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Abstract: We describe a graphical method for solving a wide range of algebraic equations in one unknown. The method can be used to solve 
problems in acid/base equilibria, properties of real gases, general equilibria, solubility products and chemical kinetics. The graphical method 
employs Mathematica software to solve equations by plotting two curves. This is different to current practices which use numerical 
(iterative) method or complex formulae.  
 The graphical method is easy to apply and requires minimal mathematical manipulations. It introduces students to the use of 
powerful computer algebra software. The method works not only for polynomial type equations (often encountered in acid/base or general 
equilibria or real gas equations), but also for non-polynomial equations involving exponential terms. The graphical method implemented 
by Mathematica represents a “graphing calculator”. The calculator is a general equilibrium solver for single equilibrium systems and allows 
students to calculate equilibrium concentrations without recourse to complex analytical formulae or numerical methods. 
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INTRODUCTION 
ONLINEAR equations in one unknown appear when 
teaching chemistry topics on acids and bases, 

solubility products, chemical equilibrium or chemical 
kinetics. The algebraic equations which quantify these 
chemical processes are often in the form of polynomials of 
the order > 4 which is generally solvable by numerical 
methods. Such approaches as discussed previously[1–5] 
require mathematical or programming skills which entry 
level undergraduate students do not usually possess.  
 We describe a graphical method where mathematical 
manipulations are simple enough to be used in general 
chemistry teaching when real gases, chemical equilibria, 
solubility products or acid/base behavior are introduced and 
discussed. The method can be applied equally well in the 
classroom context (e.g. as a tutorial problem) or in the lab 
context (as analysis of experimental data). The method uses 
graphical representation (plot), rather than numerical, 
iterative methods or closed formulae and can be carried out 
with Mathematica software. 

DISCUSSION 
The graphical method described in this work updates and 
extends the earlier work.[6–7] The update is interesting 
because it demonstrates that the method can be used not 
only for teaching real gases[6] or chemical equilibrium,[7] but 
also for teaching and learning of related topics e.g. 
acid/base systems and sparsely soluble salts. Furthermore, 
the method can be applied to some reactions in chemical 
kinetics. The update in this work also shows how to solve 
general problems which can be described by algebraic 
equations in one unknown (not necessarily of polynomial 
type). The one other update is to point out that the readout 
of the result can be achieved directly from computer screen 
by simply positioning of the cursor in Mathematica 
software. The example of the use of this graphical method 
(without Mathematica) on the example of real gas was 
described by Atkins et al.[6] The graphical method described 
in this work is not obsolete as far as chemical education 
goes. It is included in the latest edition of the most widely 
used physical chemistry textbook.[6] 
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 The method can be conceptually summarized in the 
scheme below: 

We illustrate the application of our method on several 
examples and provide corresponding Mathematica codes 
in the Appendix. In the initial step, the mathematical 
equation (in one unknown) is rearranged in such a way that 
the unknown variable (x) appears on both sides of the 
equation. This algebraic rearrangement is not unique, but 
different rearrangements lead to the same unique answer 
with the same precision. This rearrangement generates two 
expressions (labelled “l” for left and “r” for right in the 
code) containing the same variable x. The expressions 
correspond to two sides of the original equation which 
needs to be solved. The two expressions are then plotted 
as separate curves (functions of x) and the curves’ 
intersection point is sought. The value of x, determined at 
the intersection point satisfies the original equation and x 
is thus the solution desired. The range of x variable in the 
plot is adjusted by trial and error until the intersection  
point is located. This is achieved easily and quickly in 
Mathematica, simply by modifying the two numbers in Plot 
command which define the plot range e.g. in {x,0,1}. If the 
intersection point is not found in this range, the range is 
modified until it encompasses the intersection point e.g. 
{x,0,10}. Once the intersection is found, the range can be 
narrowed as much as desired to bracket the intersection 
point closely. Mathematica enables numerical readout of x 
coordinate of the intersection point directly from the 
computer screen, by placing cursor over the intersection 
point. The readout on the plot itself (on horizontal x axis) is 
of course also possible, but is less accurate or convenient. 
There are three important advantages of our method 
compared to numerical method or use of analytical 
formulae. The first advantage is that our method leads 
directly to the physically meaningful root (amongst several 
roots of higher order polynomial equation). In closed 
thermodynamic system, for a given set of initial (pre-
equilibrium) concentrations only a single equilibrium state 
exists. Consequently, the resultant equilibrium concen-
trations are also unique which corresponds to the root 
found graphically. The second advantage is that the original 
equation requires little, if any algebraic manipulation. This 
is shown in the Example 2 below where one can keep the 

unknown variable x in the denominator. To use standard, 
closed formulae one would need to rearrange the original 

equation to match the solution formula. This reduces the 
burden of algebraic manipulations which may be necessary 
in preparation for using computer program when pursuing 
numerical solution method.[1] The third advantage is that 
our method works in cases when analytical solution 
formulae do not exist.  

Example 1 
Calculate [H+] of the solution of acetic acid of concentration 
Ca = 0.00001 M which has ionization constant Ka = 1.74 × 
10–5 M without using any approximations.[2] The relevant 
equation is: [H+]3 + Ka[H+]2 – (Kw + CaKa)[H+] – KwKa = 0. 
Rearranging the equation to get unknown [H+] on both 
sides of the equation gives [H+]3 + Ka[H+]2 = (Kw + CaKa)[H+] + 
KwKa where Kw is 10–14 M2. 
 The relevant mathematical equation for this weak 
acid is then: 

 x3 + 0.0000174x2 = 0.0000174 × 10–14 +  

 x(10–14 + 0.00001 × 0.0000174) (1) 

 Plotting expressions: x3 + 0.0000174x2 and 
0.0000174 × 10–14 + x(10–14 + 0.00001 × 0.0000174) as two 
curves representing two sides of Eq (1) and searching for 
their intersection gives Figure 1. 
 From Figure 1, x coordinate of the intersection point 
is x = 7.15 × 10–6 M which is the required [H+]. This example 
shows that Mathematica’s graphical engine can readily 
handle very small numbers. 
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Figure 1. Plot of two expressions from each side of Eq (1). 
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Example 2 
Consider the sparsely soluble salt[1,2] PbCl2(s) ⇌ Pb2+(aq) + 
2Cl– (aq) with Ksp = 1.75 × 10–5 M3. What is the molar 
solubility of PbCl2 in solution which has [NaCl] = 0.02 M? 
The relevant mathematical equation corresponding to Ksp = 
[Pb2+][Cl–]2 is Eq (2): 

 x(2x + 0.02)2 = 1.75 × 10–5 (2) 

 Rearranging Eq (2) we get 

 
−×

+ =
5

2 1.75 10
(2x 0.02)

x
 (3) 

 We then plot the left hand side (2x + 0.02)2 and the 
right hand side 51.75 10

x
−×  expressions of Eq (3) as separate 

functions. The intersection of the two curves gives molar 
solubility of PbCl2 as x = 0.0105 M (Figure 2) which is the 
molar solubility sought. 

Example 3 
Consider the equilibrium: 2H2(g) + CO(g) ⇌ 1/2C2H4(g) + 
H2O(g) with K = 2.79. If the initial pressures of H2 and CO are 
4 and 1 atm, respectively, find the equilibrium pressures in 
the system.[5] We derive the mathematical equation (4) 
from the equilibrium equation K = (pC2H41/2pH2O) / (pH22pCO) 
as  

 
x
2

2

x
2.79

(4 2x) (1 x)
K

⋅
= =

− −
 (4) 

 We then plot expression 2.79 × (4 – 2x)2(1 – x) as a 
function of x and expression x

2x ⋅  as a function of x. The 
intersection of the two curves gives the value of x as 0.947 
atm as the solution (Figure 3). The equilibrium pressures 
can subsequently be calculated by plugging the 0.947 atm 
value into Eq (4). As a check of the obtained solution, the 
calculated equilibrium pressures are plugged into Eq (4) to 
give back the correct equilibrium constant of 2.79. 

 More examples of polynomial equations which 
originate when solving problems in acid/base chemistry are 
given by Bamdad.[1] However, we also wish to demonstrate 
that our graphical method can also handle equations which 
are not simple polynomials. We do so on the example from 
chemical kinetics (Example 4). 

Example 4 
This example considers kinetics of a reversible 1st order 
reaction A ⇌ P. While this particular example is better 
suited for upper-level undergraduates, it is given here to 
demonstrate that our method can be applied to equations 
other than polynomials. The relationship giving depen-
dence of concentration of A as a function of time (At) in  
A ⇌ P reaction is well known[8,9] and is given as (5). Ae is the 
equilibrium concentration of A and kf and kr are rate 
constants for the forward and reverse reactions, 
respectively. We assume that initially only A is present with 
known concentration A0. Upon rearranging (5) we get (6). 
Since Ae is fixed for a given initial concentration and 
temperature we can derive (7) and (8) which relate 
concentrations of At1 and At2 at times t1 and t2 (t2 > t1).  
Eq (8) is a simplified form of Eq (7) with reduced number of 
terms. 
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 Selecting suitable times (t1 and t2) and the 
corresponding concentrations (At1 and At2) we apply our 
method to solve Eq (8) and obtain (kf + kr). Using the value  

 

Figure 2. Plot of expressions on each side of (3) gives 
intersection at x = 0.0105 M. 
 

 

Figure 3. Plot equations on each side of Eq (4) gives 
intersection at x = 0.947 atm. 
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of (kf + kr) we can then get the remaining parameters kf, kr 
and K as per Eqs (9–11). Expression (9) is well known and 
combining it with Eq (5) and Eq (6) gives Eq (10). 

 0 e f
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= =  (9) 
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Selecting a certain time t and the corresponding 
concentration At we use Eq (10) to calculate K. Knowing K 
and (kf + kr) we can finally obtain kf, kr and Ae from (11)  

f r f r 0
r f e

( ) ( )
1 1 1

k k K k k A
k k A

K K K
+ +

= = =
+ + +

 (11) 

 The method described in this Example 4 is suitable 
for very slow A ⇌ P reactions when the equilibrium state 
cannot be reached and measured in the practical time 
period. This implies that K cannot be estimated accurately. 
We use the experimental data for esterification reaction in 
which 4-hydroxybutanoic acid gets converted into lactone 
derivative.[8] We select the following experimental data for 
lactonization reaction: A0 = 0.1823 M, At1 = 0.1324 M, At2 = 
0.0788 M, t1 = 50 min, t2 = 160 min. The application of our 
method and Eq (8) gives kf + kr = 0.0094 s–1 from Figure 4. 
Eq (8) is not a polynomial equation, but our method works 
well. The method can be applied to multiple experimental 
data points in this reaction[8] in order to get the average 
value of kf + kr. However, as mentioned earlier, we only 
wanted to demonstrate the applicability of our method to 
non-polynomial type equations like Eq (8). 
 The power of modern computer algebra software 
used on a modern laptop computer is such that graphical 
method (plot) provides solution whose accuracy matches 
numerical/closed formula method. This is in itself an 
important learning experience for students and an 
encouragement to use and explore computer algebra 
software further. 

 The limitation of our method is that it requires some 
very basic familiarity with Mathematica software. The advan-
tage is that it does not required writing programs using 
numerical analysis or complicated formulae as earlier meth-
ods do.[1–5,10] Programming, the use of numerical (iterative) 
methods and complicated formulae, tax the average student’s 
mathematical knowledge and consumes the time which can 
more profitably be spent on learning chemistry concepts. 
 

CONCLUSION 
The use of computer algebra software in teaching and 
learning chemistry (e.g. Maple, Matlab or Mathematica) 
has become widespread with the increasing power of 
personal computers. It is therefore beneficial for students 
to encounter such software early in their study of chemistry 
and apply it to solving standard problems encountered in 
learning general chemistry. This will encourage them to use 
this type of software later on, should they continue to study 
chemistry at upper undergraduate level. Many problems in 
chemical equilibria or acid/base reactions presented when 
teaching general chemistry level are artificially designed in 
such a way as to avoid the need to solve polynomial 
equations of degrees higher than two. The fact that there 
are no general, analytical solutions to equations in one 
unknown of the order > 4 limits the selection of tutorial 
problems even further. Our method overcomes these 
limitations without making heavy demands on student’s 
mathematical background. Furthermore, drawing graphs to 
obtain numerical values of various parameters is a staple 
diet of teaching chemical kinetics in general chemistry 
subject, so our method fits well into what students are 
already using and learning.[10] 
 Mathematica software also provides numerical 
solutions of the equations discussed in this work. See for 
example web sites A and B: 

A 
https://www.wolfram.com/mathematica/new-in-
10/enhanced-algebraic-computation/find-chemical-
equilibrium-for-networks-of-reaction.html 

B 
https://mathematica.stackexchange.com/questions/9832
9/how-to-get-the-coordinates-of-the-intersection-of-two-
lines-from-a-listlineplot. 

 However, using these numerical Mathematica codes 
requires students learn a lot more about Mathematica 
syntax. The purpose of our work was to provide a universal 
equation solver with minimal effort which can be used and 
understood by 1st year chemistry students and not as an 
introduction to Mathematica capabilities. 1st year 
chemistry students often do not have extensive 
background in mathematics or computing.  

 

Figure 4. Plot for equilibrium equation (8) gives kf + kr = 
0.0094 s–1. 
 

https://www.wolfram.com/mathematica/new-in-10/enhanced-algebraic-computation/find-chemical-equilibrium-for-networks-of-reaction.html
https://www.wolfram.com/mathematica/new-in-10/enhanced-algebraic-computation/find-chemical-equilibrium-for-networks-of-reaction.html
https://www.wolfram.com/mathematica/new-in-10/enhanced-algebraic-computation/find-chemical-equilibrium-for-networks-of-reaction.html
https://mathematica.stackexchange.com/questions/98329/how-to-get-the-coordinates-of-the-intersection-of-two-lines-from-a-listlineplot
https://mathematica.stackexchange.com/questions/98329/how-to-get-the-coordinates-of-the-intersection-of-two-lines-from-a-listlineplot
https://mathematica.stackexchange.com/questions/98329/how-to-get-the-coordinates-of-the-intersection-of-two-lines-from-a-listlineplot
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 To demonstrate direct numerical approach using 
Mathematica we utilized numerical function called: 
ResourceFunction["CurveIntersection"]. This func-
tion was used to obtain all numerical solutions directly in 
Examples 2 and 3 (see Appendix). The numerical results 
matched graphical results. However, ResourceFunction 
["CurveIntersection"] does not always work as indic-
ated by the message on site B and as shown by our Example 4 
where this numerical function does not work either. 
 

APPENDIX 
Mathematica code for Example 1 (graphical solution) 
l=x^3+0.0000174*x^2 

r=x*(10^(-14)+0.00001*0.0000174)+0.0000174*10^(-14) 

Plot[{l,r},{x,0.00011,0.00015},AxesLabel->{H,conc}] 

Mathematica code for Example 2 (graphical solution) 
l=(2*x+0.02)^2 

r=1.7*10^(-5)/x 

Plot[{l,r},{x,0.001,0.02},AxesLabel->{x,conc}] 

Mathematica code for Example 2 (numerical solution) 
ResourceFunction["CurveIntersection"][{y==(2x+0.02)

^2,y==1.7*(10^(-5))⁄x},{x,y}] 

Mathematica code for Example 3 (graphical solution) 
l=2.79*((4-2*x)^2)*(1-x) 

r=Sqrt[x/2]*x 

Plot[{l,r},{x,0.92,0.96},AxesLabel->{x,conc}] 

Mathematica code for Example 3 (numerical solution) 
ResourceFunction["CurveIntersection"][{y==2.79*((4-

2x)^2)*(1-x),y==Sqrt[x⁄2]*x},{x,y}] 

Mathematica code for Example 4 (graphical solution) 

l=0.1324+(0.0788-0.1823)*Exp[-a*50] 

r=0.0788+(0.1324-0.1823)*Exp[-a*160] 

Plot[{l,r},{a,0.0092,0.0096},AxesLabel->{a,conc}] 
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