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SUMMARY

Studying the extreme value theory (EVT) involves multiple main ob-
jectives, among them the estimation of the tail index parameter. Some
estimation methods are used to estimate the tail index parameter like
maximum likelihood estimation (MLE). Additionally, the Hill estima-
tor is one type of maximum likelihood estimator, which is a more
robust with a large sample than a small sample. This research pro-
poses the construction of an alternative estimator for the parameter of
the heavy–tailed distribution using the maximum lq–likelihood esti-
mation (MLqE) approach in order to adapt the ML and Hill estima-
tor with the small sample. Furthermore, the maximum lq–likelihood
estimator asymptotic normality is established. Moreover, several sim-
ulation studies in order to compare the MLq estimator with the ML
estimators are provided. In the excesses over high suitable threshold
values the number of the largest observation k will lead to an efficient
estimate of the Hill estimator. For this, selection of k in the Hill estima-
tor was investigated using the method of the quantile type 8 which is
effective with the hydrology data. The performance of the Hill estima-
tor and the lq–Hill estimator is subsequently compared by employing
real relies with the distribution of hydrology data.

KEYWORDS
excesses over threshold, extreme value index, heavy–tailed distribution, max-
imum lq–likelihood estimator

1. Introduction

Considering X1, X2, . . . , Xn of independently and identically distributed (iid) random vari-
ables (rv) defined over some probability space (Ω; A; P), with cumulative distribution func-
tion (cdf) F. We are interested in the probability that the maximum is not beyond a certain
threshold x. This probability is given by

P (max (X1, X2, . . . , Xn) ≤ x) = Fn (x) . (1)
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As it is well known, when we are interested in the central part of a sample, the central
limit theorem (CLT) giving the asymptotic law of the sum of observations which says that
the sampling distribution of the mean will always be normally distributed as n → +∞ . On
the other hand, if we want to study the extreme values of this sample, the CLT presents
only little of interest. Instead, we use a result establishing the asymptotic distribution of
the maximum of the sample. This result is stated under EVT as demonstrated particularly
by Gnedenko (1943). The EVT gives the conditions under which there exist sequences of
normalizing constants an > 0 and bn > 0 such that

lim
n→+∞

Fn (anx + bn) = Gγ (x) . (2)

Gγ (x) is so–called the extreme value distribution, defined by

Gγ (x) =

{
exp

(
− (1 + γx)−1/γ

)
, if γ ̸= 0

exp (− exp (−x)) , if γ = 0
(3)

where Gγ (x) is a well–defined non–degenerate cdf. This law depends only on the parameter
γ ∈ R called the extreme value index or the tail index, or the shape parameter. According to
the sign of γ, there are three domains of attraction that are defined from Gγ (x) depending on
the tail index; among them is domain attraction of Fréchet. Also, it is referred to as heavy–
tailed distribution. It contains laws whose survival function decreases as a power function
like distributions of Pareto, Student, Cauchy, etc. So the heavy tailed limit distribution is the
Fréchet distribution (Balkema and de Haan, 1974), which is defined by

Gγ>0 (x) = e−x−1/γ
. (4)

As it is known and associated with EVT, the characterization of the domains of attraction
makes extensive use of the notion of functions with regular variations which we define below.

Let X1, X2, . . . , Xn be a iid sequence of a non–negative rv X over some probability space
(Ω; A; P), with cdf F. We assume that the distribution tail F = 1 − F is regularly varying at
infinity, with index (−1/γ), notation: F ∈ RV(−1/γ). That is

lim
t→+∞

F (tx)
F (t)

= x−1/γ, for any x > 0. (5)

A distribution function F belongs to the domain attraction of Fréchet if and only if
F ∈ RV(−1/γ). Hence, the tail behaves approximately as a power function x−1/γ. This im-
plies that the distribution for the maximum has a one–to–one relationship with the shape
parameter. Then, we will take heavy tailed to mean sub–exponential (definition below), but
several definitions exist in the literature. For the convenience of the reader, we also sketch
other common definitions and, where possible, relate them to one another. Sub-exponential
distributions exhibit one of the general properties expected of heavy–tailed distributions on
the level of aggregate losses, namely that the tail of the maximum determines the tail of the
sum. All of the distributions considered here are sub–exponential.

Let F be a cdf with support in [0;+∞[. Then F is sub–exponential if, for all n ≥ 2,

lim
x→+∞

Fn
(x)

F (x)
= n, for any x > 0. (6)
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Then Fn
(x) ≈ nF (x) as x → +∞. Subexponentiality implies another property that is

sometimes taken as the definition of heavy tail, i.e. the tail decays more slowly than any
exponential function. With the notation as above, the precise formulation is that for all t > 0,

lim
t→+∞

etxF (x) := ∞. (7)

An important subclass of sub–exponential distributions consists of regularly varying func-
tions. For a regularly varying with tail index γ > 0 , all moments of the associated rv higher
than γ > 0 will be unbounded (Embrechts et al., 1997).

The parameter of interest is γ > 0 is the tail index of F. Now for F ∈ RV(−1/γ) we take
as F (x) = x−1/γ. Then we can check for F is sub–exponential that

lim
t→+∞

 lim
x→+∞

1

Fn
(t)

∞∫
t

Fn
(x)
x

dx

 =
1

F (t)

∞∫
t

F (x)
x

dx := γ. (8)

Consider X1,n ≤ X2,n ≤ . . . ≤ Xn,n the order statistics of X1, X2, . . . , Xn. Let’s replace the
distribution F by its empirical version Fn and t by Xn−k,n. Thus, we find the Hill estimator
(Hill, 1975) defined by:

γ̂H
Xn−k,n

:=
1

Fn (Xn−k,n)

∞∫
Xn−k,n

Fn (x)
dx
x

. (9)

The Hill estimator can only be used for distributions belonging to the Fréchet domain. The
Hill estimator, which is a type of ML estimator, is the most common estimators for the tail in-
dex of heavy–tailed distributions; is probably the most studied estimator in the literature. As
agreed that, Hill estimator and ML estimator are goods with the large sample is susceptible
to be biased. But if we use very small k, both estimators have a large variance.

In this article, we investigate a new class of parametric estimators based on the q–entropy
function proposed by Havrda and Charvát (1967). It has been of considerable interest in dif-
ferent domains of application like physics, finance and biomedical sciences. As well, Altun
and Smola (2006) have seen that the classical maximum entropy is dual of MLE. Ditto, Fer-
rari and Yang (2010) proposed a new parametric estimation method based on the q–entropy
function, the MLqE where q is called the distortion parameter. Also, they have proven to be
a very useful method when estimating high–dimensional parameters and small tail probabil-
ities. This is important in many applications where the number of available observations is
not great. They have shown that MLqE becomes the MLE with q = 1.

Since for large sample the ML and Hill estimators are at least as precise as any other es-
timators. However, for a moderate or small sample size the MLq estimator can offer dramatic
improvement in mean squared error at the expense of a slight increase in bias.

This paper has been organized as follows. In Section (1) it is presented as an introduc-
tion the asymptotic distribution of the maximum of the sample under the EVT and especially
the heavy–tailed distribution or the Fréchet distribution. We also gave a definition about
sub–exponential. As for later, we will focus on presenting the new estimate about the tail
index of heavy–tailed distributions, i.e. MLq estimator. Next, with Section (2), we present the
basic asymptotic normality of MLq estimator with their consistent for exponential families
which we introduce in the same section. In Section (3), we present a simulation study with
Pareto distribution to compare the MLqE with MLE. Also, the real data are utilized to illus-
trate the usefulness of the Fréchet distribution as the distribution of hydrology data. Finally,
concluding notes are provided in Section (4).
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1.1. Adaptive ML and Hill estimators for small sample

In the domain of heavy–tailed distributions, the statistic of EVT translates into a semi-
parametric estimation problem. Indeed, if F belongs to the Fréchet domain, then F is of
the form x−1/γℓ (x) with ℓ a slowly varying function i.e, lim

t→+∞
ℓ (tx) /ℓ (x) := 1. This paper

concentrates on the distributions that have a regularly varying tail,

F (x)
x−1/γℓ (x)

:= 1, as x → +∞ , γ > 0 (10)

Note that Gγ>0 (x) satisfies (10). Here (1/γ) is the index of regular variation, or the tail
index. Then F has a parametric part x−1/γ depending only on γ, and a non–parametric part
ℓ. For a real t > 0 it’s clear that we deduce

F (x) := F (t)
( x

t

)−1/γ
(11)

Let X1, X2, . . . , Xn be a sequence of iid rv from distribution function (df) F and let X1,n ≤
X2,n ≤ . . . ≤ Xn,n denote the order statistics correspondence. We denoting the number of
absolute excesses over t by k for rather the largest observations (Xn−k,n, . . . , Xn,n) where in the
asymptotic setting k = kn an intermediate sequence, that is, kn → ∞ and kn/n → 0 as n → ∞.
Then, see Haan and Ferreira (2006) Lemma 3.4.1, the joint distribution of (Xn−k,n, . . . , Xn,n)

for k = 1, . . . , n − 1 be the df given by

Ft (x) = P (X ≤ x|X > t) =
F (x)− F (t)

1 − F (t)
for x > t (12)

Such that Ft (x) = 1 − Ft (x) we can rewrite (12) for x > t as

Ft (x) =
F (x)
F (t)

(13)

Since F (x) is given by (11), also we can rewrite Ft (x) given in (13) for x > t by

Ft (x) =
( x

t

)−1/γ
(14)

It’s easy to checked that under (5) that Ft ∈ RV(−1/γ).
The parameter of the Ft (x) can be estimated using standard methods such as the MLE.

Another estimation method is the MLqE which based on q–order entropy. The q–order en-
tropy which is provided by Havrda and Charvát (1967), has the function

Lq (u) =

{
u1−q−1

1−q for q < 1
log u for q = 1

(15)

where u is probability density function(pdf) and q called the distortion parameter. The MLqE,
which is proposed by Ferrari and Yang (2010), use the Lq (u) function instead of the log–
likelihood function as in the MLE. Observed that when q = 1, we have the MLq estimator
approaches as the ML estimator approaches. The MLqE method reduces the effect of extreme
observations on parameter estimates using q. The choice of q is another difficult problem in
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MLqE estimation. In this research, we take q = 1− 1
k as given by Ferrari and Yang (2010) and

we note that q → 1 as k → ∞. Then, the MLqE of γ > 0 is given by

γ̂ = arg max
k

∑
i=1

Lq ( ft (x)) (16)

with

Lq ( ft (x)) =

{
ft(x)1−q−1

1−q for 0 < q < 1
log u for q = 1

(17)

where ft (x) is the pdf of Ft (x) given in (14). Thus defense for γ > 0 by

ft (x) =
1
γ

1
t

( x
t

)−1/γ−1
(18)

As is known, MLq estimator of γ > 0 can be obtained by maximizing ∑k
i=1 Lq ( ft (x))

with respect to the parameter γ > 0. Then, for 0 < q ≤ 1 we get

∂

∂γ
Lq ( ft (x)) :=

∂

∂γ
log ( ft (x)) ft (x)1−q (19)

Then, the equations from (19) are then given in term of the partial derivative respect to
γ by:

∂

∂γ

k

∑
i=1

Lq ( ft (Xi)) :=
k

∑
i=1

1
γ2 (log (Xi)− log (t)− γ) ft (Xi)

1−q = 0 (20)

Next, we can define the estimator of γ > 0 by

γ̂
MLq
t =

k
∑

i=1
wi (log (Xi)− log (t))

k
∑

i=1
wi

with wi = ft (Xi)
1−q (21)

There more, if we take t = Xn−k,n we find a new Hill estimator called lq–Hill estimator
which is defined by

γ̂
HLq
Xn−k,n

=

k
∑

i=1
wn−i+1,n

(
log
(
Xn−i+1,n

)
− log (Xn−k,n)

)
k
∑

i=1
wn−i+1,n

with wn−i+1,n = ft
(
Xn−i+1,n

)1−q (22)

It is clear that if q = 1 gives us the classic the MLE. We get ML estimator of γ > 0 which
is given by:

γ̂ML
t =

1
k

k

∑
i=1

log (Xi)− log (t) (23)

And by their equivalents in the order statistic, we find the formula of the Hill estimator
with t = Xn−k,n by

γ̂H
Xn−k,n

=
1
k

k

∑
i=1

log
(
Xn−i+1,n

)
− log (Xn−k,n) (24)
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Also, the Hill estimator was found to be very sensitive to the choice of index k. Because
choosing the optimal value for the k index will lead to an effective estimate of Hill estimator,
the choice of k is another difficult problem and there are many researches on this. However, in
this article, we will present in sub–section (3.2) a method that allows calculating the number
k based on the method of the quantile type 8 with the hydrology data. It is important to
mention that Hill estimator is a consistent for the tail index and asymptotically normal with
mean γ and variance γ2/k. Hence, if one uses a very small k, the estimator has large variance,
however, for very large k, the estimator is likely to be biased i.e asymptotically normal with
mean 0 and variance γ2. This is why it is good with large sample also, ML estimator is
effected with large sample. In this research, we have written this tow estimator with the
MLqE. We can show that for q = 1 − 1

k we rewrite the estimators γ̂
MLq
t and γ̂

HLq
Xn−k,n

as

γ̂
MLq
t =

k
∑

i=1
ft (Xi)

1/k (log (Xi)− log (t))

k
∑

i=1
ft (Xi)

1/k
(25)

and

γ̂
HLq
Xn−k,n

=

k
∑

i=1
ft
(
Xn−i+1,n

)1/k (log
(
Xn−i+1,n

)
− log (Xn−k,n)

)
k
∑

i=1
ft
(
Xn−i+1,n

)1/k
(26)

Recall that when q is chosen correctly for small samples, the MLqE can trade bias for
accuracy successfully. This leads to a significant decrease in the mean squared error. There are
more for large sample if (k → ∞) q = 1 − 1

k or q → 1 we focus on a necessary and sufficient
condition, to ensure a proper asymptotic normality and efficiency of MLqE is established.
This is what will be discussed in the next section.

2. Main result

In this section, we discuss the basic asymptotic properties of the MLq estimator when the
degree of distortion depends on the amount of information available in the sample. Such
properties will be used later on to derive our main results. In the reminder of the paper, our
analysis focuses on the distributions belonging to the exponential family. In particular, we
consider pdf of Ft (x) given on (22) in the form

ft (x) = exp
{

1
γ

b (x)− c (x)− A (γ)

}
(27)

For
b (x) = log

( x
t

)
and c (x) = log (x) , A (γ) = log (γ)

In addition, we define ψγ (x) = 1
γ b (x)− c (x)− A (γ) . So that ft (x) and log ft (x) with

its derivative function respect to γ expressed respectively as

ft (x) = exp ψγ (x) and
∂

∂γ
ft (x) =

(
− 1

γ2 b (x)− 1
γ

)
exp ψγ (x) , (29)
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and

log ft (x) = ψγ (x) and
∂

∂γ
log ft (x) =

(
− 1

γ2 b (x)− 1
γ

)
. (30)

Until, for γ > 0 we can check that

A (γ) = log
+∞∫
t

exp
(

1
γ

b (x)− c (x)
)

dx = log γ, (31)

is the cumulative generating function (or log normalize) and differentiating k times gives

∂k

∂kγ
A (γ) =

(−1)k−1 (k − 1)!
γk , (32)

Throughout the course of the discussion the true parameter will be denoted by γ > 0
. Next, we explore consistency, which is a basic requirement for a good estimator. Let, for
0 < q ≤ 1

φk (γ) =
1
k

k

∑
i=1

∂

∂γ
Lq ( ft (Xi)) :=

1
k

k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)
e(1−q)

(
1
γ b(x)−c(x)−A(γ)

)
(33)

The MLqE is found by setting φk (γ) = 0 and solving for γ. Since for q = 1 and γ ̸= 0 in
the above expression gives the usual MLE equation

1
k

k

∑
i=1

(
− 1

γ̂MLq b (x)− 1
)
= 0 (34)

Theorem 2.1. Let X1, X2, . . . , Xn be a sequence of iid rv from df F and let X1,n ≤ X2,n ≤ . . . ≤ Xn,n
denote the order statistics correspondence. Considering the largest observations (Xn−k,n, . . . , Xn,n)

for k = 1, . . . , n − 1 from the df Ft (x) and pdf ft (x) as (27). Then, for any MLq estimator of
γ̂ = arg max ∑k

i=1 Lq ( ft (x)) as k → ∞ we have that

γ̂
P→ γ.

with Lq ( ft (x)) is given in (15) and q → 1 as k → ∞.

Proof. Define, φ (γ) = Eγ

[
∂

∂γ log ft (x)
]

. Then we can rewrite φ (γ) = Eγ

[
− 1

γ2 b (x)− 1
γ

]
.

Now, we want to show that for all φk − φ → 0 as k → ∞ where

φk − φ =
1
k

k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)
e(1−q)ψγ(x) − Eγ

[
− 1

γ2 b (x)− 1
γ

]
(35)

Then we have

|φk − φ| =
∣∣∣∣∣1k k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)(
e(1−q)ψγ(x) − 1

)
+

1
k

k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)
− Eγ

[
− 1

γ2 b (x)− 1
γ

]∣∣∣∣∣
thus

≤
∣∣∣∣∣1k k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)(
e(1−q)ψγ(x) − 1

)∣∣∣∣∣+
∣∣∣∣∣1k k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)
− Eγ

[
− 1

γ2 b (x)− 1
γ

]∣∣∣∣∣
(36)
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By the law of large numbers we find∣∣∣∣∣1k k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)
− Eγ

[
− 1

γ2 b (x)− 1
γ

]∣∣∣∣∣→ 0 (37)

Then the inequality (35) becomes

|φk − φ| =
∣∣∣∣∣1k k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)(
e(1−q)ψγ(x) − 1

)∣∣∣∣∣ (38)

By the Hölder’s inequality, we can rewrite (38) as follows

|φk − φ| ≤

√√√√1
k

k

∑
i=1

(
e(1−q)ψγ(x) − 1

)2

√√√√1
k

k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)2
(39)

And under Jensen’s inequality we have

|φk − φ| ≤ 1
4

1
k

k

∑
i=1

(
e(1−q)ψγ(x) − 1

)2 1
k

k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)2
(40)

For the left side from the previous inequality and by the basic fact that (1 + u)2 ≤ e2u for any
real number u we rewrite

1
γ2k

k

∑
i=1

(
− 1

γ
b (x)− 1

)2
≤ 1

γ2k

k

∑
i=1

e
2
γ b(x) =

1
γ2k

k

∑
i=1

( x
t

)− 2
γ (41)

Then we have
1

γ2k

k

∑
i=1

e
2
γ b(x) =

1
γ2k

k

∑
i=1

Ft (x)2 < ∞ (42)

And for the right side of the inequality that under the law of large numbers we get

1
k

k

∑
i=1

(
e(1−q)ψγ(x) − 1

)2
→ Eγ

(
e(1−q)ψγ(x) − 1

)2
(43)

With q → 1 as k → ∞ we have

Eγ

(
e(1−q)ψγ(x) − 1

)2
→ 0

Finally we obtained that φk → φ as k → ∞.

As defined in theorem (2.1), the MLqE is a consistent estimator of γ. Although for a fixed
q ̸= 1. The MLqE is clearly asymptotically biased; a clear improvement is obtained by letting
the distortion parameter depends on the sample size. To obtain the asymptotic normality of
MLqE, we shall discuss the reduction in terms of variance achieved by considering a slightly
different target parameter for each γ > 0 and k ≥ 1.

On particular, we consider γ̂MLq the value such that

E
[

∂Lq ( ft (x))
∂γ̂MLq

]
= 0 (44)
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First, under the formula (27) can be represent E
[

∂Lq( ft(x))
∂γ̂MLq

]
as,

E
[

∂Lq ( ft (x))
∂γ̂MLq

]
=

∞∫
t

∂

∂γ̂MLq Lq ( ft (x)) ft (x) dx (45)

then

E
[

∂Lq ( ft (x))
∂γ̂MLq

]
=

1
γ

t
1
γ

(
γ̂MLq

)q−3
t

1−q
γ̂MLq

∞∫
t

(
log (Xi)− log (t)− γ̂MLq

)
e−[α̂(1−q)+α] log xdx

(46)
with

α = 1 +
1
γ

and α̂ = 1 +
1

γ̂MLq (47)

After performing simple arithmetic operations, we find

E
[

∂Lq ( ft (x))
∂γ̂MLq

]
=

1
γ

t
1
γ

(
γ̂MLq

)q−3
t

1−q
γ̂MLq

(
1
θ̂2

− 1
θ̂

)
e−θ̂ log x (48)

where θ̂ = α̂ (1 − q) + α − 1

Proposition 2.1. By solving the equation E
[

∂Lq( ft(x))
∂γ̂MLq

]
= 0, we find these results shown as follows

1) α̂ (1 − q) + α − 1 = 1
γ̂MLq .

2) α = α̂q.

3) γ̂MLq = q
α−q or γ̂MLq = 1

α̂−1 . And each of the previous values satisfies E
[

∂Lq( ft(x))
∂γ̂MLq

]
= 0.

In particular, γ̂MLq arbitrarily close to the true parameter γ depending on the value of
the distortion parameter .Since, for q = 1 we can get that α = α̂ and γ̂MLq = γ.

Theorem 2.2. Let X1, X2, . . . , Xn be a sequence of iid rv from df F and let X1,n ≤ X2,n ≤ . . . ≤ Xn,n
denote the order statistics correspondence. Considering the largest observations (Xn−k,n, . . . , Xn,n)

for k = 1, . . . , n − 1 from the df Ft (x) and pdf ft (x) as (27). Then, for γ̂MLq the MLq estimator of
γ̂ = arg max ∑k

i=1 Lq ( ft (x)) if q → 1 as k → ∞ are satisfied, then we have as k → ∞ that

√
k
(

γ̂MLq − γ̃
)
→ N

0;
E
[(

∂Lq( ft(x))
∂γ̃

)2
]

(
E
[(

∂2Lq( ft(x))
∂2γ̃

)])2

 .

Where γ̃ = q
α−q , α = 1 + 1

γ with Lq ( ft (x)) is given in (17) and N is the normal distribution.

Proof. Under (33) for 0 < q ≤ 1 we have

φk (γ) =
1
k

k

∑
i=1

∂

∂γ
Lq ( ft (Xi)) :=

1
k

k

∑
i=1

(
− 1

γ2 b (x)− 1
γ

)
e(1−q)

(
1
γ b(x)−c(x)−A(γ)

)
(49)

Then by Taylor’s theorem we have

∂φk
(
γ̂MLq)

∂γ̃
≈ ∂φk (γ̃)

∂γ̃
+
(

γ̂MLq − γ̃
) ∂2 φk (γ̃)

∂2γ̃
(50)
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Since
∂φk(γ̂MLq)

∂γ̃ = 0. Then

(
γ̂MLq − γ̃

)
=

1√
k

∂φk(γ̃)
∂γ̃

− 1
k

∂2 φk(γ̃)
∂2γ̃

(51)

Since E
[

∂Lq( ft(x))
∂γ̃

]
= 0 and Si =

∂
∂γ̃ Lq ( ft (x)) . Then

1√
k

k

∑
i=1

Si =
√

k
(
S − 0

)
. (52)

By the central limit theorem, we find that

√
k
(
S − 0

)
→ N (0; σa) with σa = E

[(
∂Lq ( ft (x))

∂γ̃

)2
]

(53)

Let Ri = − ∂2Lq( ft(x))
∂2γ̃

, then E
[
R
]
= −E

[
∂2Lq( ft(x))

∂2γ̃

]
and

−1
k

k

∑
i=1

∂2 φk (γ̃)

∂2γ̃
=

1
k

k

∑
i=1

Ri = R (54)

Hence, under the law of large numbers, we have R → E
[

∂2Lq( ft(x))
∂2γ̃

]
. Then, apply Slutsky’s

theorem we get

√
k
(

γ̂MLq − γ̃
)
→ N

0;
E
[(

∂Lq( ft(x))
∂γ̃

)2
]

(
E
[(

∂2Lq( ft(x))
∂2γ̃

)])2

 . (55)

Corollary 2.1. Under the assumptions of theorem (2.2), we have

√
k
(

γ̂MLq − γ̃
)
→ N

(
0; σ2

)
,

where N is the normal distribution, with γ̃ = q
α−q α̃ = 1 + 1

γ̃ with q = 1 − 1
k , and σ2 equal

σ2 =
1

(qα̃ − 1)
.

1 + ((γ̃ + 1) (1 − q))2 (α̃ (2 − q)− 1)3 ((1 − q) (1 − 2γ̃) + γ̃)2.

Corollary 2.2. Under the assumptions of corollary (2.1), for q = 1 we have

√
k
(

γ̂MLq − γ̃
)
→ N

(
0; γ2

)
,

where N is the normal distribution.
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3. Numerical examples

3.1. Simulation study

We checked that the upper tail of a distribution given by (14) is based on the exceedances
observations (Xn−k,n, . . . , Xn,n) for k = 1, . . . , n − 1 over a threshold t > 0. Then one basic
statistical model is that of Pareto distribution function which is defined as

Hγ (x) = 1 −
( x

t

)− 1
γ , with x ≥ t (56)

or x
t ≥ 1 with 0 < γ < 1 is called the tail index. When t = 1 the cdf Hγ in (56) becomes a

continuous power law distribution, also known as heavy-tailed distributions, and it’s easy to
check that H ∈ RV(−1/γ). In this section, we perform a simulation study by using selected
Hγ the Pareto distribution. We generate data sets from the Pareto distribution using the
following parameter values γ = 0.7 with t = 1 when the sample size n = 15 under the
following steps:

1) We use inverse of cumulative distribution function method of H0.7 with t = 1 to
generate the data.

2) Then, we use the pdf from the Pareto distribution of H0.7 with t = 1.
3) Calculate the estimators γ̂

MLq
t=1 and γ̂ML

t=1 as

γ̂
MLq
t=1 =

1
r

n

∑
i=1

(h0.7 (Xi))
1/n log (Xi) and γ̂ML

t=1 =
1
n

n

∑
i=1

log (Xi) , (57)

with r =
n
∑

i=1
(h0.7 (Xi))

1/n and h0.7 is pdf associated to H0.7.

The data are collected from the threshold t = 1 in generate data sets from H0.7 for a
random value (X1, X2, . . . , X15) of 15 random are listed in an increasing order in Table 1.

Table 1. Simulated data (n = 15) from Pareto distribution H0.7 with t = 1

1.00 1.06 1.06 1.11 1.20
1.26 1.57 1.87 2.06 2.33
2.54 2.62 4.66 7.08 40.03

We focus on this first part of simulation to compare between two estimators, that is γ̂
MLq
t=1

and γ̂ML
t=1 . Then , after doing the calculations we find γ̂

MLq
t=1 = 0.7 and γ̂ML

t=1 = 0.825 . And we

can explicitly note that γ̂
MLq
t=1 = 0.7 is robust then γ̂ML

t=1 = 0.825 with this 15 generate data.
In the next parts we generate data sets from Pareto df H0.7 with t = 1 with various

samples “the small sample where for n = {8; 10; 25}, the moderate sample for n = {50; 100}
, the largest sample for n = {200; 500} ”and all results are calculated by averaging over
1000 simulation runs. Also the RMSE of γ for γ̂

MLq
t=1 and γ̂ML

t=1 are calculated in each sample
respectively as

RMSE =
1

1000

√√√√1000

∑
i=1

(
γ − γ̂

MLq
t=1

)2
and RMSE =

1
1000

√√√√1000

∑
i=1

(
γ − γ̂ML

t=1
)2 (58)

By using the MLqE method, the results are summarized in Table 2.
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Table 2. The RMSE results in estimating the tail index with ML and MLq estimators

γ = 0.7 n r Estimator γ̂t=1 RMSE(γ)

8 ML 0.922 0.2311998
Small 6.55 MLq 0.701 0.0011944

sample 10 ML 0.831 0.1437046
8.61 MLq 0.705 0.0059549

25 ML 0.742 0.0487582
23.6 MLq 0.696 0.0047946

50 ML 0.732 0.0374020
Moderate 48.6 MLq 0.706 0.0071408

sample 100 ML 0.715 0.0177394
98.6 MLq 0.702 0.0023871

200 ML 0.71 0.0118678
Large 199 MLq 0.703 0.0035780

sample 500 ML 0.702 0.0023871
499 MLq 0.699 0.0011961

We note that the RMSE of γ̂
MLq
t=1 are lower than γ̂ML

t=1. Since r =
n
∑

i=1
(h0.7 (Xi))

1/n is also

estimated. We notice that γ̂
MLq
t=1 is almost equal to the estimate for large samples. As well, we

can find theoretically that when n → ∞ we have r = n. Precisely, under the inequalities (21)
and (23) and via the Hölder’s inequality we obtain that,

γ̂
MLq
t ≤

√
n

∑
i=1

(ht (Xi))
1/nγ̂ML

t (59)

Since
√

x ≤ x for any 0 ≤ x ≤ 1. Then, when n → ∞ we have γ̂
MLq
t ≤ γ̂ML

t implies that√
k
(

γ̂
MLq
t − γ

)
≤

√
k
(
γ̂ML

t − γ
)

for 0 < γ < 1. These results indicate that MLqE gives the
tailed behavior estimator reliable.

3.2. Illustrative example

In this part, we use real data set related to minimum monthly flows of water (m3/s) on
the Piracicaba River, located in São Paulo state, Brazil. The data obtained from the Water
Resources Department and Director of the Energy Agency for Water Resources in the state
São Paulo from May to September from 1960 to 2014. Ramos et al. (2018) were proposed
methodology can be used successfully to analyze the minimum flow of water during. They
demonstrated that the data from the study on the Piracicaba River follows the Fréchet distri-
bution. However, in our study, we will only use data related to the month of August. The
minimum water flows in August (m3/s) consists of 41 data, listed in an increasing order in
Table 3.
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Table 3. The minimum water flows pf Piracicaba River in August from 1960 to 2014

6.80 7.11 7.72 8.24 8.52 8.78 8.93 9.43 9.52
9.69 9.80 10.00 10.00 10.40 10.96 11.22 11.63 11.84

12.01 12.46 12.46 12.98 13.10 13.74 14.29 15.23 15.51
16.00 16.58 17.10 18.26 18.39 20.01 26.99 28.06 28.97
30.20 37.86 51.43 53.72 58.98

In this study we will focus on estimation the tail index by the Hill estimator and the
lq–Hill estimator. Hence, the number of order statistics k is important for estimating the
Hill’s estimators. Therefore, we use the method of the quantile type 8 or Q̂8(p) for selecting
k which was efficient method for an estimate of the shape parameter of hydrology data.
Let X1, X2, . . . , Xn are iid rv from a cdf and X1,n > X2,n > · · · > Xn,n the order statistics
correspondence, Boonradsamee et al. (2021) used a new method for selecting k in Hill’s
estimator by the quantile type 8 from the stable region of Hill plot which depends on the
order statistics for heavy tailed distributions. They said that they could choose the optimal k
of the stable region of Hill plot by Q8(p) method with p = 0.75. The quantile type 8 is the
theoretical of being median unbiased, and we can write as

Q8(p) = Xj + α
(
Xj+1 − Xj

)
with

j − m
n

≤ p ≤ j − m + 1
n

for m =
p + 1

3
(60)

where 0 < p < 1 with α = 1
(

j
n < p

)
and j = [np + m] (Here, [u] denotes the largest integer

not greater than u). Hyndman and Fan (1996) investigated their motivation and some of their
properties. And they presented the estimator of Q8(p) which is given in (60) as Q̂8(p) which
is the median position and by using an approximation to the incomplete beta function ratio
β (k, n − k + 1), for X1,n > X2,n > · · · > Xn,n we get

Q̂8(p) ≈ pk
β (Xk)

with pk =
3k − 1
3n + 1

(61)

where k represents the rank of Xk,n. Hence, the sample quantiles are not defined for all
p including hinges and other letter values. Therefore, we select the plotting position in a
quantile-quantile plotting which Xk is plotted against Q (p) the inverse of empirical distri-
bution function where Q (pk) = Xk where 0 ≤ pk ≤ 1 with pk is the empirical distribution
function. However, if we take the order statistics as X1,n < X2,n < · · · < Xn,n it is clear that
from (61) with s = n − k we can take that

s = n − p̃ + 1
3

with p̃ = (3n + 1) pk and
p̃ + 1

3
= k (62)

where n − k represents the rank of Xn−k,n. Hence, in this study with the order statistics
X1,n < X2,n < · · · < Xn,n if we choose pk = 1 − ps = 0.7 with ps = 0.3 and under (62) we find
k = 29. For n = 41 we have k/n = 0.7 = pk and we find m = 0.5 with j = k and α = 0, thus
under (60) we get Q̂8(qs) = X12,41. Then, k = 29 is the number of the largest observations
(Xn−k+1,n, . . . , Xn,n) given Xj > Xn−k,n for j = 1, . . . , k.

For this we will take the exceedances (X13,41, . . . , X41,41) over a threshold t = X12,41 = 10.
There is k = 29 observations of C−sample with

C0 = X12,41; C1 = X13,41; C2 = X14,41; . . . ; C29 = X41,41
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Figure 1. Histogram of C–sample with the pdf for γ̂
HLq
C0

and γ̂H
C0

Figure 2. Pdf of X-sample from the Piracicaba River (m3/s) in August from 1960 to 2014

The histogram of C−sample for i = 1, . . . , k shows a moderate deviation to the right
(Figure 1). Therefore, heavy–tailed distributions are plausible to modeling this data. We
estimate the unknown tail index of the heavy–tailed distribution for C−sample. We use the
lq–Hill estimator and Hill estimator which are given in (22) and (24) respectively. The results
are given by γ̂

HLq
C0

= 0.583649 and γ̂H
C0

= 0.5961899, respectively. Also, the fitted densities
obtained from the lq–Hill estimator and Hill estimator are shown in Figure 1. The red color is
the density obtained from γ̂

HLq
C0

and the green color is the density obtained from γ̂H
C0

. We got

them via inverse cdf of C−sample which is given in (14) as the following form: Ci = t× (pi)
γ∗

t

where t = 10 and pi is the empirical cdf according the C−sample for i = 1, . . . , 29.
We notice that the value of γ̂

HLq
C0

and γ̂H
C0

are very close to each other. Hence from
Figure 1, we observed that the best fit is obtained from the MLq method is closer to pdf of
X−sample from the Piracicaba River (m3/s) in August (Figure 2) .
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4. Concluding notes

Heavy–tailed distributions would be a good alternative to the distributions that are used in
economics, reliability, survival analysis and so on. The parameters of this distribution have
been estimated using MLE method. Recently, ML and Hill estimators are the most estimators
used to estimate the parameter of the tail behavior. For too large sample, ML and Hill
estimators are likely to be good and robust methods should be used to estimate the shape
parameter. However, ML and Hill estimators cannot be compatible with the small sample.
In this paper, we have used the MLq estimation method to estimate the shape parameter of
the heavy–tailed distribution for small sample. We have carried out to adapt the ML and Hill
estimators in the case of small sample, γ̂

MLq
t and γ̂

HLq
Xn−k,n

as in (25) and (26), respectively. Since

γ̂
MLq
t and γ̂

HLq
Xn−k,n

are both result from the MLqE, we establish the asymptotic normality of the
MLq estimator of Heavy tailed distributions parameter γ > 0. According to corollary (2.1) for
very large k, the MLq estimator is likely to be biased. And if q = 1, the MLqE becomes MLE
and the normality asymptotic of MLq estimator becomes as ML estimator. Since the MLq
estimator depends on the order statistical index k for heavy tailed distributions, we used an
approach for selecting k which is defined in (62) by using type 8 quantile estimator Q8(0.7)
in (60) from the stable region of Hill plot, which will be a more flexible alternative for use in
Hill’s estimator. This approach will be an approximation of the extreme value index at the
tail end of the distribution of hydrology data.

Appendix

First, we calculate E
[(

∂Lq( ft(x))
∂γ̃

)2
]

. Let’s consider

E

[(
∂Lq ( ft (x))

∂γ̃

)2
]
=

1
γγ̃6 t

1
γ +

2
γ̃ γ̃2qt

−2q
γ̃

∞∫
t

(log (Xi)− log (t)− γ̃)2 e−[2α̃(1−q)+α] log xdx (66)

with α̃ = 1 + 1
γ̃ . Putting log (x) = u , then the previous equality (66) becomes

E

[(
∂Lq ( ft (x))

∂γ̃

)2
]
= β

∞∫
log t

(
u2 − 2u (log t + γ̃) + (log t + γ̃)2

)
e−[2α̃(1−q)+α−1]udu (67)

where β = 1
γγ̃6 t

1
γ +

2
γ̃ γ̃2qt

−2q
γ̃ is constant with α = 1 + 1

γ . Then, for γ̃ = q/ (α − q) we have

qα̃ = α with γ̃ = 1/ (α̃ − 1). For θ̃ = α̃ (q − 1) + α − 1 = α̃ − 1then 2α̃ (1 − q) + α − 1 =

α̃ (2 − q)− 1.
Consider this decomposition

D (t) =
∞∫

log t

(
u2 − 2u (log t + γ̃) + (log t + γ̃)2

)
e−[α̃(2−q)−1]udu = I1 − I2 + I3 (68)

where

I1 =

∞∫
log t

u2e−[α̃(2−q)−1]udu,
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I2 =

∞∫
log t

2u (log t + γ̃) e−[α̃(2−q)−1]udu

And

I3 =

∞∫
log t

(log t + γ̃)2 e−[α̃(2−q)−1]udu

Beginning with I1 =
∫ ∞

log t u2e−[α̃(2−q)−1]udu, under integral by parts we have

I1 =

∞∫
log t

u2e−[α̃(2−q)−1]udu =
−1

α̃ (2 − q)− 1

[u2e−[α̃(2−q)−1]u
]∞

log t
− 2

∞∫
log t

ue−[α̃(2−q)−1]udu


(69)

Also with integral by parts we have

∞∫
log t

ue−[α̃(2−q)−1]udu =
−1

α̃ (2 − q)− 1

[ue−[α̃(2−q)−1]u +
e−[α̃(2−q)−1]u

α̃ (2 − q)− 1

]∞

log t

 (70)

Substituting (26) into I1 and since α̃ (2 − q)− 1 > 0 we get

I1 =
e−[α̃(2−q)−1] log t

α̃ (2 − q)− 1

(
(log t)2 +

2
α̃ (2 − q)− 1

(
log t +

1
α̃ (2 − q)− 1

))
(71)

Then we go to I2 =
∫ ∞

log t 2u (log t + γ̃) e−[α̃(2−q)−1]udu, . By (26) and with α̃ (2 − q)− 1 > 0
we have

I2 =
2 (log t + γ̃) e−[α̃(2−q)−1] log t

α̃ (2 − q)− 1

(
log t +

1
α̃ (2 − q)− 1

)
(72)

And for I3 =
∫ ∞

log t (log t + γ̃)2 e−[α̃(2−q)−1]udu, under-performing simple arithmetic oper-
ations, we get

I3 = (log t + γ̃)2

[
−e−[α̃(2−q)−1]u

α̃ (2 − q)− 1

]∞

log t

=
(log t + γ̃)2 e−[α̃(2−q)−1] log t

α̃ (2 − q)− 1
(73)

Under (71)-(73) and D (t) = I1 − I2 + I3 we have

(α̃ (2 − q)− 1) e[α̃(2−q)−1] log tD (t) =
1 + (α̃γ̃ (1 − q))2

(α̃ (2 − q)− 1)2 (74)

Then it gives us that

E

[(
∂Lq ( ft (x))

∂γ̃

)2
]
= β

e−[α̃(2−q)−1] log t

α̃ (2 − q)− 1

(
1 + (α̃γ̃ (1 − q))2

(α̃ (2 − q)− 1)2

)
(75)

Since

β =
1

γγ̃6 t
1
γ +

2
γ̃ γ̃2qt

−2q
γ̃
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Next, for α̃γ̃ = 1 + γ̃ we can find that

E

[(
∂Lq ( ft (x))

∂γ̃

)2
]
=

1
γ

t
1
γ

e2(q−3) log γ̃+
(

2
γ̃ (1−q)−(α̃(2−q)−1)

)
log t

α̃ (2 − q)− 1

(
1 + ((1 + γ̃) (1 − q))2

(α̃ (2 − q)− 1)2

)
Then

E

[(
∂Lq ( ft (x))

∂γ̃

)2
]
=

1
γ

t
1
γ e2(q−3) log γ̃−(q(α̃−2)+1) log t

(
1 + ((1 + γ̃) (1 − q))2

(α̃ (2 − q)− 1)3

)
(76)

Next, we have to calculate E
[(

∂2Lq( ft(x))
∂2γ̃

)]
. Then, consider

E

[(
∂2Lq ( ft (x))

∂2γ̃

)]
=

∂

∂γ̃

∞∫
t

∂Lq ( ft (x))
∂γ̃

ft (x) dx (77)

Referring to equality (48), we conclude that

E

[(
∂2Lq ( ft (x))

∂2γ̃

)]
=

∂

∂γ̃

(
1
γ

t
1
γ γ̃q−3t

1
γ̃ (1−q)

(
1
θ̃2

− 1
θ̃

)
e−θ̃ log t

)
=

∂

∂γ̃

(
1
γ

t
1
γ

(
1
θ̃2

− 1
θ̃

)
e
(
−θ̃+ 1

γ̃ (1−q)
)

log t+(q−3) log γ̃
)

where θ̃ = α̃ (1 − q) + α − 1 with α̃ = 1 + 1/γ̃ implies ∂θ̃/∂γ̃ = − (1 − q) /γ̃2 and ∂α̃/∂γ̃ =

−1/γ̃2. Since

∂e
(
−θ̃+ 1

γ̃ (1−q)
)

log t+(q−3) log γ̃

∂γ̃
=

(q − 3)
γ̃

e
(
−θ̃+ 1

γ̃ (1−q)
)

log t+(q−3) log γ̃

Therefore, we have

E

[(
∂2Lq ( ft (x))

∂2γ̃

)]
=

1
γ

t
1
γ e
(
−θ̃+ 1

γ̃ (1−q)
)

log t+(q−3) log γ̃
(

1 − q
γ̃2θ̃2

− 2 (1 − q)
γ̃2θ̃3

+
q − 2

θ̃
− q − 3

γ̃θ̃2

)
Under θ̃ = α̃ (1 − q) + α − 1 = 1/γ̃. Then, we get

E

[(
∂2Lq ( ft (x))

∂2γ̃

)]
=

1
γ

t
1
γ e−

1
γ̃ log t+(q−3) log γ̃

((1 − q) (1 − 2γ̃) + γ̃) (78)

Now, we have to count the variance of
√

k
(
γ̂MLq − γ̃

)
/σ → N (0; 1) as k → ∞. With

σ2 =

E
[(

∂Lq( ft(x))
∂γ̃

)2
]

(
E
[(

∂2Lq( ft(x))
∂2γ̃

)])2 (79)

And under (76)-(78) we get

σ2 =
1
γ

t−
1
γ e2 1

γ̃ q log t−(q(α̃−2)+1) log t


(

1+((1+γ̃)(1−q))2

(α̃(2−q)−1)3

)
((1 − q) (1 − 2γ̃) + γ̃)2

 (80)
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It’s easy to find that

− (q (α̃ − 2) + 1) log t +
2
γ̃

q log t =
1
γ

log t

Since qα̃ = α we find, γ = 1/ (qα̃ − 1) . Then the variance becomes

σ2 =
1

(qα̃ − 1)
1 + ((γ̃ + 1) (1 − q))2

(α̃ (2 − q)− 1)3 ((1 − q) (1 − 2γ̃) + γ̃)2 . (81)

with q = 1 then α̃ = α and γ̃ = γ the variance σ2 write as

σ2 =
1

(α − 1)
1

(α − 1)3 γ2
(82)

Since (α − 1) = 1/γ we have σ2 = γ2.
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SAŽETAK
Proučavanje teorije ekstremnih vrijednosti (EVT) uključuje
nekoliko glavnih ciljeva, med̄u kojima je procjena parametra
repnog indeksa. Različite metode procjene koriste se za proc-
jenu ovog parametra, poput metode najveće vjerodostojnosti
(MLE). Dodatno, Hillov procjenitelj je jedan tip procjenitelja
najveće vjerodostojnosti koji je robusniji kod velikih uzoraka
nego kod malih. Ovo istraživanje predlaže konstrukciju al-
ternativnog procjenitelja za parametar distribucije s "teškim
repom" koristeći pristup najveće lq–vjerodostojnosti (MLqE),
kako bi se prilagodili MLE i Hillov procjenitelj za male uzorke.
Nadalje, utvrd̄ena je asimptotska normalnost procjenitelja na-
jveće lq–vjerodostojnosti. Osim toga, provedene su simulacijske
studije kako bi se usporedio MLq procjenitelj s MLE procjenitel-
jem. U slučajevima prekoračenja visokih razina pragova, prik-
ladnih vrijednosti, broj najvećih opažanja k vodi do efikasne
procjene pomoću Hillovog procjenitelja. U tu svrhu, izbor k
kod Hillovog procjenitelja istražen je metodom kvantila tipa 8,
koja se pokazala učinkovitom u analizi podataka iz hidrologije.
Učinkovitost Hillovog procjenitelja i lq–Hillovog procjenitelja
zatim je uspored̄ena primjenom stvarnih podataka s distribuci-
jom hidroloških vrijednosti.

KLJUČNE RIJEČI
prekoračenja iznad razine praga, indeks ekstremnih vrijed-
nosti, distribucija s teškim repom, procjenitelj najveće lq–
vjerodostojnosti
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