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Abstract: The perturbation method of Lindstedt is applied to study the relativistic 
nonlinear effects of a circularly polarized transverse monochromatic wave in 
a cold dissipative plasma medium in the presence of static magnetic field which 
is along the direction of propagation of the wave. Amplitude dependent wave 
length and frequency shifts including relativistic corrections are derived. 

1. Introduction

Nonlinear wave length and frequency shifts for various types of monochromatic 
waves travelling in a plasma medium have recently been obtained by several au
thors 1 - 5>. Boyd 4> obtained amplitude dependent frequency shift for standing 
extraordinary waves with propagation vector perpendicular to the direction of the 
magnetic field, whereas Das 5> obtained wave length and frequency shifts for 
propagating wave of extraordinary mode when the static magnetic field is perpen
dicular to the direction of propagation. All of them have taken non-dissipative 
plasma medium, moreover they have used the method of Bogoljubov, Krylov and 
Mitropolsky. Here we obtained the nonlinear wavelength and frequency shifts 
of a circularly polarized transverse monochromatic wave in a cold dissipative plas
ma including relativistic corrections in the presence of static magnetic field which 
is along the direction of propagation. Though the earlier authors have invariably 
used the Bogoljubov, Krylov and Mitropolsky method, we have adopted, for 
the first time perhaps in the plasma theories, the method of Lindstedt6 - s> which 
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seems to be more convenient than others particularly for lengthy calculations such 
as those of these papers. Here we obtained two different frequency shifts or two 
wave number shifts which agree with our previous result* in the absence of static 
magnetic field. Again it is found that the frequency shifts further towards the 
red and the wave length contracts more due to the presence of small external mag
netic field. 

2. Fundamental equations
' 

The set of cold plasma equations including relativistic effects and dissipation 
and Maxwell's equations are 
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Here n is the electron number density, vis the electron velocity, E and H are the 
electric :and magnetic _field intensities, C is the velocity . ·of light, no i� the Uniform
background �on density and .,, is the collisional frequency, which is constant and 
greater than zero. 

2 
Since v2 < < 1,: the Equ. (2), correct Up to third order reduces to
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* Secular free solution upto third order of relatistic cold dissipative plasma equations
for electromagnetic field (Unpublished). 
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The Maxwell's equations reduce to 

a 2 i - a - -
a t2 - c2 '1 2 E = 4n e a t (n v) - c2 grad div E, 
�� : - -
_ - ,2 <y 2 H = - 4n e c  Curl (n v).
a i2 

Series solution of these Equs. is sought in the form 
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The variables having s as coefficients are in general functions of space and time 
In initial value problem the space variable is not expanded, the time variable t is 
expressed in power series �s 

( 1 1 ) 

where a is included to adjust the phase an� ai , a2, a3, • • •  are constants. These 
constants should be chosen appropriately so �hat terms fielding secular behaviour 
after integration are removed. 

We then have 
ar l ar 

a tr = 
( 1 + e a 1 + e2 a2 + . . .  )2 ar s '

r = l ,  2.

3. Approx£mat£on up to th£rd order

( 12) 

For transv�rse monochromatic wave, using the Equs. (7) to (12) we obtained 
the first order approximations as 
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(13) 

and 

82 H1 2 2 H- mm!c[ -1 852 -c 'v 1 = --e- V X V1 ' 

where c.o0 is the plasma frequency.

For secular free behaviour in the case of second order approximation as with the 
earlier authors we find that a1 = 0 and so the second order approximation reduces
to 

and 
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This leads to the third order approximation for E 3 as 
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4. Result up to third order and conclusion

When the static magnetic field lies along the direction of propagation of the wave, 
let the solution of the first order approximation for; 1 in a dissipative plasma medium, along the positive direction of z axis be 
where 

A /\ A 

.... " "
r is ( + • ) v 1 = v O e ex cos 1J1 e, sm 1P ,

1P = k . z - w, s, v O is real constant and 
- A k = e: k. 

ex> e, and ez are unit vectors along the three perpendicular axes. 
The dispersion relations are found to be 

w2 w c2 "2 = w2 _ o 1 
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(16) 
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where ± denotes left hand and right hand rotations and Q is the cyclotron frequency. 
Then - m v e''s " " " " E1 = - --0

-- {(r1 + 11) (ex cos 1J1 + e, sin 1P) + (c.o 1 + !J) (ex sin 1J' - e, cos 1J1)},e 

n1 = 0, 
and 
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We find that the right hand side of the Equ. ( 15) is linear combination of terms 
A A A A proportional to ex cos 'f/J, e, sin 'f/J, ex cos 'l/J and e, sin 1J'· In order to avoid secular 

A A A behaviour in the third order solution, the co.:.efficient of e � cos 'f/J, e,' sin 'f/J, ex cos 'f/J and e, sin 'l/J must vanish. We get two different expressions for a2 • ·Consequently two different frequency shifts result 

+ 1 + 1 1 1 4c2 k2 ro2 ,,2 4c2 k2 r Q (r Q - 2ro v) } (r; + w:)2 ( 4r: + 2r 1 11 + ro!) (r; + ro:)2 
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(20) 

The first part in the brackets is due to the relativistic effects, the third part to the external magnetic field. In the absence of the external magnetic field, the result obtained, totally agrees with our previous result. Moreover we find that the circularly polarized wave splits up into two polarized waves propagating with different phase and group velocities, coming both from relativistic and non-relativistic effect. Again, in the case of small external magnetic field, the last two terms in the bracket in both the equations are positive. Hence the frequency shifts move towards the red due to the presence of small external magnetic field. 
In the boundary value problem, the time variable is not expanded, the space variable ; is expressed in power series as 

and 

where 'vo  = ----:::;. (21 )  
o R  
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The same procedure gives the following expression for the wave number shifts 

and 
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The first part in the brackets is due to the relativistic effects the third part to the external magnetic field. In the absence of the external magnetic field., we obtained the same result as previously. Again in the case of small external magnetic field, the last two terms in the bracket taken together in both the equations are positive. Hence we conclude that the wave length contracts more due to the presence of a small external magnetic field. Since w 1 � w 0, r 1 and 11 are small, the Equs. (20) and (22) reduce to 
.... _.. lJ k' � - _1!_ (/J w') and /J k" � - !!_ (/J w"), 

2 W i  2 2 W t  2 

where Equ. ( 1 1 )  gives the relation between t and s. Under this restriction the relation 
lJ (kw) = 0 can be profitably used to obtain the increment in k if the increment in w is known and vice-versa. 
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