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Abstract: In this paper it is proved that if for the operator 5#, the density matrix
is known, the solution of the Bloch equation for the operator 5 = 5 ,+ 3¢,
1

is given in terms of a powers series in b = ﬁ
1. Introduction
It is known!’ that all the thermodynamic propertigs of a system are given

by the partition function
2 () = Tre-b¥ (¢))

where 5 is the Hamilton operator and b = EIT’ K is the Boltzmann constant and

T is the absolute temperature.

When the density matrix
P’ b) =T 9] (r) e g, (v) (2)
J
is known, the partition function 2z (b) is given by the formula

z(b)=z,e‘551=jw(:,;:b)d;: 3)
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The density matrix (2) satisfies the Bloch equation?), that is

oy
H
75 T v=0 4)
with the initial condition
@ n0) =00 —7. ©)

The solution of the Bloch equation has attracted the interest of many authors
and the result was the development of various methods of which most important
can be found in a book by Miinster ©. These are:

— Cluster expansion method, which was developed by Montroll-Ward?*’
with the use of the Green function;

— high temperature method, which consists of expanding in power series
of Planck's constant %, of which the first term corresponds to the semi classical
expression. This method was developed by Wigner#’, Kirkwood*’ and by Goldber-
ger and Adams®; and

— low temperature expansmn method Wthh has- been developed by Gold-
berger and Adams®. . -

Recently Morita? gave the solution of the Bloch equation for a many par-
ticle system in a box, in terms of the path integral.

The method of the path integral has been applied in statistical mechanics
by Siegel and Burke®. We cannot obtain an exact solution of the Bloch equation
(4) except for certain form of the potentlal energy The case of the harmonic oscilla-
tor has.been studied by Davies®’ and thecase of free-electron in a uniform magnetic
field by Sondheimer-Wilson! ®. I annussis! gave an exact solution of the Bloch
equatlon for the case of a free-electron in uniform electric and magnetic fields.

Here another method is developed which has been used by Jannussis'? for
the one dxmensmnal case and whchﬁ consnsts of a dircct expansnon in power se-

ries of b = %7‘ and is valid for hlgh temperatures.

2. Solution of the Bloch equation in three dimensions

The Bloch equation in thrce dimensions has. the form

dv=V@y=lpa- Vel ©
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where V (_1") is the potential energy. The reqiired solution y (-1':’, b) ‘of (6)" for 5=0
must satisfy the initial condition

w5 0) = F®, 0

where F (-1:) is an arbitrary function. If we suppose that the solution of (6) can be
expanded in a series of the form

pob=En6v, ®)

the functions p, (1_:) should satisfy the following differential system

- ‘ - %2 - -
0+ 1) Yot (D = 9, ) = (Z_mA - V(r),) v, ©)
2 -
where 5 = — 3 A4+ V (r) is the Hamilton operator.

The. solution: of the systém (9) can be obtained for n = 0, 2, 1,..” provided
that o (r) % 0.

The function o, (;) is given By the expression

'P_ ”w ka(az 32
| P 0=

g2 = B
T3V =gy P T g ) ~ VA @ (10

Likewise, for n =1 we get
D= (A - Ew@atavm+vdlve® a1
wzr—f‘(m) m L\ -4V (r r}%r.

Consequently the solution (8) of the Bloch equation has the form

P 8) = yo () + %[gd oz V(}')‘}I% 'S +%{(524)2 =

2m

_%(V(;MJMV(?)HW(B} o () + .. 12)
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In the above solution, there appear the series

(= A (iA) @ 252 ) (13)

amp 2L 2m n!

together with other terms containing the function o () V (r) and their deri-
vatives. Furthermore, it can be proved that

b (’iz A) " _G=r,

m - 1 - B
E——|—~—%(r)=TJ‘%0‘)C “am dr' =
n: (47Zb——)2
2m
b 24 (14)

=e > 'Po(;):

which, for the case of one dimension, has been given by Born and Ludwig!?®.
Moreover any function y, () must be subject to the kown restrictions.

Hence the required solution of the Bloch equation in the form of a power
series of b, will be

v b) = f Po ) p(nr,b)dr + (VD — Dyo () +06Y), (19

- - 2
where p (r, 7', b) is the density matrix of the operator — % 4, namely the Green

function of the free electron!4

- -o’ m 22 _m(;'—;.’),'
1/)(7',1',b)=(2 ”z) e T25m . (16)

The above results (15) can be extended to the case of 3N dimensions, that is

- - -
P17 5T b) =

m N
m 3N ~, - - - Z (ry-rp? -
- (m) ’ J‘W° (r72s syl e 268 =1 dry...dr,+
+ (e=8Y71 7au e W) — 1) 9o (P13 o 5 ) + 0 (B). 17

It can be easily proved that for b = 0 the initial condition (5) holds. Also
for V (r) = 0 the solution for the free-particles is readily obtained.
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3. Solution of the Bloch equation in three dimensions and in a
uniform magnetic and electric fields

The Bloch equation in three dimensions, and in a uniform magneticfield H, is

3% ot + VY =0, (18)
where
1 — e - ~ - =
Ho=oe 0 —— AP — e (B (19)

A (;) is the vector potential and E is the electric field.

For a symmetric vector potential of the form 4 (;) = (— —;- Hy, —;- Hx,0 )
the equation (18) reduces to
dy K2 . 2 d e2 H* 5 ~ = =
Tt m A (i) T I VD e E )
=0, (20)

where p = g,—i is the Bohr magneton.

Using the argument of the foregoing paragraph, we obtain

w(r,b) = f.p 1 B o () dY + (€7D — Do () + 02, 1)

- -
where y (#', r, b) is the density matrix of the operator ¢, which was given by Jan-
nussis!? and has the form

m

e SB) —Erhp exp — 27—
h

{2ipuhb(x'y —

- 3 L, Hb
1/)(1", r,b) = (2 - )2 a

nH2b) sinhp Hb

—x)+(z—2) +pHbcothu Hb ((x — x)* + (y — ¥')*) —

Eb, o (B, . B o
—e2 ) e{ib 5 (1 prcoth/sz)}(x x)
e 5b+i- E. (l—yHbcothyHb)}(y—y'). (22
2 2uH
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For E=0 (22) reduces to the density matrix of Sondheimer-Wilson!?.

The integral [y (r r, b) v (") dr', in which y (r 7, b) is the density matrix
of free electrons in a ufiiform magnetic field, can be calculated
: [SM, <x=+y2)]
’ Ndy =——— e~  uHbcotha b
fw(r,r,b)wo(r)dr cosh;sze # Hb coth g

emm'{m‘””‘”( ay Y i)} o (). (23)

The expression (21) for V (?) = 0 leads to the known solution of the Bloch équa"t'ion,
of the form

(rb) = f (7,75 b) v () A7 (24)

also, the (21) for the case of H -0 and E — 0 leads to (17). The same holds for
the integral (23).

From the above argument, we conclude that: if for the operator 5, the
density

- _}r_n%rixig'sgm%wgy Q}Fes?&;ﬁ%on of the Bloch equation for the operator J# =
=0 1

p(rb) = j w7 B) o () dF + (7P T 1) () + 0(87).  (25)

The above solution can be extended i in the case of.n particles and the solu-
tion is of the form

—* - L —.I'I 5 —:
'w (?1, Fay e rn! b) = J. W (rp 3‘1, *av 3 r,.;

Fis T2 o> Tus B) Wo (Fis Ty e » 72) APy A7 .. drt + (€= 51 G1u T ) —
L= Dy rasent) + 0B ~.(26)

This solution is simple and can be applied to many problems, provided
that the density matrix of the operator 5#°, is known. An important example is the
case of the spherical harmonic oscillator, because then the density matrix is known! %
and has the form

maw

g — |(,-.‘z + ;:z)coshhnb - 2-7"1'-’.]

3 moe
}zeﬂrstﬂh-h' i wb

For w — 0 (27) reduces to the density matrix of the free ﬁarticle.
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Using the density matrix (27) we can easily calculate the density matrix
of a spherical harmonic oscxllator in a umform electric field. The density matrix
has the following form

- - -
me bl(r1+;71)cosh hob—=2rr| __

e mo  \}
'y’E#O(" r’b)=(2az—hsmm e 2hisinhko

eE kob ¢2 E2 (hob wb
—e FaBh T O F ™+ nwal—z—‘"‘“T _ (28)
The above solution, when b —- 0, satisfies the initial condition ¢z (*', 7, 0) =

=4 (; — :’) and by w — 0 reduces to

- - m \; Bl g G - PE-FECHT (29)
Vino (o b) = (5marg) — e Bm = " |

which is exactly the density matrix of an electron in a uniform electric field!?.
When 7 = #, (29) gives

- - = maow -:- _—tgh—)‘z—_ h_-;
PEro (1575 0) = {anhh “’b} '

2 E2 {hmb hhwb
em @3 —2—

and the partition function is derived from (30)

Z@) ! i 31)
= 3 e mweé,
{2 sinh 222

“The free energy has the form-

3

F=T

hw) 22 E2

ﬁw+3KTln(l—e_7<7 — e (32)

Now we examine the limit of high temperature or small b in Equ. (30).
In this limit

YEeo (r, 7, b) >~ EI" TRT KT, (33)
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where
V(r)=-'—;-w2r2+£’(Er) 34

except for the factor in front of the exponential. This result (34), agrees with
classical mechanics.
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PRIBLIZNO RJESENJE BLOCH-ove JEDNADZBE
A. ANDREOU i A. JANNUSSIS
Odjel Teorijske fizike Sveutili§ta u Patrasu, Patras

Sadraij

U radu je pokazano, da se uz poznatu matricu gustole za operator ¢, rje-
$enje Blochove jednadZbe za operator 5 = 5#, + 3#; moZe prikazati redom po-

tencija od b = RT"





