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Abstract: In this paper, we find the eigenfunctions and eigenvalues of the Hamil-
tanian for relativistic electron moving in a uniform external electric and mag-

netic fiield.

Starting from the solution of Dirac equation in a frame S’ in which the
electron moves in a uniform magnetic field, we perform a Lorentz transfor-
mation on this solution to obtain a solution of Dirac equation in a new
frame S in which an electric field also appears.

To solve the problem we employ the Jannussis Schrauben-functions.

1. Introduction

\_)Ye consider an electron moving relativisticaly in a uniform external magnetic
field H' in the reference system S'.
The Dirac equation is
@ E =4 N+ Pi—imoc)y (F,e) =0, (1)
where
P'=—ikpn', P, = —ihaix‘,, B =rot 4’ (), 4’ ()
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is the vector potential, and the y, -matrices obey the rule
7;:7;"‘?;?;4:216,": (.“:”=1:2:3:4) (2)

with pf = — i ai(i=1,2,3) y. =8

I 0 - "
B = and ¢’ = g 7).
0 —I ¢ 0

If the vector potential has the symmetric form
- - HI H' ,
a@ = (=g 5% 0) ®3)

(where the magnetic field is parallel to the z-axis) the eigenfunctions 1;' (:’, t’j
take the following form?®

[ — &k A_,,+ VZBn nd) g )

vy + mqc
P h(k;A4+1VZB'nA3) ’, ot ot .
9 () = o4 Yar,n—1 ('s7m) i @)
—. 4+ myec e A >
c
4, Phton 7
l A, Pitunot (5 7o)

where E' = 4+ c)m?c? + A> (k2> +2B'n) is the energy of the electron,
B' = %I;—{ and yk,, (-1:’, ;,’,,) is the Schrauben Function® 3. This function in polar

coordinates is

B! = = i - —
Vit n (r rm) VB' (Bl)n llL e ka3 = - (r'=r'p)? +.E£cmr ) (,.;)lr, _ r,’,,]"e-t‘n o,
n
(6

‘ . 2 2 ,. .
where 7, = (x4 Y 0) with x), = E_,—k,’, 2V = — Ek"‘ is the centre of the spi-
ral orbit of an electron at the x’ ¥’ projection plane.

The coefficients A3, A, take arbitrary values and the quantity B’ has dimen-
sions of inverse surface.
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Other papers which are referred in the study of an electron in a uniform
external magnetic field using the Dirac equation are*~9’,

2. Eigenfunctions and eigenvalues of the Dirac equation with electric
and magnetic field

We consider that the S’ system is moving with respect to the system S re-
lativisticaly, with velocity V paralel to the xy — plane of the system S. The velocities
o and o' of the electron with respect to S and S’ are related by the equation

- - —l—o - -
L Ty Vw7
v = o o ) (7)

F=7 + D5 iy I ®
4
e =7 (x; +"V—f)= ®)

2, —-1f2
withy=(l—r:—2) ’andx4=z'ct.

- - - -
The vector potential 4 (r) and the operators y, P are transformed according

to (8). The quantities y, and P, = —7h are transformed according to (9).

dx,
Inserting the above transformations of these quantities into (1) using the relationship

(10

V4 )
c )’

A4=7’(A:+i

with 4; =¢®’ = 0 and setting »’ (_1:’, ?’) ={;, (;': 5 we finally have

-t ab)erfta) mefiido o
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This equation is identical to the Dirac equation satisfied by the spinor ¢ (;, ;)
in the system S hence 17) (7_‘: =y (1:: r).

We thus see that starting from the spinor 3’ (;:’, t") describing the electron
in the system S’ and transforming 7 and ¢/ according to (8) and (9), we find the
corresponding spinor y (;:, t) in the system S.

The antisymmetric electromagnetic field tensor F,, is given in the S system

by the relationship

Y P
Fpu=3 X Fugogm (5s=123,4) (12)

i=1 i=1
where only the component F,, = H' is non-zero.

From (12), with the aid of the inverse transformations of (8) and (9) we obtain

H=yH (13)
and
P2 i+ Ny v, (v 4+ v, =

c c 2 xVy x vl

Y B YD * 5

== |HxV|+ " 3m" HV:V,QV,j = V)

c c
or

|BxV |+ — 1)2% Vsindj — P)sin2 9, (14)

M
[
o=

where 9 is the angle between the velocity V' and the x-axis in the S coordinate
system.

For V < < C equations (13) and (14) tend to the corresponding non-rela-
tivistic equations.

The term A’ (—1:,',,) 7 of the relationship (6) is transformed as

AEYT=AG) T+ -Izix Pl (15)
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Inserting (8), (9), (14) and (15) into (4) we take for the eigenfunctions of
the equation (11)

sy A Ty — 1 - = 9
[ —h (kz A3’+ ! VZ“B? ! A4'Pks A (l‘, fm)
—c—‘ + mo c
- .&(k A "I‘i'pan}’_lA Ao i Er-—- i
(o) = 24 1% 2 Pron—1 (s ") er?av - -FyE't’ (16)
— 4+ myc
¢
4, Pera (;: '-:m)
Ad. Yieu-1 (;s ;m) J
where
E=tcfmic +h2(k + 2nBy Y. amn

The function p,,, (_r.', ;,,,) has the form

ponord) = Z(Z)Z 2 (14 26mt - 01+ et e

2z\2) nTL,
B -1 - - - "lB - - i - - -
el (G e e R G DR )

iefc2 = (y—1)

- o -
.ec_ﬁ —2- rm — ) H 2V sin 8 j— V) ry sin 28

LR

- — - - -
with & = (&, ), 0), because the terms {r' — r,}%, |’ — 7, |" e’ are given by
the relatioships

¢ - = — o (¢ 7w I7)2 (19)
and

|7 — T |"emine’ = |7 — 1,y |nemine (1 + o =D+ e=f<v—°>>)". (20)

The difference {r — r,} is time-independent.

! - —

The term e*” ¢ ¢ ” includes the drift-velocity.
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The eigenvalues of the energy in the system S are given by the equation

E=+4cyymic + k2 (k2 +2nBy~1) —

«-_af,,, +(y — 1) H 3 sin 87 — 77, sin 26, 1)
The energy depends not only on the magnitude of V but also on the angle 9.

3. Probability density and current

For the probability density we get

0 =p(me)v* (7 0) (22)
or

2
o ={A3A:+ (B4, +20By 1 A 4D+

E
(e

+ ik, )2nBy 1 (A A, — A4 3)] Visn (s Tos) Pion (F Ts) Pion (75 ) +

b.z

SR A, A +2n By A, 4D —
(+me)

+ {A-lA: +

- ‘kz VZﬂBY_ t (A; Aﬁ - A:AS)] “Yon-1 (f, rm)v:)n— 1 (T, rm)' (23)

The above equation for small magnetic field and large n can be written

. w_ 2F
9_(A A + A, A)E'+m zwbn("s m)'f’x(r:rm) (24)
From the normalization relationship
4
z | ydr =1 (25)
$==
we obtain that
Yy~ L (E'+ my cz)

(26)

—A3A;+A4A: 2El



RELATIVISTIC... 183

Inserting (26) into (24) we have
-2 -1 2 " _ Z:_IE _ !,_2 }
¢~ irm’ !Ii, . ZBR2 (l B I:_z cos* (p — '9))) et (Ll o) |
27

- -
where R = r — r,. The above equation represents the Poisson distribution with
the parameter

-1
£ = #R’ [1 — I:—:cosz (@ — 0)]. (28)

Points for which the density becomes a maximum are such that

E=n (29)
or
V2 -1 2
R2 =R'? (1 - cos? (p — 19)) =R g, (30)
. 2 2n p? -1
with R =5 and (l —c—zcosz(q:—z?)) =q.

For velocities V' < < ¢ the above equation is in agreement with the classical
results.

The transformation of R'? from the S’ system to the S system is according
to (8)

2 -
R? = R"? +-c”?(R' V)2, (31)

-

where R' V =R’ V cos (' — #). Then we have
for ¢'=2kn+ 394 % that R?=R’? and

for ¢ =2kn + that R? = y?R'2. (32)

The above equations show that the projection of the electron orbit on the
x’ y’-plane of the S’ system is an ellipse with minor axis & = y~! R parallel to

the velocity V and major axis @ = R perpendicular to it.

From (27) we conclude that for V < < ¢ the probability density tends to
the nonrelativistic limit. For V' — C, the density g tends to zero.
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The expression of the probability density in K-space gives some interesting
results

B Ko\?
if we set K,=§- Ry, Ky = — 5 R and Ki + K = (—7°) , (33)

then equation (27) becomes

_ y~2B (y~'B (K, _ 200
9_2nn!L,( (T) ( _°°s \

— 9 )n —13 [(KT( V2 o2 (p—9) )] (34)

The quantity (34) becomes maximum whenever
K2 = B? R? = 2nByq. (35)

The above relationship for the classical case where y = ¢ = 1, expresses the
connection between the surface of a unit cell in Harpes K-space and B.

The relationship (35) may be written as follows

B*K:=4nymouHy, (36)
h*B
Z_mo_H

where p = is the Bohr magneton.

The probability current density is calculated by the form

T=v*( o) cay (o) (37)

4. Energy and angle between ¢ and V

Equation (21) gives the energy of the electron in the system S. If the direction
of 17,,, coincides with the direction of ¥ Equ. (21) by (14) reduces to

E=4cyVYmc? +h* (kR +2nBy~ ). (38)

Substituting (36) in (38) and for small kinetic energy and V < C we have

2, —1/2 2 -1 12
E=imoc2(1—1’_) (1+hk=+4"“H" "'°) =

2 2 .2
c m,c
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K

2mg

=mqyc? +

+2n,uH+-;—mon, (39)

if we chose the positive square root.

The above equation connects the energy of the electron to the magnetic
energy a 1 H, whereisequal to the distance between two successive Landau energy
levels®.

The equation (21) for V < < C gives

1
E=;l:c]/m§c’+ﬁ2(k§+2nB)—%‘f??'m+?sza (40)

’

. E . . ..
withm = o Now if we consider that the electron has a small kinetic energy T <

< mg c? in the S’ system we have m = m, and we obtain

K2 (k: + 2 Bn)\ 112
E'=+c|myc? +i*(k; +2nB) =:’:mocz(l+(—mozc2 ) -

AR,
2m 3

1)

=myc +nkw,+

.. eH .
where we chose the positive square root and w, = is the Larmor frequency.

myc

Substituting the equation (41) to (40) we take?

2
AL S WY (42)

E=nkho.+5t—+ 3

The angle between & and V is given by

cosi=_2SV (43)
(€11 V]

which by the aid of equation (14) can be written:

(y — Dsin2d#cos(zw +29)
(> + 2y —3)sin?2d F Hz

cos A = (44)
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From (44) for V < < C we get | 1| =% which coincides to the classical

result. For V = C dividing the equation (44) by (y — 1), we have

cos A=cos(mw+ 2
or
|A|=n+249.

In the particular case # = 0 (i. e when S’ moves along the axis O x) it follows
that | 2| = z, that is the electric field becomes then antiparallel to V.
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