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Abstract: An application of the theory of Brownian motion to particle-productionproblems in hadron physics is attempted. Simple examples of one-dimensio­nal random walk in rapidity space and the Langevin-type equation for a pion density field are analyzed. 

1 .  Introduction 

Studies of Brownian motion u are principally concerned with random mo­tion exhibited by a physical quantity 1/J (z), 1/J (z) is a process in which the variable 1P (displacement velocity, fluctuating voltage, pion field, etc.) does not depend in a completely definite way on the independent variable z, as in a causal process. In the case of a random process, functions 1P (z) are different in different observa­tions therefore only certain probability distributions are directly observable. In fact, a random process 1/J (z) is completely described (or defined) by the following set of joint probability distributions 
(1) 

* Talk p1esented at the International School of Elementary particle Physics, Basko Polje,
14-28 Septembe1, 1975. 
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2. Classical example

Consider the motion of a classical charged particle which is unobserved. The motion of such a particle is recorded only by means of radiation the charged particle emits during its motion. According to the classical theory, the charged particle will emit radiation only if it is accelerated. If this happens by some unknown causes, probably through random collisions with other particles of the medium, the charged particle will perform random motion (Brownian motion) inside the medium. Can we say something about the angular distribution of the emitted radiation starting from a standard theory of Brownian motion? 
3. Emission of particles in hadron physics

Similar reasoning can be extended to production processes in hadron phy­sics, where the motion of an unobserved underlying field (a quark field, for example) is considered inside a hadron medium. A con-
<Y>:: o sequence of the random walk of the underlying II I 11 o 1 1 1 I field is the emission of real particles such as ---- Y=tn(� f Y pions, kaons, etc. The underlying field is put 

� � into random motion by means of energy gained
Fig. I .  A typical event population of 

the rapidity space. during high-energy collisions of two hadrons. 
4. One-dimensional random walk in rapidity space

High-energy collisions are usually analyzed 2 > by resolving a particle's mo-
� � mentum q into components transverse to the incident beam, qL, and a component along the incident beam, qL. The rapidity is then defined by 

(2) 

A possib_le c. m. rapidity configuration in an n -particle inclusive reaction 
a +  b-+ l ,  2, . . .  , n + anything 

is shown in Fig. 1 .  Suppose now that this configuration is achieved by random walk along the rapidity line y (Fig. 1). 
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A particle is emitted after each displacement along the straight line y. The length of the average displacement is L1 y. Each step is taken either in the forward or in the backward direction with probabilities wf and wb such that 
(3)

wf =I= wb is expected if colliding particles are of different type. After taking n such steps, the particle can be emitted from any point between - n (L1y) and n (L1y).We may now require to find the probability W ( n, m) that the particle be emitted at the point y = m (Lfy) after taking n steps. The required probabilityis easy to find and is in fact the Bernoullian distribution 

1 Consider a particular case of pp scattering. Here wf = wb = 2 and (4)
reduces to 

n!  ( 1 )  n W ( n, m) = 1 ' 1 2 .( 2 ( n  + m)) ! ( 2 ( n  - m) ) !
From (5) it follows that 

(5)

(6)

It is of interest to take n very large and m <( n. In this case the probability can be expressed by the asymptotic formula 
( 2 ) 1 / 2 W ( n, m) = n:n exp (- m 2/2 n). (7)

When n is large, it is convenient to introduce the net displacement y from the origin and write 
W ( n, m) = 2 (:n �) 1 12 exp (-y2/4D), (8)

where 
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We recognize the Gaussian distribution in (8). Note that in (8) the variable y is 
restricted to the region ys (- oo, oo). 

If the. net displacement y is restricted to the region y e  (- Y/2, Y/2), Y = 
= I Ya -y 6 I, then the normalized distribution becomes 

where 

and 

1 W (n , m) = -N exp (-y2/4D), orm 

Norm = 2 (n D) 1 '2 (P ( Y/4 V D)
t/J (x) = ln f e-" dt ; t/J (x) -+ I as x -+  ao.

0 

(9) 

(10) 

As a consequence of this restriction, the average number of emitted parti­
cles is 

<n> � 2 I Lly I y •
(1 1 ) 

. 5. Random processes in hadron physics

Let us consider a process a +  b-. 1 ,  2, 3, . . .  , n. The n-particle contribu­
tion to the unitarity equation3> is 

where 

-+ 1 J _. ... n -+ A
n 

( Y, p) = -4 d2 B e1P8 II dz, I T
n 

( Y, B ; {z1 } 12, s i= l 

z, = (q,ny,) ; 

and B is the relative impact parameter between particles a and b. 
Normalization is such that 

and 
l; <1 n ( Y) = <11ncl ( Y).

n= l 

Let us write 

(12) 

{ 13) 

(14) 
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For simplicity , the dependence on the variables ( Y,B) is suppressed. Consider now a set of real-valued functions v, (z) integrable in a certain domain fJ. Given a functional F {'I'} , an average of F {v,} over all "I' will be deno­ted by 
< F {1/'} ) . ( 1 5) The characteristic functional 

G {E}" = ( exp i f � (z) 1J' (z) dz ) ( 1 6) 

is defined in the space of all square integrable functions � (z). The n-point corre­lation function 
( 1J' (z 1) . .  • "I' (z n) ) , ( 17) which is obtained from 

( 18) 

is identified with 
(19) 

The field ,p (z) thus plays the role of a fundamental underlying density field which is treated as a random variable. If 
( v, (z) ) = II (z) =f. 0 ,

we can introduce a new field 
so that 
Notice that 

tP (z) = tp (z) - < tp (z) ) ,
( tP (z) > = 0.

G {�h, = exp (i f � (z) < 1J' (z) >) G {�}�.

(20) 

(21) 

(22) 

(23) 

The random field tP is Gaussian if its correlation functions satisfy the decomposi­tion property4> 
( tP (z 1) . . .  tP (z2 i + 1) )  = 0, l = 0, 1 , 2, • . .,

( tP (z 1) • • •  tP (z21) )  = :E II ( tP (z1a) tP (zJa) ) ,
pairs a=l 
(ij) 1 = 1, 2, • . . .

(24) 
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In this case 

where 
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G {�}" = exp (i f � (z)II (z) dz)
exp ( - � f dz dz' , Hz) C (z, z'H (z') ), (25) 

C (z, z') = II (z, z') - 17  (z) II (z') . (26) 

It is interesting to note that the condition C (z, z') = 0 leads to the AABS uni­tary model 5>. So far we have done nothing more than state the consequences of treating 
(/) (z) as a Gaussian random variable. The real physics enters the problem when we specify either the form of ( (/) (z) (/) (z') ) or the form of the Langevin equa­tion for (/) (z). 

6. Langevin equation

Let us start from the simplest Langevin equation of motion for (/) (z), sug­gested by the classical one-dimensional Brownian motion, 
a: (J) = - y (J) + N (z), y ) 0. (27) 

Here N (z) plays the role of a randomly fluctuating noise >>force« with the follo­wing properties : a) N (z) has a white noise spectrum, i. e., its correlation time is zero., 
( N (z) ) = 0,

( N (z) N (z') > = c d (z - z') ; (28) 

b) N (z) is a stationary Gaussian process. The solution of (27) can be writtenin the integral form as 
(/) (z) = f e-y(z-z') N (z') a z'. (29) 

-oo 

The correlation function is easy to find 
C ( (/) (z) (/) (z') > = 2,, exp ( -y I z - z' I). (30)
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It is interesting to note that we can also determine the differential equation 
satisfied by the correlation function itself, which is 

(
d
�: - r2) < <P (z) <P (z') > = - cd (z - z'). {31 )  

7. Integral-equation method 

Let us consider the eigenvalue problem of the integral kernel < <I> (z) <I> (z') >
f < <I> (z) <I> (z') > u1 (z') dz' = Ai u1 (z). {32) 

Since ( </> (z) <I> (z') > is supposed to be positive definite and symmetric, 
its eigenvalues 11 are all non-negative. The eigenfunctions u1 (z) are then real 
and form an orthonormal and complete set. The spectral representation of the 
random function <I> (z) is defined by the expansion 

<I> (z) = :t <1>1 u, (z) ,
l 

(33) 

where {</>1} now become a new set of stochastic variables describing the random 
field <I> (z). The continuous fonn of the probability density can then be obtained 
in the form 

P {<P} = N- 1 exp ( - � f dz dz' <P (z) < <P (z) <P (z') > - 1 <P (z'+ (34) 

where N is defined in such a way that4> 

Note that 
f d {</>} p {</>} = 1 .

1 
< <l>(z) <I> (z') ) - 1 = :t T, u1 (z) u1 (z').
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BROWNOVO GIBANJE KAO MEHANIZAM PRODUKCIJE CESTICA 
M. MARTINIS 

/nstitut »Ruder Bofkovic<•, Zagreb 

Sadrzaj 
U radu je primijenjena teorija Brownova gibanja na probleme produkcije cestica u hadronskoj fizici. Analizirani su jednostavni slucajevi kao sto su jedno­dimenzionalno >>random« gibanje u prostoru rapiditeta cestica, te Langevinova jednadzba za pionsko polje. 




