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ABSTRACT
In the data collection of a multi-sensor system, there are problems with large errors, conflicts,
and redundancy. To solve the above problem, a multi-sensor data fusion algorithm based on
anomaly data preprocessing and adaptiveweighted estimation is proposed. To improve the reli-
ability of the algorithm, first, for a single sensor measurement signal sequence, a consistency
preprocessing using the off-centre distance method is performed, and the weighting factor of
each measurement data is calculated. Then, the measurement signal sequence is weighted and
fused; Secondly, in response to the uneven distribution of measurement errors among multiple
sensors in different directions, an adaptive weighted data fusion method based on the princi-
ple of optimal weight allocation is proposed. The proposed method was compared with the
adaptive weighting method and arithmetic mean method. The simulation results showed that
the total mean square error of the data fusion results obtained using the proposed algorithm
is smaller. The proposed algorithm can effectively improve the accuracy of data measurement,
reduce redundancy, and improve the stability of data measurement.
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I. Introduction

Multi-sensor data fusion is a new technology developed
in recent years [1]. It is characterized by using multi-
ple sensors to measure the same measurement object,
to obtain the multi-source information of the object. It
makes full use of the redundancy and complementarity
of multi-source information, and fuses this informa-
tion, compared with a single sensor, it can form a high-
quality and reliable judgment of the surrounding envi-
ronment reality [2]. Even if the environment changes
and some equipment of the system suffers from techni-
cal failure or damage, the quality of such judgment can
be maintained.

Wireless Sensor Network (WSN) is composed of a
large number of sensor nodes with sensing, comput-
ing, and wireless communication capabilities. It has
the characteristics of small node size, low cost, multi-
hop ad hoc network, and large sensing area. WSN has
a wide range of applications such as environmental
monitoring [3], habitat monitoring [4], military appli-
cations [5], weather monitoring [6], smart grid [7],
traffic monitoring [8], and forest fire detection [9], etc.
In WSN, a plethora of small-sized application-specific
sensor nodes are randomly deployed in the sensor
field. These sensor nodes collect information and for-
ward it to their managing node (sink node or cluster
head (CH)) via wireless communication. The nodes are

resource-constrained in terms of energy, computational
capability, storage capacity, and communication range
[10]. WSN generates a large amount of redundant data
while monitoring information. On the one hand, pro-
cessing and transmitting redundant data wastes limited
energy and network bandwidth; On the other hand,
interference factors and sensor measurement accuracy
lead to errors in system monitoring results, and the
random occurrence of faulty nodes also reduces the
reliability of the system to a certain extent. How to
reduce redundant data, reduce node energy consump-
tion, improve network reliability, and extend its effec-
tive lifetime has become a very important issue inWSN
research [11].

Heterogeneous multi-sensors play an important role
in information perception, the acquired data may con-
tain some ambiguous and conflicting information due
to the limitations of multi-sensor devices’ measure-
ment accuracy and the complexity of the working envi-
ronment, which may result in inaccurate data-fusion
decisions [12]. Consequently, the way to better handle
multi-sensor data and improve data-fusion accuracy is
a popular research direction in the field of data-fusion
technology [13]. One of the effective ways to improve
data reliability, and accuracy, and reduce redundancy is
to preprocess multi-source sensor data and implement
effective data fusion mechanisms, correct data with
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large deviations, delete unreliable data, and remove
redundant and highly repetitive related data. Common
data-fusion algorithms currently include Kalman fil-
tering [14], Bayesian estimation [15], Dempster–Shafer
(D-S) evidence theory [16], and artificial neural net-
works [17], etc. Bayesian networks and D-S evidence
theory are commonly used to deal with the uncer-
tainty in multi-sensor data, which frequently results
in anomalous data. Statistical algorithms represented
by Bayesian theory need to obtain prior knowledge
and probability distribution before fusing multi-sensor
data to calculate the reliability of sensors [18]. Artificial
intelligence algorithms represented by artificial neural
networks (ANNs), can handle the problems of unclear
and uncertain nonlinear systems. However, complex
structures and random parameters can lead to unsta-
ble fusion results [19]. The fusion algorithm based on
the support function is a typical information-theoretic
algorithm, which can obtain the relationships between
data and avoid the adverse effects of untrusted data
on the fusion results [20]. Alessandra De Paola [21]
proposes a context-aware, self-optimizing, and adap-
tive system based on a three-layer architecture. The
lowest level sensors collect heterogeneous data, while
the middle level utilizes dynamic Bayesian principles to
handle measurement data inaccuracies and infer esti-
mates based on contextual information. The highest
level achieves a free optimization process by collect-
ing sensor set data to improve the accuracy of mon-
itoring values. Sergey V. Muravyov [22] proposed a
method of interval voting based on preference aggre-
gation form. Allowing inaccurate measurement data
from adjacent multiple sensors within narrow uncer-
tainty boundaries to determine the correction values
of measurement parameters, achieving good measure-
ment accuracy. To optimize the errors, and useless, and
redundant data in various sensor network models, a
fuzzy inference system is introduced for data fusion to
improve accuracy and fusion quality [23]. Shahaboddin
Shamshirband [24] adopts the support vector regres-
sion machine method to fuse the data of various sensor
arrays to improve the accuracy of the data. In the atti-
tude measurement process of guided drilling systems,
to eliminate the interference of vibration and quickly
obtain accurate attitude parameters of guided drilling
tools, a new method of multi-sensor dynamic attitude
combination measurement is proposed [25].

In practical measurement, because there is a noise
in the measurement data, the estimated value obtained
from the measurement data also has an estimation
error, which is also a random quantity. Therefore, the
mean square error is generally used as an index to
evaluate the quality of an estimation measurement
algorithm. When using a single sensor, to reduce the
mean square error of the estimation value, it is nec-
essary to increase the sample length of the measure-
ment data, and the increase in the sample length of the

measurement data will lead to increased computation
and reduced convergence speed, which will reduce the
real-time performance of the measurement. To solve
this problem, many researchers have applied multi-
sensor data fusion technology to the research of esti-
mation algorithms. Guiling Sun [26] proposed a multi-
sensor data fusion method based on trust degree to
quantify the trust degree between two sensor data and
measure the comprehensive trust degree of each sensor
data. Donghui Li [27] proposed an adaptive weighted
estimation algorithm for multi-sensors, which is used
to estimate a non-random quantity from measurement
data containing observation noise. Pei Shi [28] pro-
posed a data fusion method using a novel function
that is Dynamic Time Warping time-series strategy
improved support degree for enhancing data quality.

Based on the adaptive weighting method and con-
sidering the measurement bias caused by environmen-
tal factors, in this paper, a multi-sensor data fusion
algorithm that combines consistency preprocessing and
adaptive weighting is proposed to fuse multiple sets of
measurement signal sequences. Firstly, the off-centre
distance method is used to preprocess the consistency
of the measurement signal sequence of a single sen-
sor, and then the weighting factor of eachmeasurement
data is calculated and weighted for fusion. Afterwards,
based on single-sensor data fusion, adaptive weighted
estimation is performed on multiple sets of measure-
ment signal sequences from multiple sensors to obtain
more accurate measurement results. In the experimen-
tal section, the proposed method was compared with
the adaptive weighting method and arithmetic mean
method, and the total mean square error was used
to evaluate the fusion performance of different meth-
ods. The rest of this article is organized as follows.
The second section proposes amulti-sensor data fusion
method based on consistency preprocessing by using
off-centre distance and adaptive weighted estimation.
The third section designed an experimental plan and
analyzed the experimental results. Finally, the fourth
section provides a summary of this article.

II. Multi-sensor data fusion algorithm based
on consistency preprocessing and adaptive
weighting

In this paper a two-level fusion structure model of
multi-sensor data based on consistency preprocessing
and adaptive weighting was proposed to improve mea-
surement accuracy, which is shown in Figure 1. Firstly,
the consistency test theory based on the off-centre dis-
tance is used to preprocess the measured data of each
sensor. The measured data with great deviation due to
the failure of some sensors or the influence of envi-
ronmental factors in the multi-sensor system are elim-
inated. The off-centre distance method is used to cal-
culate the weighting factor, and the measured values of
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Figure 1. The two-level fusion structure model of multi-sensor data based on consistency preprocessing and adaptive weighting.

each sensor at different times are fused with the pre-
vious historical measured values for estimation, then
the first level fusion result for single sensor measure-
ment data is obtained. The second level of fusion is
based on the adaptive weighting method adopted by
all sensors in the space. In the sense of minimum total
mean square error, the optimal weighting factor corre-
sponding to all sensors is adaptively found, so that the
total mean square error of the fusion estimation results
at this time reaches the minimum value, and the final
fusion estimation value is output.

A. Single sensor data fusion

When using a multi-sensor system to measure data,
when some sensors in the system have a fault or are
affected by environmental factors, the measurement
data has a large deviation. If all measurement data
are directly fused without timely inspection and elim-
ination of data exceeding a certain limit, the final
data fusion accuracy will be affected and the mean
square error of the fusion system will be increased.
Therefore, the off-centre distance method is used to
preprocess and fuse the measured data of a single
sensor.

Suppose that a multi-sensor system is composed of
m sensors of the same kind, in which the kth sensor
has n observations, being respectively. Let the average

of these n observations be
−
x, and use the average as the

centre value. Let di =
∣∣∣∣xi − −

x
∣∣∣∣, then it can indicate the

distance of observation value xi from the centre value−
x. If di is larger, it indicates that the deviation caused
by observation value xi is larger. On the contrary, it
indicates that the smaller the deviation caused by the
observation value xi is. Therefore, the off-centre dis-
tance of a single sensor observation can be defined as
follows:

Definition 1 Let the n observed values of the kth
sensor be x1, x2, . . . , xn respectively, their average value

is
−
x, and the distance di of observation value xi from

the centre value
−
x can be expressed as: di =

∣∣∣∣xi − −
x
∣∣∣∣

(i = 1,2, . . . ,n)
When the deviation distance of an observation value

is greater than a certain degree, it will affect the final
data fusion accuracy. It can be considered to eliminate
it, which is the significance of the consistency test.

According to the method described above, the n
observations x1, x2, . . . , xn of the kth sensor are pre-
processed for consistency, and c observations are elim-
inated in the order of the deviation from the centre
from the largest to the smallest. After that, the remain-
ing n–c observations that have been preprocessed for
consistency are weighted for fusion estimation. The
smaller the deviation from the centre, the higher the
consistency with other observations, and the larger the
corresponding weighting factor should be. According
to the guidance of this idea, the weighting factorw(i) of
the ith observation can be calculated as follows:

w(i) = 1

[d(i) + 1]
n−c∑
i=1

1
[d(i)+1]

(1)

Where 0 ≤ w(i) ≤ 1, and
n−c∑
i=1

w(i) = 1 was met. To

avoid the complexity of calculating the weighting factor
when the off- centre distance is 0, the method d(i) + 1
was adopted here. The weighted fusion estimate of the
remaining n–c observations after preprocessing of the
kth sensor can be expressed as:

∧
xk =

n−c∑
i=1

w(i)xi′ (2)

∧
xk is the first level fusion estimate for the kth sensor
when the measurement data sample length is n. Sim-
ilarly, the first level fusion estimate can be obtained
for the other m-1 sensors when the measurement data
sample length is n.
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B. Multi-sensor data fusion

The second level of fusion is the optimal fusion
estimation based on spatial multi-sensor. The adap-
tive weighted fusion estimation algorithm is adopted.
Under the condition of minimum total mean square
error, the optimal weighting factor is found adaptively
according to the estimated values obtained by different
sensors at the same time after the first level of fusion,
so that the fusion estimated values of the measured
parameters at that time reach the optimal.

Suppose that the observed values of m sensors are
X1,X2, . . . ,Xm respectively, they are independent of
each other, and are unbiased estimates of the true
value X, the corresponding variances of the observed
values of each sensor are σ1

2, σ22, . . . , σm2 respec-
tively, and the weighting factors of each sensor are
W1,W2, . . . ,Wm respectively, then the fused esti-
mated values and weighting factors meet the following
equation:

∧
X =

m∑
k=1

WkXk,
m∑
k=1

Wk = 1 (3)

The total mean square error σ 2 of themulti-sensor data
after fused is as follows:

σ 2 = E

[(
X − ∧

X
)2
]

= E

⎡
⎣(X −

m∑
k=1

WkXk

)2
⎤
⎦

= E

[ m∑
k=1

Wk
2(X − Xk)

2

+ 2
m∑

i=1,j=1,i�=j

WiWj(X − Xi)(X − Xj)

⎤
⎦ (4)

Since X1,X2, . . . ,Xm are independent of each other
and unbiased estimates of the true value X, there
is E[(X − Xi)(X − Xj)] = 0 (where i = 1, . . . ,m, j =
1, . . . ,m, and i �= j), and σ 2 can be expressed as:

σ 2 = E

[ m∑
k=1

Wk
2(X − Xk)

2

]

=
m∑
k=1

Wk
2E[(X − Xk)

2] =
m∑
k=1

Wk
2σk

2 (5)

It can be seen from (5) that the total mean square error
σ 2 is a multivariate quadratic function of each weight-
ing factor, so there must be a minimum value. The
minimum value is obtained from the extreme value of
a multivariate function whose weighting factor satisfies
the constraint condition of (3). Using the Lagrangian
multiplier method to solve the extreme value of this

condition, the weighting factor corresponding to the
minimum total mean square error can be obtained as:

Wk
∗ = 1

/(
σk

2
m∑
i=1

1
σi2

)
k = 1, 2, . . . ,m (6)

At this time, the corresponding minimum value of the
total mean square error is:

σmin
2 = 1

/(
m∑
k=1

1
σk2

)
(7)

The above estimation is based on the measured value
of each sensor at a certain time. When the true value
X is constant, further fusion estimation can be made
based on the first-level fusion estimate of each sensor’s
historical data.

Suppose
∧
xk =

p∑
i=1

w(i)xi′, where
∧
xk is the first level

fusion estimate of the historical observation value of the
kth sensor at a certain time, the second level fusion esti-

mate at this time is
∼
X =

m∑
k=1

Wk
∧
xk, and the total mean

square error of multi-sensor data at this time is:

∼
σ 2 = E

[(
X − ∼

X
)2]

= E

⎡
⎣(X −

m∑
k=1

Wk
∧
xk

)2
⎤
⎦

= E

[ m∑
k=1

Wk
2
(
X − ∧

xk
)2

+ 2
m∑

i=1,j=1,i�=j

WiWj

(
X − ∧

xi
) (

X − ∧
xj
)⎤⎦ (8)

Since the observed value of each sensor is an unbiased
estimate of the true value X, the first-level fusion esti-
mates

∧
x1,

∧
x2, . . . ,

∧
xm must also be unbiased estimates of

X, so E
[(

X − ∧
xi
) (

X − ∧
xj
)]

= 0, and the total mean
square error is:

∼
σ 2 = E

[ m∑
k=1

Wk
2
(
X − ∧

xk
)2]

=
m∑
k=1

Wk
2E
[(

X − ∧
xk
)2]

=
m∑
k=1

Wk
2E

⎡
⎣(X −

p∑
i=1

w(i)xi′
)2⎤⎦ (9)

According to (4) and (5),E

[(
X −

p∑
i=1

w(i)xi′
)2]

=
p∑

i=1
wi

2E[(X − xi′)2] =
p∑

i=1
wi

2σk
2, so

∼
σ 2 could be
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expressed as:

∼
σ 2 =

m∑
k=1

Wk
2

( p∑
i=1

wi
2σk

2

)
=

m∑
k=1

p∑
i=1

Wk
2(wi

2σk
2)

(10)
According to (5) and (6), the optimal weighting factor

Wk
∗ corresponding to the minimum

∼
σ 2 is:

Wk
∗ = 1

/(
σk

2
m∑
i=1

1
σi2

)
(11)

At this time, the minimum value of the corresponding
total mean square error is:

∼
σmin

2 =

p∑
i=1

wi
2

m∑
k=1

1
σk2

= σmin
2

p∑
i=1

wi
2 (12)

It can be seen from (12) that
∼

σmin
2 must be less than

σmin
2. That is, the mean square error of multi-sensor

data secondary fusion based on off-centre distance and
adaptive weighting is less than the mean square error of
adaptive weighting data fusion.

C. The proposed algorithm

The above theory is applied to the two-level fusion esti-
mation of measurement data samples from m sensors.
The calculation flow of the estimation algorithm is as
follows:

➀ Calculate the off-centre distance d(i) of n histori-
cal observations of the kth sensor at the sampling time
t according to the definition, i = 1,2, . . . , n;

➁ Conduct consistency pre-processing for n histor-
ical observations of the kth sensor at the sampling time
t, then remove c observation values in the order of large
to small deviation from the centre;

➂ For the historical observation value of the kth
sensor at the sampling time t that has undergone consis-
tency preprocessing, calculate the normalized weight-
ing factor w(i) according to (1), i = 1,2, . . . , n–c;

➃ According to
∧
xk =

n−c∑
i=1

w(i)xi′ calculate the first

level fusion estimate of n–c historical observations after
preprocessing of the kth sensor at sampling time t;

➄ According to the same steps, calculate the first
level fusion estimate of the historical observations of
other m-1 sensors at the sampling time t;

➅ On the basis of the first level fusion estimates of
m sensors, the optimal weighting factorWk

∗ of the kth
sensor at sampling time t is calculated according to (11);

Figure 2. Four groups of measurement signal sequences buried by noise. (a) Output signal of sensor 1 (variance is 0.05); (b) Output
signal of sensor 2 (variance is 0.1); (c)Output signal of sensor 3 (variance is 0.2); (d)Output signal of sensor 4 (variance is 0.3).
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➆ According to
∼
X =

m∑
k=1

Wk
∧
xk, calculate the second

level fusion estimation of m sensors at the sampling
time t, and the corresponding minimum mean square
error can be calculated by (12).

III. Experiment and result analysis

According to the above two-level fusion algorithm flow
of multi-sensor data based on off-centre distance and
adaptive weighting, the simulation experiment is car-
ried out with Matlab software. In the experiment, the
number of sensors is 4, and the measured data sam-
ple length of each sensor is 600. Assuming that the true
value to be estimated is X = 6, four groups of unrelated

zero mean white noise data are used as the measure-
ment errors of each sensor, and the variances of the four
groups of measurement data are 0.05, 0.1, 0.2, and 0.3
in turn.

Four groups of measurement signal sequences with
noise are shown in Figure 2.

The corresponding variance curve of each group of
measurement signal sequence is shown in Figure 3.

For four groups of measurement signal sequences,
the signal sequences after consistency preprocess-
ing and single sensor weighted fusion are shown in
Figure 4.

The method proposed in this paper is compared
with the adaptive weighting method, and data fusion
is performed on four groups of measurement sig-
nal sequences. The measurement estimation curve

Figure 3. The variance curve of each signal sequence.

Figure 4. The measurement signal sequences of four sensors after single sensor weighted fusion.
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Figure 5. The optimal estimation curve and the variance curve of the optimal estimation of our method and adaptive weighting
method. (a) The optimal estimation curve of the signal; (b) The variance curve of the signal optimal estimation.

obtained is shown in Figure 5, where Figure 5 (a) is the
obtained optimal estimation curve of the measurement
signal, and Figure 5 (b) is the total variance curve of the
optimal estimation of the signal.

Figure 4 and Figure 5 show that since the method in
this paper has carried out consistency pre-processing,
and 50% of the sample data with large deviation from
the centre distance is eliminated during pre-processing,
the sample data length becomes shorter, which reduces
the amount of calculation of the adaptive weighting
later, and improves the time efficiency of the method.
At the same time, it can be seen from the simulation
results in Figure 5, that the total mean square error
of the multi-sensor data secondary fusion algorithm
based on off-centre distance and adaptive weighting is
smaller than the total mean square error of the adap-
tive weighting fusion algorithm, and the convergence

speed is faster. Compared with the adaptive weight-
ing method, the estimated value curve obtained by our
method is more stable, and the total estimated variance
is smaller.

As shown in Table 1, in the experiment it is calcu-
lated that the average variance of the optimal estimation
signal sequence of the proposed method is 0.000189,
the average variance of the adaptive weighting method
is 0.000057, and the corresponding variance of the
average method is 0.0402. Compared with the adap-
tive weighting method and the average value method,

Table 1. The comparison of average variance of threemethods.

Average value
method

Adaptive weighting
method Our method

0.0402 0.000189 0.000057
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Figure 6. The optimal weighting factor curves of four groups of signal sequences of our method and adaptive weighting method.
(a) The optimal weighting factor curve of each signal sequence in our method; (b) The optimal weighting factor curves of signal
sequences in the adaptive weighting method.

our method can obtain more reliable signal estimation,
and this algorithm does not require any prior knowl-
edge, and can be realized only by using the historical
measurement data of the sensor.

The optimal weighting factor curve of the four
groups of measurement signal sequences of themethod
in this paper and the adaptive weighting method are
shown in Figure 6.

It can be seen from Figure 3 and Figure 6 that
the method in this paper is the same as the adaptive
weighting method, which can make the weighting fac-
tor smaller corresponding to the signal sequence with
larger variance, and the weighting factor larger corre-
sponding to the signal sequence with smaller variance,
so better signal estimation can be obtained. Because
both methods determine their weights according to
the variance of each sequence, the optimal weighting

factor curves of the twomethods are very similar in the
experiment.

IV. Discussion

For multiple sets of measurement signal sequences
obtained from a multi-sensor system, to reduce the
random error of accompanying measurement data and
improve measurement accuracy, in this paper a multi-
sensor data fusion estimation algorithm based on con-
sistency preprocessing and adaptive weighting is pro-
posed. This algorithm does not require prior knowl-
edge of sensor measurement data, but only relies on
historical measurement data to optimize and estimate
the measurement signal. This algorithm first prepro-
cesses the consistency of a single sensor measurement
signal sequence using the off-centre distance method,
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calculates the weighting factor of each measurement
data, and then performs weighted fusion on the mea-
surement signal sequence; Secondly, for multiple sets of
measurement signal sequences from multiple sensors,
adaptive weighted data fusion is proposed based on the
principle of optimal weight allocation. In the experi-
mental section, the proposed method was compared
with the adaptive weighting method and the arithmetic
meanmethod. The results show that comparedwith the
adaptive weighting method and the arithmetic mean
method, the proposed algorithm has a smaller mean
square error, which can effectively improve the accu-
racy of data measurement, reduce redundancy, and can
improve the stability of data measurement.

Future research will focus on two aspects. On the
one hand, the method proposed in this article will be
applied to other multi-sensor information collection
systems, such as using wireless sensor networks for fire
monitoring, temperature monitoring, etc., to test the
feasibility and effectiveness of themethod; On the other
hand, studying how to combine homogeneous and het-
erogeneous data fusion algorithms to fully utilize effec-
tive data information and improve the comprehensive
processing ability of algorithm is another issue that
needs to be addressed in future research.
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