
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Effective task scheduling based on interactive
autodidactic school algorithm for cloud computing

G. Senthilkumar, B. Suvarnamukhi, S. Lekashri & M. Mohammed Thaha

To cite this article: G. Senthilkumar, B. Suvarnamukhi, S. Lekashri & M. Mohammed Thaha
(2024) Effective task scheduling based on interactive autodidactic school algorithm for cloud
computing, Automatika, 65:1, 159-166, DOI: 10.1080/00051144.2023.2288484

To link to this article: https://doi.org/10.1080/00051144.2023.2288484

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 10 Dec 2023.

Submit your article to this journal

Article views: 654

View related articles

View Crossmark data

Citing articles: 1 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2023.2288484
https://doi.org/10.1080/00051144.2023.2288484
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2288484?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2288484?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2288484&domain=pdf&date_stamp=10%20Dec%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2288484&domain=pdf&date_stamp=10%20Dec%202023
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2288484?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2288484?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

AUTOMATIKA
2023, VOL. 65, NO. 1, 159–166
https://doi.org/10.1080/00051144.2023.2288484

Effective task scheduling based on interactive autodidactic school algorithm
for cloud computing

G. Senthilkumara, B. Suvarnamukhib, S. Lekashric and M. Mohammed Thahad

aDepartment of Computer Science and Engineering, Panimalar Engineering College, Chennai, India; bDepartment of CSE, Neil Gogte
Institute of Technology, Hyderabad, India; cDepartment of ECE, Kings Engineering College, Sriperumbudur, India; dDepartment of
Computer Science and Engineering, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, India

ABSTRACT
The topic of load balanced task scheduling has emerged as a prominent and intricate area of
studywithin the realmof Cloud computing. Swarm intelligence-basedmeta-heuristic algorithms
are commonly considered more suitable for the purposes of Cloud scheduling and load bal-
ancing. These algorithms employ a combination of local and global search strategies in order
to ascertain the ideal location. To achieve an optimal mapping strategy for task allocation to
resources, it is imperative to find a suitable equilibrium between local and global search tech-
niques, since this approach has demonstrated significant efficacy. This research introduces a new
approach to task scheduling using the Autodidactic Interactive School Optimization Algorithm
(IASOA). The objective of this method is to decrease the time required for job execution while
also enhancing throughput. The assessment of the suggestedmethodology has been executed,
and a comparative analysis has been performed with five established algorithms in relation to
makespan and throughput. The tests were subsequently extended to encompass a comparative
analysis of the suggestedmethodology alongside four other establishedmeta-heuristic schedul-
ing methodologies. The study of the simulated experimentation reveals that the proposed
approach yielded noteworthy advantages in makespan and throughput, with improvements of
up to 10% and 60% respectively.

ARTICLE HISTORY
Received 4 September 2023
Accepted 14 November 2023

KEYWORDS
Task scheduling; Makespan;
cloud computing;
optimization algorithm

1. Introduction

Cloud computing is an emerging approach within the
information technology (IT) sector that facilitates the
delivery and management of hardware and software
resources via the Internet. The virtualization technol-
ogy is the primary catalyst for the cloud computing
paradigm, since it enables the resources within the
cloud system to exist in a virtualized state. Within the
cloud platform, users have the ability to rent various
computer resources, including storage, memory, CPU,
apps, and development platforms, through network
connectivity.

The scheduling of tasks and resources is a critical
and complex undertaking within the realm of cloud
computing. When end-users submit tasks, also known
as user requests, to the cloud system, these requests
undergo processing by a scheduling algorithm. Subse-
quently, the requests are allotted to the virtualmachines
(VMs) that are currently available. The objective of task
scheduling is to optimize the utilization of resources
and improve job execution. Task scheduling is a prob-
lem inmulti-objective optimization that falls within the
category of issues classified as non-deterministic poly-
nomial (NP) hard. Approximation methods are com-
monly employed for tackling problems of this nature.

In the context of task scheduling in cloud com-
puting, approximation methods, such as metaheuris-
tics, have the ability to identify an optimal solution
or a solution that closely approximates the optimum
within a reasonable timeframe. These approaches con-
sidermultiple performance parameters, including com-
pletion time, cost, resource utilization, and other fac-
tors that collectively impact the overall quality of ser-
vice (QoS) experienced by end-users. In recent times,
the research community has shown significant inter-
est in bio-inspired metaheuristics owing to its notable
resilience and effectiveness. Swarm intelligence, a cate-
gory of population-based techniques, stands as a signif-
icant representationwithin the realmof nature-inspired
algorithms.

These methods replicate the collective ordered
behavior of a group of organisms in nature, without
the presence of any centralized coordination compo-
nent. Swarm algorithms exhibit distinct characteristics
of randomization, and their search process is facilitated
through the utilization of two mechanisms, namely
exploitation (intensification) and exploration (diversi-
fication). During the exploration phase, the algorithm
conducts a comprehensive search of the whole search
space, while in the exploitation phase, it focuses on

CONTACT G. Senthilkumar gsenthilkumar.cse23@gmail.com Department of Computer Science and Engineering, Panimalar Engineering College,
Poonamallee, Chennai-600123

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2288484&domain=pdf&date_stamp=2023-12-06
mailto:gsenthilkumar.cse23@gmail.com
http://creativecommons.org/licenses/by/4.0/

160 G. SENTHILKUMAR ET AL.

doing localized searches in the vicinity of the existing
optimal solutions.

Numerous swarm algorithms are readily accessible
and expounded upon in contemporary computer sci-
ence literature. The benchmark functions [1–3] have
been effectively validated, and numerous implementa-
tions for actual issues that yield exceptional outcomes
are readily accessible. Various swarm algorithms are
available in the existing literature [4–7]. Swarm algo-
rithms have been applied in various domains, including
classification and feature selection [8,9], and localiza-
tion [10]. Furthermore, the literature analysis reveals
that there are several implementations of swarm algo-
rithms in the realm of cloud computing [11–16]. The
objective of the research outlined in this publication
is to enhance a specific case of multi-objective task
scheduling in the context of cloud computing by imple-
menting the IAS algorithm.

The subsequent sections of the paper are struc-
tured in the following manner. Section 2 provides an
overview of the relevant literature. The work that is
being proposed is outlined in section 3. The analysis of
the performance of the proposed work is presented in
section 4. Section 5 encompasses the presentation of the
final remarks.

2. Review of literature

The authors of [17] propose a hybrid load-balancing
approach that combines the methods found in Teach-
ing Learning Based Optimization (TLBO) with the
Grey Wolves Optimization (GWO) method. In order
to accomplish effective load balancing, the suggested
methodology combines the beneficial aspects of the
Grey Wolf Optimization (GWO) and the Teaching-
Learning-Based Optimization (TLBO) algorithms.
This takes into account the time factor as well as the
corresponding cost factor. In addition to this, the use
of this method results in a significant reduction in the
amount of time spent waiting for items in the task
queue. On the other hand, there is not enough care
given to throughput.

In the framework of Cloud Computing, the
researchers referred to in reference [18] have devel-
oped and put into practice a strategy for the scheduling
of work that takes into mind any deadlines that may
be present. The genetic algorithm (GA) was used by
the scheduling system to maximize the amount of time
spent executing tasks and the cost of resources. This
was accomplished by taking into account the degree to
which virtual machine (VM) performance and acqui-
sition latency varied. However, when confronted with
broad and complicated issues, GA have difficulties in
terms of their ability to scale. The current predicament
presents a difficult obstacle. The ability to foresee and
prepare for potential outcomes in the future is referred
to as the “look-ahead” notion.

The Large-scale Genetic Algorithm (LAGA) is a
variation of the GA that has been recommended by
[19] as a suitable strategy for solving the issues given
by large-scale distributed systems, such as Cloud and
Grid computing environments. The LAGA is widely
regarded as a suitable solution for the scheduling of
compute-intensive operations and assuring stability
throughout run-time. This is because LAGA takes into
account the environment in which it is operating. The
methodology that has been suggested involves deter-
mining task orders by taking into account the amount
of time it takes resources in each generation to finish
their work. In the following stage, known as the muta-
tion step, the resource with the highest success rate is
chosen to be mutated. The reliability and reduction in
job failure rate are both included in the objectives of
this strategy’s scheduling. This method, on the other
hand, does not take into account the scheduling criteria
of makespan and throughput.

The authors have presented a Node duplication-
based Genetic Algorithm (NGA), which is a GA
that has been created specifically for multi-processor
heterogeneous systems [20]. This NGA is a genetic
algorithm that was introduced by the authors. The
evaluation and optimization of communication delay
time and application completion time in relation to
assigned resources is the primary focus of the National
Grid Architecture (NGA), which was developed by the
National Science Foundation (NSF). The fitness func-
tion of thismethod is subjected to a process of evolution
that takes place in two stages. The tasks’ appropriate-
ness for the lawful order is taken into consideration
in the process of scheduling those tasks, which may
entail reporting to the system on the status of all other
tasks. In this instance, the legal system is responsible
for organizing a collection of independent responsibil-
ities to be carried out by a single processing unit. At
this stage, the National Geospatial-Intelligence Agency
(NGA) determines whether or not the processor is suit-
able for use by determining whether or not it is able to
complete the task in the least amount of time possible.
The Next Generation Algorithm (NGA) has inherited
from its forerunner, the genetic algorithm, the difficul-
ties associated with scaling up in order to solve large
and complex problems.

An examination of the similarities and differences
between the GA and the Particle Swarm Optimiza-
tion (PSO) approaches was carried out in an earlier
research project that the author carried out [21]. In
order to conduct this research, multiple different test
scenarios were utilized. The empirical evidence reveals
that the GA is outperformed by the PSO method in
the majority of the test cases when comparing the
two algorithms in terms of solution quality and the
amount of computational efficiency achieved. In the
setting of distributed systems, it is argued that the per-
formance of the PSO algorithm is superior to that of

AUTOMATIKA 161

the GA. This conclusion is based on their experimental
findings.

Gravitational Emulation Local Search (GELS) and
PSO are both incorporated into the task scheduling
technique that was provided by the author in reference
[22]. This method’s goal is to shorten the makespan
while simultaneously increasing the likelihood that all
operations will be finished on time. On the other hand,
there is no concern given to throughput. An investiga-
tion on the job scheduling methods used in the cloud
was carried out by the authors of reference [23] uti-
lizing the PSO method. The authors have organized
the previously conducted research on PSO-based opti-
mization into categories according to the number of
different objectives that needed to be optimized. Both
single-objective and multiple-objective formulations
are included in the classification of PSO algorithms.
The author has come to the conclusion that there is a
requirement for more focus and improvement in order
to achieve balanced scheduling andmeetQuality of Ser-
vice (QoS) criteria, such as makespan, throughput, and
resource utilization. There has been a lack of attention
paid to the consideration and investigation of inertia
weight.

The authors of [24] proposed several meta-heuristic
algorithms, and these algorithms were founded on the
ideas of IRRO (Iterative Random Restart Optimiza-
tion) and CSO (Cuckoo Search Optimization). The
suggested method incorporates the useful aspects of
both CSO and IRRO algorithms, which makes it pos-
sible to take a unified approach to the global and local
search processes. The proposed method also includes
the implementation of a dynamic scheduling frame-
work that goes by the name of the IRRO-CSO based
Dynamic Scheduling Framework (ICDSF). We have
made use of a variety of evaluation criteria, includ-
ing response time, premature convergence, makespan,
and throughput. On the other hand, the application
of ARUR is not considered to be a valid criterion for
assessment.

The authors present a novel method that they refer
to as RTPSO-B in [25]. Thismethod combines the Rang
and Tune based PSO technology with the Bat algorithm
method. The goal of the RTPSO-B method, which is a
modified version of PSO algorithm, is to improve the
efficiency with which jobs are scheduled in systems that
make use of cloud computing. By incorporating the
data localization strategy, this method offers a solution
to the problem of the existing PSO’s excessive iner-
tia weight. The employment of a low inertia weight
makes the local search mechanism easier to operate,
whereas the utilization of a high inertia weight makes
the global search process easier to carry out. The PSO
technique has been incorporated into the Bat algorithm
in order to improve the algorithm’s overall perfor-
mance in terms of optimization. Utilization of Cloud
resources, makespan, and cost are typically included

as primary components of the evaluation parame-
ters for scheduling algorithms. On the other hand,
throughput is rarely taken into consideration during the
review process.

The Integer-PSO algorithm [26] is a variation of the
PSO method that was developed specifically for the
purpose of scheduling work in environments that make
use of cloud computing. The application of Integer-PSO
is appropriate for the optimization of task scheduling
in the Cloud, encompassing both single and multi-
ple objectives. This is because Integer-PSO can take
into account more than one objective at a time. The
Integer-PSO is a solution that has been developed for
the problem of bi-objective optimization. The goals of
this research include determining how long it takes to
complete a task, how much time and money are spent
on calculation and administration, andmeasuring both
of these factors.However, the Integer-PSOmethoddoes
not take into consideration throughput as amain objec-
tive for task scheduling. Instead, it depends on a pre-
determined value for the inertia weight to determine
which tasks should be completed first.

In the research that they conducted, the authors cited
in reference [27] presented amethod for load balancing
that they dubbed Hyper-heuristic. This method makes
use of a honey bee and an improvement detecting oper-
ator. The methodology that has been provided has the
capability to distribute the workload of cloud-based
tasks over several virtual machines in such a way as to
reduce the amount of time that is necessary to finish all
of the chores.

The authors have proposed a Task-oriented Load
Balancing method that they name TBSLB-PSO in their
work [28]. This method makes use of a technique
known as PSO. The TBSLB-PSO algorithm improves
load balancing by using task migration to move jobs
from virtual machines (VMs) that are overloaded to
those that are underloaded. These VMs are known
as “underloaded.” The proposed scheduling method
intends to reduce the workload associated with load
balancing by streamlining the process of work migra-
tion without calling for the shutdown of any virtual
machines (VMs) that are already operating at capacity.

Motivated by these existing works, this article
intends to present an effective task scheduling
algorithm based on IAS algorithm.

3. Proposed task scheduling algorithm

The primary objective of this study is to optimize
the trade-off between power consumption and perfor-
mance to the greatest extent. The algorithms used in
TS can be classified into two categories: deterministic
and non-deterministic. Deterministic algorithms con-
sistently produce the same outcome for a given input,
while non-deterministic algorithms yield varied out-
comes dependent on the decisions made during their

162 G. SENTHILKUMAR ET AL.

execution. The proposed work relies on IAS algorithm
and the background of IAS algorithm is presented as
follows.

3.1. IAS Algorithm

The IAS can be classified as a metaheuristic algorithm
that leverages student interactions within an autodi-
dactic classroom setting to yield a globally optimum
solution. The autodidactic educational institution is
founded upon the principle of independent acquisition
of knowledge and does not involve the presence of an
instructor. The IAS, as described in the literature [21],
is a population-based algorithm that comprises excep-
tional individuals and the rest of the student commu-
nity. The students’ knowledge is assessed through their
achieved marks, which in turn can be used to identify
their academic performance. Nevertheless, there is an
ongoing battle within the student community to attain
the position of lead student. Therefore, this algorithm is
founded upon the principles of self-learning, discourse,
and competition in order to achieve a dominant posi-
tion. The representation of the student generation and
their academic success is depicted as follows.

sti = Lbd + ks(0, 1) ∗ Ubd − Lbd
MKi = f (sti)

while(s = 1 : tlstudent);

f (Lds) = Min{Mk}
Here, sti stands for the ith student, Lbd and Ubd

denote lower and upper bounds of the variables, ks(0, 1)
is the random number that lies in between 0 and 1.
tlstudent is the total number of students, MKi is the
respective mark of ith student and Lds is the leading
student.

The algorithm is structured around three distinct
phases, namely individual training, communal train-
ing, and the new student challenge. During the indi-
vidual training session, the student in a leadership role
engages in discussions and imparts knowledge to the
rest of the student community. The collective train-
ing session encompasses a preliminary conversation
regarding the most recent session with the student
community, as well as a troubleshooting session with
the lead students. Through this approach, the pupils’
knowledge is augmented. The new student is presented
with a challenge upon entering the classroom. The
encounter between the new student and the student
lead presents a potential challenge for the latter in terms
of sustaining their leadership position. The aforemen-
tioned process persists till the specified termination
criterion is satisfied.

3.1.1. Individual training session
The training session is conducted by the student leader
in collaboration with the other students. At the outset,

the students are randomly assigned, ensuring that each
student is paired with a minimum of two other pupils.
This discourse enhances the student’s knowledge, with
the extent of knowledge acquisition contingent upon
the student’s level of skill. The representation of this
session is as follows.

Choose a student stj, i �= j

FS∗
s = FSs + ks(1, 2) ∗ (Lds − bcs ∗ FSs)

FS∗
t = FSt + kt(1, 2) ∗ (Lds − bct ∗ FSt)

while(s = 1tolstudent);

Accept FS∗
s and FS

∗
t when better marks

are achieved by FSs and FSt

Here, FS∗
s andFS∗

t are the first and second fellow stu-
dents and the proficiency competence is indicated by
bcs, bct . ks(1, 2) and kt(1, 2) are the vectors in ran-
dom between 1 and 2. The competences are randomly
assigned with value 1 or 2.

3.1.2. Collective training session
Upon the conclusion of the individual training session,
every student is afforded the opportunity to review the
preceding session, engaging in interactive discussions
with fellow group members. During this collaborative
session, the student leader engages in discussions on
various issues with their peers. The collective session
is denoted by the subsequent information.

ClCpst = (ClCps ∗ FSs + ClCpt ∗ FSt)/

(ClCps + ClCpt)

FS∗
s = FSs + ks(1, 2) ∗ (Lds − ClCps ∗ ClCpst)

FS∗
t = FSt + kt(1, 2) ∗ (Lds − ClCpt ∗ ClCpst)

while (s = 1tolstudent);

ClCpst represents the collective capability of the stu-
dent group, which is computed on the basis of student
competency weight. ks, kt are the random vectors and
the collective proficiency competencies are chosen as
either 1 or 2.

3.1.3. New student challenge
This phase enhances the level of exploration, allow-
ing for the replacement of the student lead whenever
a superior student is identified. The representation of
this can be illustrated as follows.

NewS = Lbd + k ∗ (Ubd − Lbd)

AF1 = round(k(0, 1))

AF2 = 1 − AF1
Ld∗

s = AF1 ∗ Lds + AF2 ∗ News

Score more marks than Lds

AUTOMATIKA 163

3.2. Proposed task scheduling

In this context, News refers to the newly enrolled stu-
dent. The initial and subsequent modifying factors are
denoted as AF1 and AF2, respectively. The variable
k(0, 1) represents a random vector ranging from 0 to 1.
Ld∗

s has emerged as the top-performing student in the
class. Therefore, the functionality of the IAS algorithm
is elucidated.

In the proposed algorithm, each student indicates a
unique schedule. Each student represents n subtasks,
starting from 0, 1, 2, . . . , n − 1. Let TK(h) indicate a
group of subtasks with height h. Initially, the subtasks
are assigned to low power consuming processor. How-
ever, when a subtask is about to meet the deadline,
then they are assigned to high performance processor
to get them done faster. Hence, the major objective of
the work is to reduce makespan and power consump-
tion. When a subtask meets its deadline, then a penalty
is issued, which is given by.

Fit = Max(|µ, 100|) (1)

In the above equation, µ is the time missed by the sub-
task with respect to the deadline. Suppose, when the
subtask is accomplished before its deadline, then the
time is added to the points.

Fit = Points + µ (2)

The subtasks with greater fitness value is chosen for
execution and its probability is given by

pi = fit(i)
∑n

j=1 fit(j)
(3)

Hence, this approach takes care for not violating the
precedent constraints andminimizes themakespan and
power consumption. The following section analyses the
performance of the proposed work.

4. Performance analysis

The following part provides an overview of the com-
putational environment utilized for conducting the
simulation. In order to conduct tests and assess the
efficacy of the suggested scheduling strategy, a simula-
tion environment was employed. This is due to the fact
that within the simulation environment, researchers
have the flexibility to utilize a wide range of resources,
including diverse quantities and characteristics, in
order to conduct their studies. Furthermore, tests can
be conducted multiple times without limitations on
time or cost of execution. The experimental configu-
ration for conducting tests includes a personal com-
puter (PC) with a central processing unit (CPU) of Intel
core i5 T8500 3.0GHz, a memory of 20.00 GB, and a
hard drive of 2 TB. The experiments are implemented
using the Java-based Eclipse IDE 3.0 and the Cloudsim

Table 1. Simulation parameters.

Parameter Value

Simulation tool Cloudsim
Processor Intel core i5-8500 3.00 GHz
Total machines 20
Total tasks 8000

3.0.3 simulation tool. Table 1 provides a comprehen-
sive overview of the experimental setup employed for
the purpose of conducting the experiments. The perfor-
mance of the proposed work (IAS) is compared against
the existing PSO [28], WO [12], INT-PSO [26], Hybrid
[25], GWO [18].

In order to give statistically meaningful and realistic
evaluations, meta-heuristic-based algorithms need to
go through multiple iterations. This is because stochas-
tic optimization approaches fall into this category.
In this particular investigation, every tactic is imple-
mented five times for each and every instance of the
HCSP dataset. The averages of the results are then com-
puted and presented for the purpose of comparison.
The makespan is the evaluation parameter that is of
the biggest importance and serves as the last require-
ment for cloud users. Figure X is a graphical repre-
sentation of the findings that regard to the duration of
time that is required to finish a collection of activities,
which is known as the makespan. These findings per-
tain to both the IAS as well as existing state-of-the-art
methodologies. i_hilo, c_hilo, c_lohi, and i_lohi are all
cases that are included in theHCSP benchmark dataset.
These examples were taken into consideration for this
analysis.

The Hybrid [25] and GWO [18] techniques have
shown improved performance when dealing with
c_hilo and i_hilo cases from the HCSP dataset. On
the other hand, they have shown significantly less suc-
cess when addressing c_lohi and i_lohi scenarios. The
PSO [28] method has shown that it performs signifi-
cantly better on c_hilo and i_hilo instances of theHCSP
dataset when compared to its performance on c_lohi
and i_lohi examples of the same dataset. The reason for
this is that the task sizes in the HCSP instances c_hilo
and i_hilo are significantly less when compared to the
task sizes in the instances c_lohi and i_lohi. In addition,
the linearly declining mode of the GWO [18] approach
has enabled it to demonstrate consistent performance
across all instances of the HCSP dataset.

The IAS method demonstrates that it is possible to
shorten themakespan for each and every instance of the
HCSP dataset. It achieves improvements ranging from
1% to 7% on the i_hilo instances, 2% to 11% on the
c_hilo instances, 1% to 5% on the i_lohi instances, and
1% to 4% on the c_lohi instances of the HCSP bench-
mark dataset when compared to the state-of-the-art
PSO [28], WO [12], INT-PSO [26], Hybrid [25], GWO
[18]. This illustrates that the strategy that was proposed
does an effective job of maintaining a more optimal

164 G. SENTHILKUMAR ET AL.

Figure 1. Makespan analysis.

Figure 2. Throughput analysis.

equilibrium between the local and global search pro-
cesses (Figure 1).

Throughput is another important statistic for eval-
uating the performance of the IAS. Figure 2 illustrates
the throughput outcomes obtained from the implemen-
tation of the IAS strategy, as well as its comparison
with other contemporary approaches. The comparison

is conducted specifically for the c_hilo, i_hilo, c_lohi,
and i_lohi instances of the HCSP dataset. Similarly,
the throughput data exhibit comparable patterns across
all of the compared techniques, mirroring the findings
reported in the makespan results.

According to the findings presented in Figure 2,
it can be observed that the suggested scheduler has

AUTOMATIKA 165

demonstrated improved throughput performance in
the range of 1–7% for the execution of c_hilo, 2–12% for
i_hilo, 1–6% for c_lohi, and 1–4% for the execution of
i_lohi instances of theHCSPdataset. This improvement
is in comparison to the performance produced by IAS
with PSO [28], WO [12], INT-PSO [26], Hybrid [25],
GWO [18].

5. Conclusion

The topic of task scheduling in the cloud comput-
ing model poses a significant challenge, as it directly
impacts system performance. In this study, a proposed
task scheduler algorithm, hybridized BA (BAAEQRL),
is introduced as a potential solution for addressing
the specific issue at hand. The cloud system model
employed in experimental settings embodies a multi-
objective optimization conundrum. The allocation of a
high-performance processor is prioritized when a sub-
task is approaching its deadline. This concept efficiently
addresses the issues of makespan and power consump-
tion. The efficacy of the suggested study is evaluated by
comparing its performance with that of several exist-
ing works, with a focus on the metrics of makespan
and power usage. The performance of the suggested
work appears to be adequate, exhibiting improved out-
comes. Accurate decision-making in the majority of
Internet of Things (IoT) applications necessitates real-
time responses. In the forthcoming endeavor, the objec-
tive is to enhance the efficiency of response time and
implement scheduling techniques in order to deliver
prompt or nearly prompt responses for applications that
are sensitive to delays.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] Karaboga D, Akay B. A modified artificial bee colony
(ABC) algorithm for constrained optimization prob-
lems. Appl Soft Comput. 2011;11(3):3021–3031. doi:10.
1016/j.asoc.2010.12.001

[2] Bacanin N, Tuba M. Artificial bee colony (ABC)
algorithm for constrained optimization improved with
genetic operators. Stud Inf Control. 2012;21(2):
137–146. doi:10.24846/v21i2y201203

[3] Tuba M, Nebojsa M. Improved seeker optimiza-
tion algorithm hybridized with firefly algorithm for
constrained optimization problems. Neurocomputing.
2014;143:197–207. doi:10.1016/j.neucom.2014.06.006

[4] Cheng L, Wu X-h, Wang Y. Artificial flora (AF) opti-
mization algorithm. Appl Sci. 2018;8:329. doi:10.3390/
app8030329

[5] Bezdan T, Tuba E, Strumberger I, et al. Automatically
designing convolutional neural network architecture
with artificial flora algorithm. In: Tuba M, Akashe S,
Joshi A, editors. ICT Systems and Sustainability Vol.
1077. Singapore: Springer; 2020. p. 371–378.

[6] Bacanin N, Bezdan T, Tuba E, et al. Optimizing
convolutional neural network hyperparameters by
enhanced swarm intelligence metaheuristics. Algo-
rithms. 2020;13(3):67. doi:10.3390/a13030067

[7] Bacanin N, Bezdan T, Tuba E, et al. Monarch butter-
fly optimization based convolutional neural network
design. Mathematics. 2020;8(6):936. doi:10.3390/math
8060936

[8] Tuba E, Strumberger I, Bezdan T, et al. Classification
and feature selection method for medical datasets by
brain storm optimization algorithm and support vector
machine. Procedia Comput Sci. 2019;162:307–315. 7th
International Conference on Information Technology
andQuantitativeManagement (ITQM631 2019): Infor-
mation technology and quantitative management based
on Artificial Intelligence. doi:10.1016/j.procs.2019.11.
289

[9] Zivkovic M, Bacanin N, Tuba E, et al. Wireless sensor
networks life time optimization based on the improved
firefly algorithm). 2020 InternationalWireless Commu-
nications and Mobile Computing (IWCMC); 2020. p.
1176–1181.

[10] Strumberger I, Minovic M, Tuba M, et al. Perfor-
mance of elephant herding optimization and tree
growth algorithm adapted for node localization in
wireless sensor networks. Sensors. 2019;19(11):2515.
doi:10.3390/s19112515

[11] Kalra M, Singh S. A review of metaheuristic scheduling
techniques in cloud computing. Egyptian Informatics
Journal. 2015;16(3):275–295. doi:10.1016/j.eij.2015.07.
001

[12] Sreenu K, Sreelatha M. W-scheduler: whale optimiza-
tion for task scheduling in cloud computing. Cluster
Comput. 2019. doi:10.1007/s10586-017-1055-5

[13] Bacanin N, Tuba E, Bezdan T, et al. Artificial flora opti-
mization algorithm for task scheduling in cloud com-
puting environment. In: Yin H, Camacho D, Tino P,
editors. Intelligent Data Engineering and Automated
Learning – IDEAL 2019. IDEAL 2019. Lecture Notes
in Computer Science Vol. 11871. Cham: Springer; 2019.
p. 437–445. https://doi.org/10.1007/978-3-030-33607-
3_47

[14] Strumberger I, Tuba M, Bacanin N, et al. Cloudlet
scheduling by hybridized monarch butterfly optimiza-
tion algorithm. J Sens Actuator Netw. 2019;8(3):44),
doi:10.3390/jsan8030044

[15] Strumberger I, Tuba E, Bacanin N, et al. Dynamic tree
growth algorithm for load scheduling in cloud environ-
ments. 2019 IEEE Congress on Evolutionary Compu-
tation (CEC); 2019. p. 65–72. doi:10.1109/CEC.2019.
8790014

[16] Bacanin N, Bezdan T, Tuba E, et al. Task scheduling in
cloud computing environment by grey wolf optimizer.
2019 27th Telecommunications Forum (TELFOR).
IEEE; 2019. p. 1–4.

[17] Mousavi S, Mosavi A, Varkonyi-Koczy AR. A load
balancing algorithm for resource allocation in cloud
computing. In: Luca D, Sirghi L, Costin C, editors.
Recent Advances in Technology Research and Educa-
tion. INTER-ACADEMIA 2017. Advances in Intelli-
gent Systems and Computing Vol. 660. Cham: Springer;
2017. p. 289–296. https://doi.org/10.1007/978-3-319-
67459-9_36

[18] Meena J, Kumar M, Vardhan M. Cost effective genetic
algorithm for workflow scheduling in cloud under
deadline constraint. IEEE Access. 2016;4:5065–5082.
doi:10.1109/ACCESS.2016.2593903

https://doi.org/10.1016/j.asoc.2010.12.001
https://doi.org/10.24846/v21i2y201203
https://doi.org/10.1016/j.neucom.2014.06.006
https://doi.org/10.3390/app8030329
https://doi.org/10.3390/a13030067
https://doi.org/10.3390/math8060936
https://doi.org/10.1016/j.procs.2019.11.289
https://doi.org/10.3390/s19112515
https://doi.org/10.1016/j.eij.2015.07.001
https://doi.org/10.1007/s10586-017-1055-5
https://doi.org/10.1007/978-3-030-33607-3_47
https://doi.org/10.3390/jsan8030044
https://doi.org/10.1109/CEC.2019.8790014
https://doi.org/10.1109/ACCESS.2016.2593903

166 G. SENTHILKUMAR ET AL.

[19] Wang X, Yeo CS, Buyya R, et al. Optimizing the
makespan and reliability for workflow applications with
reputation and a look-ahead genetic algorithm. Future
Gener Comput Syst. 2011;27:1124–1134. doi:10.1016/j.
future.2011.03.008

[20] Singh J, Singh H. Efficient Tasks scheduling for het-
erogeneous multiprocessor using genetic algorithm
with node duplication. Indian J Comput Sci Eng.
2011;2:402–410.

[21] Zhang L, Chen Y, Sun R, et al. A task scheduling
algorithm based on PSO for grid computing. Int J Com-
put Intell Res. 2008;4:37–43.

[22] Pooranian Z, Shojafar M, Tavoli R, et al. Hybrid meta-
heuristic algorithm for job scheduling on computa-
tional grids. Informatica. 2013;37:157–164.

[23] Alkayal ES, Jennings NR, Abulkhair MF. Survey of task
scheduling in cloud computing based on particle swarm
optimization. In Proceedings of the 2017 International
Conference on Electrical and Computing Technologies
and Applications (ICECTA), Ras Al Khaimah, United
Arab Emirates, 21–23 November; 2017. p. 1–6.

[24] Torabi S, Safi-Esfahani F. A dynamic task schedul-
ing framework based on chicken swarm and improved
raven roosting optimization methods in cloud comput-
ing. J. Supercomput. 2018;74:2581–2626. doi:10.1007/
s11227-018-2291-z

[25] Valarmathi R, Sheela T. Ranging and tuning based
particle swarm optimization with bat algorithm for
task scheduling in cloud computing. Clust Comput.
2019;22:11975–11988. doi:10.1007/s10586-017-1534-8

[26] Beegom AA, Rajasree MS. Integer-PSO: A discrete PSO
algorithm for task scheduling in cloud computing sys-
tems. Evol Intell 2019;12:227–239. doi:10.1007/s12065-
019-00216-7

[27] Gupta A, Bhadauria HS, Singh A. Load balancing based
hyper heuristic algorithm for cloud task scheduling. J
Ambient Intell Humaniz Comput. 2021;12:5845–5852.
doi:10.1007/s12652-020-02127-3

[28] [28] Ramezani F, Lu J, Hussain FK. Task-based, sys-
tem, load, balancing, in, cloud, computing, using,
particle, swarm optimization. Int J Parallel Program.
2014;42:739–754. doi:10.1007/s10766-013-0275-4

https://doi.org/10.1016/j.future.2011.03.008
https://doi.org/10.1007/s11227-018-2291-z
https://doi.org/10.1007/s10586-017-1534-8
https://doi.org/10.1007/s12065-019-00216-7
https://doi.org/10.1007/s12652-020-02127-3
https://doi.org/10.1007/s10766-013-0275-4

	1. Introduction
	2. Review of literature
	3. Proposed task scheduling algorithm
	3.1. IAS Algorithm
	3.1.1. Individual training session
	3.1.2. Collective training session
	3.1.3. New student challenge

	3.2. Proposed task scheduling

	4. Performance analysis
	5. Conclusion
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

