
carbon clusters gives the C30 nanotube in Figure 13. Joining 
the C15 carbon cluster with the C25 carbon cluster gives the 
C40 nanotube in Figure 13. Dimerizing two C25 carbon 
clusters gives the C50 nanotube, and proceeding so forth 
will give the whole Figure 13 nanotube series. 

Conjugation Versus Aromaticity and 
Equations for Number of Dewar 

Resonance Structures (DSs) in Polycyclic 
Aromatic Series  

Table 1 list the TRE and TCE values for the Figures 5 and 6 
series and the edge deleted successor series for the poly-s-
indacene series of Figure 6 in Figure 14. Pentalene can be 
regarded as the first member of this series, s-indacene as 
the second, and dicyclopenta[b,g]naphthalene as the third. 
Deletion of one bond in pentalene gives 1-vinylfulvene and 

two bonds gives [4]dendralene all with the same number of 
pπ-bonds which are the lead members in Figures 14 and 15. 
The succession of values for TRE is –0. 215, 0.0144, and 0 β 
and for TCE is 2.671, 1.925, and 1.332 β, respectively. The 
reason that 2-vinylfulvene is slightly aromatic rather than 
nonaromatic is due to the anionic polar cyclopentadiene 
circuit contribution that occurs in this nonalternant 
hydrocarbons. Pentalene is significantly antiaromatic and 
[4]dendralene is the least conjugated pπ systems. For 
comparison, the TRE = BRE = –0.595 β and TCE = 2.252 β for 
antiaromatic cyclocta-1,3,5,7-tetraene. Formation of 
pentalene by bridging two nonstarred positions in cyclocta-
1,3,5,7-tetraene results in less antiaromaticity (TRE goes 
from to –0.595 to –0. 215 β) and more conjugation  
(TCE goes from 2.252 to 2.671 β). All the TCE values in  
Table 1 are larger than the corresponding TRE values.  
These numerical results are consistent with our chemical 
anticipation.  
 s-Indacene and higher homologs (Figure 6) become 
increasingly more aromatic due to increasing number of 
benzene rings (r6) and Dewar resonances structures [DS = 
1/3(2r63 + 24r62 + 58r6 + 36)]. This alternative explanation 
for the increasing aromaticity of the Figure 6 dicyclopenta-
polyacene series should be compared to allyl-polyacene-

 

Figure 13. Fullerene series that become elongated fullerene tubes with increasing size. 
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allyl biradical structures explanation of Havenith et al., and 
Makino and Aihara collective contribution of non-
conjugated circuits explanation.[29,47] Per Table 1 the TCE 
/double bond is increasing with increasing length of the 
dicyclopentapolyacene due to increasing number of 
benzene rings (r6) and Dewar resonance structures as 
determined by the above formula. 
 Figures 16 and 17 give two different derivations for 
determining for number of Dewar resonance structures in 
the linear polyacene series. Figure 16 demonstrates the 
general derivation of the analytical expressions using 
successive subtraction. This subtraction starts with known 
DS values of initial members of the linear polyacene series. 
Successive subtraction is performed until the differences 
become constant. In the case for the linear polyacene 
series, the fourth subtraction iteration gives constant 
differences of 2. The highest power term in the analytical 
expression equals the number of subtraction iterations. 
The coefficient of the highest power term equals the 
constant difference value which also coincides with the 
Kekulé value (K) of the smallest cyclic member of the series; 
K = 2 for benzene. The denominator in the analytical 
expression is the factorial of the highest power value. The 
remaining coefficients are determined by matrix algebra. 
 Figure 17 shows the derivation of the recursion 

expression for the linear polyacene series. We start with 
recursion equation for the general matching polynomial for 
the linear polyacene series derived by Hosoya and Ohkami 
Operator Technique.[36] The tail coefficients of the 
matching polynomial per the equation DS = |aN–2ac| − 
(N/2)K gives the Dewar resonance structures (DS).[21,28] 
Thus, the recursion equation for the number of Dewar 
resonance structures (DS) takes the same form as the 
general matching polynomial recursion equation where the 
end term must be solved by inspection. In this case, solving 
several initial members where the end term is an unknown 
variable and observing the pattern this variable gives the 
result of 2r + 3. Comparing the results of the Figure 17 
recursion and the Figure 16 analytical expression gives total 
agreement. 
 Using the method of successive differences to derive 
an analytical expression for the phenacene series (zigzag 
polyacene series) was not successful. However, starting 
with the recursion equation for the general matching 
polynomial for the phenacene series as shown in Figure 18 
was successful in generating the recursion equation for the 
number of Dewar resonance structures (DS). The recursion 
equation for DS has the same form as the recursion 
equation for the general matching polynomial where the 
tail term is determined separately. The numerical values of 

Table 1. Valence-Bond electronic properties of compounds in Figures 5, 6, 14, and 15. 

Polyacene-2,3-quinododimethides TRE, β (%TRE) TCE, β 
TCE/double 
bond, β 

No. double bonds;  
No. rings 

DS 

Benzene- 0.059  (0.599) 1.8947 0.4737   4; 1 7 
Naphthalene- 0.140  (0.913) 3.3910 0.5652   6; 2 20 
Anthracene- 0.225  (1.078) 4.9074 0.6134   8; 3 42 
Naphthacene- 0.309  (1.169) 6.4318 0.6432 10; 4 75 
Pentacene- 0.391  (1.224) 7.9601 0.6633 12; 5 121 
Hexacene- 0.472  (1.258) 9.4904 0.6779 14, 6 182 
Dicyclopentapolyacenes      
(Pentalene) (–0.215) (–2.02) (2.6708) (0.6677)  (4; 2) (12) 
Benzene 0.055    (0.34) 4.1767 0.6961   6; 3 40 
Naphthalene 0.192     (0.89) 5.6974 0.7122   8; 4 88 
Anthracene 0.292     (1.07) 7.2241 0.7224 10; 5 160 
Naphthacene 0.379     (1.16) 8.7536 0.7295 12; 6 260 
Pentacene 0.461     (1.20)   14, 7 392 
Hexacene 0.541     (1.24)   16, 8 560 
Cyclopenta-3-vinyl,2-methylenylpolyacenes      
5-methylene-1-vinylcyclopenta-1,3-diene 0.0144  (0.1451) 1.9248 0.4812   4; 1 8 
5-methylene-6-vinyl-5H-indene 0.0849  (0.5502) 3.4310 0.5683   6; 2 23 
6-methylene-7-vinyl-6H-cyclopenta[b]naphthalene 0.1646  (0.7856) 4.9512 0.6189   8; 3 48 
7-methylene-8-vinyl-7H-cyclopenta[b]anthracene 0.2484  (0.9381) 6.4783 0.6478 10; 4 85 
3,y-Divinyl-polyacene-2,x-quinododimethides      
Benzene (x = 5, y = 6) 0.0442  (0.2989) 2.7878 0.4646   6; 1 10 
Naphthalene (x = 6, y = 7) 0.1094  (0.5394) 4.2816 0.5352   8; 2 22 
Anthracene (x = 7, y = 8) 0.1834  (0.7111) 5.7915 0.5792 10; 3 40 
Naphthacene (x = 8, y = 9) 0.2606  (0.8323) 7.3098 0.6092 12; 4 65 
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the tail term are determined for the initial phenacene 
members which display a Fibonacci-like pattern (tn = tn–1 + 
tn‒2). The characteristic equation (X2 ‒ X – 1 = 0) of this 
Fibonacci-like sequence gives the roots r1 = ½(1 + √5) and r2 
= ½(1 ‒ √5). Solution of tn = tn‒1 + tn‒2 using these roots tn = 
c1r1n + c2r2n requires input of initial conditions. For n = 0 one 
gets 15 = c1 + c2 and for n = 1 one gets 26 = ½c1 (1 + √5) + 
½c2 (1 ‒ √5) Solving for c1 and c2 gives c1 = 15.77345 and  
c2 = ‒0.77345. These values give tn = 15.77345(1.618034)n 
– 0.77345(–0.618034)n. Inserting n = r – 5 gives tr–5 = 

15.77345(1.618034)r–5 – 0.77345(–0.618034)r–5 = 
1.422291(1.618034)r + 8.57769(–0.618034)r for r > 5. For r 
= 5 one gets t0 = 15.77345 – 0.77345 = 15 and for r = 6 one 
gets t1 = 25.52198 + 0.47802 = 25.99999. Note that the last 
term is alternating in sign and decreasing in magnitude. 
Thus, for r > 6 the last term can be ignored for simplicity as 
it is increasingly less significant.  
 The DS values for the linear polyacenes in Figure 17 
are smaller than their phenacene isomers in Figure 18 except 
for anthracene (DS = 48) and phenanthrene (DS = 47).  

 

Figure 14. Deleting an edge in the dicyclopenta-fusd polyacenes series in Figure 6 gives the above series having the same 
recursion equations. 

 
Figure 15. Deleting an edge in each pentagonal ring in the dicyclopenta-fusd polyacenes series in Figure 6 gives the above series. 
Note that the recursion equations are identical to those for the polyacene-2,x-quinododimethide series in Figure 7. Note the 
end terms are the same and deleting the vinyl substituents gives the same series structures. 
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CONCLUSION 
Several important results in this work should be noted. The 
recursion equations of this work demonstrate that by 
studying homologous series, one can extrapolate proper-
ties of larger members from the known properties of the 
smaller members. Per Table 1 it is evident that the 
homologous series in Figures 5, 6, and 14 (middle and 
lower) have larger TCE values than TRE values. This means 
that all these compounds have more conjugation energy 

than aromatic resonance energy. On-Surface and single 
molecule methods for synthesizing reactive compounds 
have been recently developed.[45,52] This work is a 
continuation of our studies toward exploiting symmetry to 
break up a molecule into smaller parts that are more easily 
solved for the eigenvalues belonging to the parent 
molecule. 
 
Acknowledgment. This work was supported in part by a 
grant from by the UM Board of Curators (K0906077). 

 

Figure 16. Algorithm for deriving DS analytical expressions: (1) The DS's are determined for several initial members of a series 
built by a given aufbau unit. (2) Successive subtraction is performed until the differences become constant. (3) The highest 
power term equals the number of subtraction iterations. (4) The coefficient of the highest power equals the constant difference 
value which also coincides with the K value of the smallest cyclic member of the series. (5) The denominator is the factorial of 
the highest power value. (6) Other coefficients are determined by matrix algebra. 

 

Figure 17. The recursion equation for the number of Dewar resonance structures (DS) takes the same form as the general 
matching polynomial recursion equation where the end term must be solved by inspection. 
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