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Abstract/ The time delay of an· electromagnetic wave reflected or transmitted by a layer of optically less-dense medium is studied. The delay of a wave packet is calculated by means of a minimum-marked wave and the results are verified in the scope of scattering theory. The effective group velocity in the optically less-dense medium for. the transmitted wave packet canexceed the velocity of light in vacuum c0, while the· signal velocity does not.

1. Introductt"on

Recently, tachyonic properties of the evanescent wave in the optically less-dense medium at total reflection were conjectured 1 > . On the other hand the longitudinal shift of a totally reflected beam, or the Goos-Hanchen effect, was studied experimen­tally as well aHlieoretically2 
-
6 > � In this connection more information, can be gatheredfrom the study of penetration of a wave across a barrier than from a mere conside­ration of reflection on a semiinfinite medium. Conseque�tly. we· extended our recent work on this subject7 > to include the time delay. In Sect. 7 the d�lay time is calculated by a generalized minimum-marked-wavemethod. Results obta�ned ar� identical with . the results of the statio�ary phase method for wave packets. · In Sect. 3 the same problem is considered in the scope of scattering. theory .. In Sect. 4 it is demonstrated that.in a certain region of-angle of incidence· and' layer thickness.. the effective group velocity inside the layer for the transmitted wave ·packet is· superlwninal. Arguments are given that the signal v�locity even· in this case does not exceed the velocity of light in vacuum. 
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2. A generalized minimum-marked-wave method

Let a monochromatic plane wave be incident on a thin layer of a medium with
index of refraction n' and thickness Z. On both sides the medium is surrounded
by a medium with index of refraction n > n'. The boundaries of the layer are the
planes z = 0 and z = Z. The plane xz is chosen as the plane of incidence. The
wave vector of the incident or transmitted wave is k, = k (sin8, 0, cos8), the
wave vector of the reflected wave is kR = k (sin8, 0, - cos8), the wave vectors
inside the layer are ks = k' (sin8', 0, cos8') and kp = k' (sin@', 0, - cos@').
Here k = nk0 and k' = n' k0 where k0 = 2n/ l0 and Ao is the vacuum wavelength.
8 is the angle of incidence and the angle of refraction 8' is given by n sin8 =
= n' sin@'.

Two basic polarization states are considered : the transverse electric polarization
-+ . ' 

(TE) with the electric field E perpendicular to the plane of incidence and the trans-
verse magnetic polarization (TM) with the magnetic field B perpendicular to the
plane of incidence. The relevant field component of the wave, i.e. E, for TE or
B, for TM, can be written as

z < O 

O < z < Z 

z > Z 

A. - ReHkR-;-"' t R 
- )' 

(1)  

The amplitude of the field in the incident plane wave has been put equal to
unity. The well-known boundary conditions for the field at both boundary planes
lead to the following expressions

R = a e sin 61 

S = i a a (a cos@ + b cos81)e-1a1 

with the abbreviations
a = l /(1' s•n 6' + i a cos@'),
v = a2 cos28 + b2 cos28',
6 = k Z cos8,

T = i a a e- 1a

P = i a a ( -a cos8 + b cos8') e14''

a = 2 n n' cos8 cos8',
e = a2 cos28 - b2 cos28',
6' = k' Z cos8'.

(2) 

For TE polarization a =  n and b = n' whereas for TM polarization a =  n' and
b = n. In the region of total reflection which is of interest to us, i.e. for 8 >8 c =
= arc sin (n'/n), cos@' becomes imaginary and so does 6'. In this case we employ
real parameters K = n' cos8' Ji = (n2 sin28 - n'2) 1 12 and y = k0 KZ = 6' /i.
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In calculat�g and measuring the longitudinal or Goos-Hanchen shift of a light beam totally reflected on a semiinfinite medium Wolter2> exploited a minimum­-marked wave. He combined two incident plane waves of opposite phase with equal wavelength and amplitude but slightly different angles of incidence. Such a wave is characterized by a stationary zero-amplitude ray in the plane of incidence which can be traced up as a minimum-amplitude ray in the reflected wave. This procedure allows. the determination of the spatial shift. In a generalization of this method the progression of a point on this ray can be followed. This device provides an information of both . the spatial shift and the delay time. 
Let us combine analogously two plane waves with wave vectors slightly different in magnitude and direction. The frequency ro = c0 k0 is used as the second inde­pendent variable instead of the magnitude of the wave vector, c0 being the velocity of light in vacuum. We obtain 

A (ro + dro,8 + d8) -A (ro,8) = 

= (oA/oro + oA/c,ok) dro + (8A/88) 88. (3) 

Here A represents any of the field components A1, AR, or A3 (1) and c, = dro/dk is the group velocity in the medium with index of refraction n. The amplitude of the incident wave compositum (3) is then explicitly 
iA1 {(x sin@ + z cos@ - c9t) dro/c, + (x cos8 - z sin@) kd8"}. (4) 

Since ro and 8 are varied independently there is a point in the plane of incidence with zero-field amplitude given by 
x =. �9t sin8 z = c9t cos8. (S) 

This point reaches the layer boundary at the origin (x = O, z = 0) at time t = 0. 
The amplitude of the reflected wave compositum is given by 

iAR {(cga 1n R/ioro + x sin8 - z cos@ - Cgt) dro/c, + 
+ (o In R/i k 88 + x cos8 + z sin8) k d8}. (6) 

This compositum does not �bit a zero-amplitude point, owing to the slight difference in phase shifts of both constituent plane waves at reflection. However, a well defined minimum-amplitude point is given by 
x = (t - a arg R/8ro) Cg sin8 - (a arg R/k 88) cos@,

z = (- t + o arg R/8ro) c9 cos8 - (8 arg R/k o8) sin8, (1)
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where the relation In R = In I R I + i arg R has been exploited. Evidently, this
point travels along a ray in the reflected wave with velocity c9, emerging from the 
layer at the point 

a the time 
XR = - (k cosB)- 1 a arg R/88, z = 0 (7a) 

tR _:_ a arg R/Bw -(a arg R/m88) tane. (7b) 

This time of reappearance can be regarded as the reflection delay time, while X R 

stands in a simple connection with the formerly defined , shift DR = XR cos8,
measured normally to the ray 7>.

By a similar procedure, studying the appearance of the minimum-amplitude 
point in , the . transmitted wave, analogous quantities are obtained . 

XT = Z tan8 -(k cose)- 1 a arg T/88, z = Z 

tT = z/c9 cos8 + a arg T/aw - (8 arg T/w88) tan@.

By inspecting expressions (2) it can be shown that 

and 

(Sa) 

(Sb) 

(9a) 

(9b) 

Thus the minimum-amplitude points in the reflected and in the transmitted wave 
?ppear at the same. moment and shifted by the same amount from the origin in 
x-direction (Fig. · 1).
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Fig. 1. The propagation of the minimum-amplitude points. (X, 0) and (X, Z) are the points of
reappearance 
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After a rather lengthy manipulation explicit results are obtained 
X = 2 sin<:> { n2 - n'2) (! sinh y cosh y - n2 v y cos2<:>}/ 

/k0 K ((!2 sinh2 y - a2) cos<:> 
and 

t0 = 2n {(n2 
- n'2) e sin2e sinh y cosh y - n'2 v y cos2<:>}/ 
/w K ((!2 sinh2 y - a2) cos<:>.

17 

(10a) 

( IOb) 

Generally, n and n' depend on frequency w, introducing thus terms with 
w dn/n dw and w dn' /n' dw into t0• These small terms complicate the results without invoking any essential change. So it is reasonable to consider in a first approximation, as was done in the last steps of the present calculation, the media as nondispersive, i.e. to neglect the frequency dependence of n and n'. This amounts also to replacing the group velocity c9 by c0/n .The use of a compositum of plane wave evokes the idea that the above results are connected with the effective group velocity of propagation of waves across the barrier. Indeed, our model is equivalent to the picture based on wave packets. Let us construct a wave packet travelling to the layer boundary as 

(I la) 
where f (w,<:>) is a suitable weighting function. The reflected part of the packet isthen 

AR = ff f (w,e) I R I ei(kR ;-cu t+nrgR)d w de, (I lb) 
and the transmitted part 

( I  le) 
According to the well-known formalism8'9> the maximum of the wave packet occurs at a space-time point where the phase is stationary. This leads immediately to Equs. (5), (7), and (8) for wave packets ( I  la), ( l lb), and ( l lc), respectively. By this reasoning the minimum-marked wave, a seemingly artificial device, is given a firm physical meaning. 
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3. Scattering theory

Similar results are obtai'ned in the scope of scattering theory following Wigner, Smith and Froissart et al. 1 0>. These ideas were used by Agudin to calculate thedelay time at total reflection on a serniinfinite medium 1 1  >. The difference in pro­pagation times for two processes is calculated as the difference of the corresponding integrated energy densities normalized to unit incident flux. Since we are interested in the time of reappearance, i.e. the total time of barrier penetration, we compare solution (I ) with the solution of a corresponding thought experiment in which the barrier is traversed instantaneously. Thereby we suppose that the field inside the layer is zero and that outside the layer it conforms with the field (1) for an idealized semitransparent mirror, placed at the boundary plane z = 0, invoking solely the change of amplitudes 
z < O 

O < z < Z 

z > Z 

A,
1 = ei (kx sin 8 - w t) (eikz cose ± I R I e -ikz cos B), 

.A
3 = ei (kx sin 9 - w t) I T  I eikz cose.

(1 2) 

For TE polarization, taking into account the energy density -} e0 n2 A* A and 
the normal component of the incident flux + e0 c0 n cos e, we obtain

0 Z 

lo = {n2 I (A, *A, - A,*A,) dz + n'2 I A2*A2 dz} / nco COS e. (13)
-oo 0 

00 A third term n2 f (A3*A3 - A3*A3) dz gives no contribution. Inserting the fields 
from Equs. (1) and (12) and averaging out the oscillating terms we get the result (10b). For TM polarization the energy density and the normal component of the incident flux are altered to A* A/2µ0 and c0 cos8/2nµ0, respectively, but the final result is again brought into the form (10b). 

4. Discussion

It can be inferred from Equ. (10b) that the time of reappearance tends to a finite value for increasing layer thickness • 3> 
t0 (Z -+ oo) = 2n (n2 - n'2) tan@ sinfJ/wKe.
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For a sufficiently thick layer this entails the possibility of superluminal propagation of the maximum of the transmitted wave packet across the layer. We consider the propagation as superluminal if* 
(14) 

Here (X2 + V)1 l2 is the apparent distance travelled by the transmitted waveinside the layer and (X2 + V) 1 12/c0 the time light in vacuum would travel thisdistance. The expression (14) with the equality sign defines the boundary of the superluminal region. In Fig. 2 this region is shown for a vacuum gap (n' = 1) in glass (n · 1, 5). 
There is no superluminal behaviour in the reflected wave as the shift X also tends to a constant value 

and the ratio X (Z -+ oo) = 2c0 (n2 

- n'2) tan8/wKe 
(X/coto)z .... oo = 1 /n sin@ � 1.

At first sight it may appear that superluminal behaviour in barrier penetration implies macrocausality violation, since information can be relayed by a minimum­-amplitude point or maximum of a wave packet. However, this point or the maximum result only from a special construction of waves1 2>. Besides, it should not be over-
lOr-------------.......
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Fig. 2. The superluminal region for a transmitted wave packet in a vacuum gap (n' = 1) surrounded 
by glass (n = 1 .5) for TE and TM polarization. The curves were calculated by means of Equs. 

(10) and (14).

* An effective group velocity inside the barrier for the transmitted wave can be defined as
(X2 + Z2)1'2/to, 
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looked that the transmitted wave is strongly attenuated with increasing barrier 
thickness, the relative transmitted flux being asymptotically ( -4a2 / e2) exp
( -4nKZ/ .ii.0) .  Yet the transmitted flux has easily been followed in experiments 
with gaps of widths up to eight wavelengths 1 3>. 

Thus, the actual velocity of the wavefront is by no means greater than c0 • This 
can be demonstrated by a modification of the classical argument of Sommerfeld 1 4>, 
where the microscopic picture of matter as an aggregate of charged particlts -
scatterers in the void space is considered. The evanescent wave is a diffraction 
phenomenon ;  the connection between the wave vector and the frequency of the 
incident wave in the gap boundary is such, that the interference is destructive for 
all directions pointing into the gap. Over distances of the order of the wavelength 
there is still some remaining field which naturally propagates with the velocity c0, 

and may, for narrow gaps, excite the field in the material beyond. 
What remains interesting is the fact that the group velocity of the wave inside 

the barrier exceeds c0 even for vacuum gaps. It may seem incorrect to speak of 
group velocity in the absence of ordinary dispersion. Yet the devices with which 
we studied the propagation of waves distinctly imply the concept of wave groups. 

The experimental determination of the delay time in barrier penetration seems 
for the moment impossible with visible light, except in an indirect way via longitu­
dinal shifts. Up to now the shifts were determined only at total reflection on a 
semiinfinite medium near the critical angle. The direct determination of the delay 
time seems, however, feasible for microwaves1 5> . At low frequencies one could 
hope to measure directly · the phase differences · between the transmitted and the 
unperturbed incident wave. 
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Glanek obravnava cas zakasnitve pri prehodu elektromagnetnega valovanja skozi tanko plast opticno redkejsega sredstva in pri odboju na plasti, ce je vpadni kot vecji kot mejni kot totalnega odboja. Najprej so narejeni racuni za val, ki ga ozna­cuje minimum. Enak rezultat da tudi teorija sipanja. Zanimivo je, da je efektivna skupinska hitrost v opticno redkejsem sredstvu za prepusceno valovanje lahko vecja kot hitrost svetlobe v vakuumu c0, medtem ko signalna hitrost ne m�re pre­seci Co , 




