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Abstract: It is proved that coordinates and momenta of particles with and without spin are defined by nonisomorphic operators and this fact is used to distinguish two possible interpretations of Hamiltonians of linear harmonic oscilator with double spectrum. 

1. Introduction

It is well known that Quantum mechanics of particles (one- dimensional motion) without spin defines coordinate of the particle as a multiplication op�ator 
X in the space L2 (R), where R is the set of all real numbers, and the momentum as a differential operator P in the same space. For particles with spin coordinate X and momentum !?J are defined as operator matrices 

(1) 

in the space L2 (R) EF> L2 (R). Since both spaces, L2 (R) and L2 (R) EF> L2 (R), are Hilbert spaces they are isomorphic. Are the operators X and P isomorphic to the operators X and !?J? 
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2. Symmetries in Hilbert space

A symmetry S is a unitary and self-adjoint operator defined on Hilbert space 
H. If Sis a symmetry, then it can be easily verified that the operators

l
PM =2(E + S) (2) 

where Eis the identity operator, are two projections on, let us say, the subspaces 
M and its orthogonal complement M and 

(3) 

Conversely, if M is a subspace of Hilbert space H, then the difference PM - PM 
is a symmetry. 

A symm�try S has two proper values, + 1 and -1, and the corresponding 
proper subspaces are M for the first and M for the second proper value. The ele
ments that belong to subspaces Mand M we shall call symmetric and antisymmetric 
elements, respectively. We shall call rank of symmetry S the value r = min {dim
M, dim M}. If r > + oo, symmetry Sis called ,r;-symmetry. In the case r = + oo,
symmetry S is called e-symmetry. 

We shall now prove the following theorem. 
If S 1 and S 2 are two arbitrary e-symmetries in Hilbert spaces H 1 and H 2 

respectively, then they are isomorphic. 

Let M1 and M2 be two subspaces and S 1 = PM 1 - l',;; 1 and S2 = PM 2 -

-l',;;2 two e-symmetries on the spaces H, and H2. Let {x0,x2, ... }, {x i,x3, •••• }, 

{y 0, y 2, .... }, {y i, y 3, ••••• } be bases of subspaces Mu Mi, M 2, M 2 respectively.
Let 1 be a mapping of the space H 1 on the space H 2 that assigns to arbitrary 

00 00 

element x = :I:/ n x n of the space H 1 an element y = :I:/ n y n of the space H 2• I is
n=O n=O 

obviously an isomorphism. Since for any element y = :I:/ n y n of the space H 2, we

have·
n-0 

00 00 00 

1S11-t =1 S1 "£/n Xn =1:!: (-l)nfn Xn = "J;(-l)"fn Yn = S2 Y• (4)
Therefore, 

n=O n�O n�O 

and the theorem is proved. 

The following theorem is now obvious. 

(5) 

If the operator S 2 is isomorphic to a e-symmetry S 1, then S 2 is a symme
try too. 
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Let us try now to solve our problem. If M and M are subspaces of the space L2 (R) EB L2 (R) consisting of all elements of the form < f (x), 0 > and < 0,
f (x) >, f (x) e L2 (R), respectively, then the operator <1 = (!M - e°M is Paulioperator 

(6)

Obviously, <1 is a e-symmetry on the space L2 (R) EB L2 (R). Suppose that I is an isomorphism between spaces L2 (R) and L2 (R) EB L2 (R) such that 1- 1 X I = X and 1- 1 f!JJ I = P. Since
X <1 = <1 X, f!}J (1 = (1 {!/ (7) t follows XS=SX, PS= S P, (8)

where S = 1- 1 <1 I is a e-symmetry on the space L2 (R). If 1Pn (a), n = 0, I, 2, . . .  , are Hermite functions, then the equations (8) imply 

V" Vn+I X S'f/'n (x) = 2X 
S'f/'n-1 (x) + � S'f/'n+ 1 (x)

. vnx . v(n+l) x P Stpn (x) = - t Ii 2 S'f/Jn - 1 (x) + iii 2 S "P11+ 1 (x). (9)

The equations (9) show that the functions Stpn (x) satisfy the same differential equations as the Hermite functions 1Pn (x). Since S is a unitary and self-adjoint operator , it follows 
S'f/'n (x) = Bn 'f/'n (x), e ,. = ± 1. ( 10) 

If we take e0 = + l ,  we see from the first of the equations (9) that e,. = + 1 forall n. If we take e O = -1, then e 11 = -1 for all n. So we have finally
S=±E. (11) 

Since the identity operator is not e-symmetry, we can conclude that there is no isomorphism I such that the equations X = 1- 1 x I and P = 1- 1 f!JJ I are valid. We have proved that f!JJ and P (x and X) are substantialy different operators and we are now ready for the next problem closely related to our present conclusion 
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3. Linear harmonic oscillator with double spectrum

Let us investigate the operator matrix 
(12) 

where H = - ;: ::2 + � k x2 is the energy operator of linear harmonic oscilla
tor. Operator J/t' has, obviously, the same proper values as the operator H, while the corresponding proper subspaces of H and J/t' are one- and two-dimensional,respectively. Since the multiplicity of the spectrum is an isomorphic invariant 1 > we conclude that H and JI!' are not isomorphic operators. This means that H and J/t' are the energy operators of two different mechanical systems. H is energy operator of linear harmonic oscillator without spin. And JI/'? If we have an operator A in H that corresponds to a definite physical quantity of particle without spin, then is generally accepted that the corresponding operator d of particle with spin is defined by operator matrix in H (:f> H with A on the main diagonal. 2> In this way we defined coordinate and momentum operators (1) of particle with spin. Therefore, we can consider operator (12) as energy operator of linear harmonic oscillator with spin. But, the difference between operatorsH and JI!' cannot be interpreted as a consequence of spin only. It is possible thatthe multiplicity of the spectrum of JI!' is caused by some other reason. If so, howto discriminate these possibilities?Ifllis operator of parity in the space L2 (R) defined by the equation II f (x) == f (-x), then we can easily see that II is a e-symmetry and, therefore, isomorphicto the operator <1. We can, as well, easily calculate that 

a = III 1- 1 , (13) where l1fJ2 n (x) = > "Pn (x), 0 >, l'lfJ2n+ 1 (x) = >0, 'lfJn (x) >, �nd 'lfJn (x) are Hermite functions. The isomorphism I and a simple calculation give 
(14) 

Since the operator H1s is isomorphic to the operator Jt', the proper values of H1s are En = (n + 1/2) n w, n = 0 ,  1 .  . .  , and to each proper value En correspondsa two-dimensional subspace spanned by the functions 1fJ2n (x) and 1P2 n+ 1 (x). If we, in first approximation, take into account the relativistic effects, then we have to add to non-relativistic Hamitonian a term of the form 3> 
p4 Hcor = - 8 3 2 ' m C 

(15)
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So , we finally get 
( 16) 

If we return to the space L2 (R) @ L2 (R), then we get 
JI' Je PJ'ls 

rct 
= - I6 m3 c2' ( 17) 

where 9'18 = I P 1-1 ::/:, 9'. If the operator .YI' is energy operator of linear harmonic oscillator with spin , then we obtain by standard procedure 
g,4 _ye• =.Ye - ---rc1 8 m 3 c2 • ( 1 8) 

Let us take the last terms on the right sides of the equation ( 16) and ( 18) as perturbation. In the first case , as we can easily calculate , the energy correction is 
p4 3 li. 2 w 2 

A En = ("Pn (x), - 16 m 3 c2 "Pn (x) = - 64 m c2 (2n2 + 2 n  + 1). ( 19) 

This result shows that the multiplicity of energy levels of the unpertubed system is removed by relativistic effects. The energy of two states , VJ2n (x) and 'f/J2n+ 1 (x), are displaced in the same direction and the energy level of antisymmetric state VJ2n+ 1 (x) becomes lower than the energy level of the symmetric state VJ2n (x).In the socond case , on the contrary , the perturbation term of the equation (18) ,  as the consequence of the equation 
(20) 

does not remove the multiplicity of energy level of unperturbed system. The sistuation is now this. We cannot decide whether the operator .Yt' is energy operator of a particle without or with spin if we do not include in the problem an operator of a physical quantity that is differently defined in both cases under consideration. We also see , that the multiplicity of the spectrum of .Yt' is caused by a special parity dependence of .Ye in the first case and by spin in the second case. 
References 1. A. H. Ilnecaer, Cne1<Tpan&aaa TeopHa JIHHCHHbIX onepawpos, MocKBa, P. 428;2. B. PoHHaHCKH, Yson y KBaHTHy .r.texaHHKy., Beorpan. 1963., P. 342;3. H. H. Co6en&MaH, BBACHHe B Teopmo aTonmbIX cneKTJ>OB, MocKBa, 1963. P. 24.
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IMPULS I KOORDINATA CESTICE SA SPINOM 

V. ROGLIC

lnstitut z a fiziku, Beogr ad 
U radu je pokazano da multiplikativni i izvodni operator iz prostora L2 (R)

nisu izomorfni sa operatorima (1) iz prostora L2 (R) $ L2 (R). Dokaz je izveden
na ovaj nacin. 

U radu je najpre pokazano da su sve simetrije beskonacnog ranga u Hilber
tovom prostoru izomorfne i da je svaki operator izomorfan sa takvom simetrijom 
i sam simetrija beskonacnog ranga, iii e-simetrija. J edna od e-simetrija u prostoruL2 (R) $ L2 (R) jeste operator (6) koji komutira sa operatorima (I). Ako pretpo
stavimo egzistenciju izomorfizma, onda mora postojati e-simetrija u prostoru L2 (R)
takva da su zadovoljene jedn. (8). Ako levu i desnu stranu jedn. (8) primenimo na 
Ermitove funkcije dobicemo jedn. (9) iz kojih sledi da funkcije S'Pn (x) zadovolja
vaju istu diferencijalnu jednacinu kao i Ermitove funkcije 'I/Jn (x), odakle sledi jedn. 
(11). Posto jedinicni operator nije e-simetrija sledi kontradikcija cime je dokaz 
zavrsen. 

Cinjenica da se impuls i koordinata cestica sa spinom definisu kao dijagonalne 
operatorske matrice ne opravdava zakljucak da se svi operatori takvog oblika odnose 
iskljucivo na cestice sa spinom. Tako se operator ( 12) moze smatrati kao operator 
energije kako cestice sa spinom tako i cestice bez spina. Tek uzimanjem relativi
sticke korekcije u racun ove dve interpretacije postaju razlicite i to zbog toga sto 
se u oba slucaja razlicito definise operator impulsa. 




