
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Botnet detection in the internet-of-things
networks using convolutional neural network with
pelican optimization algorithm

Swapna Thota & D. Menaka

To cite this article: Swapna Thota & D. Menaka (2024) Botnet detection in the internet-of-
things networks using convolutional neural network with pelican optimization algorithm,
Automatika, 65:1, 250-260, DOI: 10.1080/00051144.2023.2288486

To link to this article: https://doi.org/10.1080/00051144.2023.2288486

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 27 Dec 2023.

Submit your article to this journal

Article views: 876

View related articles

View Crossmark data

Citing articles: 2 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2023.2288486
https://doi.org/10.1080/00051144.2023.2288486
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2288486?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2023.2288486?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2288486&domain=pdf&date_stamp=27%20Dec%202023
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2288486&domain=pdf&date_stamp=27%20Dec%202023
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2288486?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2023.2288486?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

AUTOMATIKA
2023, VOL. 65, NO. 1, 250–260
https://doi.org/10.1080/00051144.2023.2288486

Botnet detection in the internet-of-things networks using convolutional neural
network with pelican optimization algorithm

Swapna Thota and D. Menaka

Department of Electronics and Communication Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, India

ABSTRACT
Hackers nowadays employ botnets to undertake cyberattacks towards the Internet of Things
(IoT) by illegally exploiting the scattered network’s resources of computing devices. Several
Machine Learning (ML) and Deep Learning (DL) methods for detecting botnet (BN) assaults in
IoT networks have recently been proposed. However, in the training set, severely imbalanced
network traffic data degrades the classification performances of state-of-the-art ML as well as
DL algorithm, particularly in classes with very few samples. The Convolutional Neural Network
-Pelican Optimization System (CNN-POA) is a DL relied botnet attack detection algorithm devel-
oped in this research. Meanwhile, typical evaluation markers are used to compare the overall
performance of the proposed CNN-POA and additional frequently employed algorithms. The
simulation results suggest that the CNN-POA method is effective and dependable for detect-
ing IoT network intrusion attacks. Experiments revealed that the suggested CNN-POA approach
outperformed a number of current metaheuristic algorithms, with an accuracy of 99.5%.

ARTICLE HISTORY
Received 1 September 2023
Accepted 14 November 2023

KEYWORDS
Botnet detection; internet of
things; optimization;
convolutional neural
networks

1. Introduction

As the volume of IoT equipments deployed expands
globally and the frequency of such attacks have indeed
achieved new extremes, prompt detection of Dis-
tributed Denial-of-Service (DDoS) attacks has become
crucial in mitigating security threats. Instant identifica-
tion improves network security by quickeningwarnings
and removing corrupted IoT devices mostly from the
network, stopping the botnet’s spread. Inferred from 9
IoT devices affected by BNs, a Local-Global Best Bat
Algorithm for Neural Networks (LGBA-NN) is sug-
gested to choose either feature subsets as well as hyper-
parameters for rapid identification of BN attacks.

From balanced network traffic data, the Deep Recur-
rent Neural Network (DRNN) develops hierarchical
feature description to execute discriminative classifi-
cation with 99.50% precision and 99.75% recall [1].
Because swarm intelligent algorithms have reduced
overall price, highly nonlinear optimization, robust-
ness, easy installation, flexibility, and could even detect
the Neris botnet accurately and quickly, through use
of two swarm algorithms known as Elephant as well
as Dolphin Herding algorithms for optimization for
scalable and accurate detection of attacks on the Neris
botnet is proposed [2].

Using IoT-specific network characteristics to ackno-
wledge that the feature selection might yield excellent
accuracy in the detection of DDoS in the IoT network
traffic [3]. Home gateway routers would effectively

detect DDoS attack sources on local IoT units employ-
ing minimal-cost machine learning methodologies. A
software-defined technology-enabled artificial intelli-
gence (AI) relied intrusion detection system (IDS) with
two stages that identify attacks intelligently utilizing the
Bat algorithm along with swarm division to identify
traditional characteristics. Then, used Random Forest
to classify by adjusting sample weights utilizing the
weighted voting procedures, and the findings demon-
strate that the improved intelligent algorithms identify
more significant characteristics and perform signifi-
cantly in flow classification [4].

In comparison to ML strategies for IoT privacy, a
random neural network (RaNN) dependent prediction
framework had been postulated with an accuracy of
99.20% with a 34.51 msec prediction time [5]. Cyber-
attackers have indeed realized out how to utilize Artifi-
cial Intelligence (AI) and have already begun to employ
adversarial AI to carry out cyber-attacks. This research
consolidates information on IoT, AI and attacks with or
against AI, as well as examines the correlation among
these three discussions, with the goal of extensively
introducing and summarizing related literature within
those areas [6].

The feature extraction and the selection approaches
for the IDS employing conventional neural networks
(CNN) method using the newly created SI algorithm,
Aquila optimizer (AQU), exhibit great performance
employing numerous evaluation indicators [7]. The

CONTACT Swapna Thota swapnathota.rs@rediffmail.com Research Scholar, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu
629180, India

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2288486&domain=pdf&date_stamp=2023-12-26
mailto:swapnathota.rs@rediffmail.com
http://creativecommons.org/licenses/by-nc/4.0/

AUTOMATIKA 251

outcomes of the investigation exhibited that the sug-
gested scheme achieved effective performance for
detecting the botnet by incorporating the CNN with
a long short-term memory (CNN-LSTM) methodol-
ogy to detect frequent and severe IoT on four types of
security cameras [8].

The effectiveness of a Recurrent Neural Network
(RNN) to accurately sort network traffic patterns of
extremely imbalanced network traffic data, as well as
the several layers of RNN stacked to grasp the repre-
sentations in a hierarchies, evidenced that RNN model
accomplished better generalization ability [9].

When the ML and DL methodologies are deployed
in real-world IoT networks, a crucial portion of net-
work traffic in theminority groups is incorrectly catego-
rized, which can result in an invasion of confidentiality,
loss of personal data, revenue loss when services and
applications are inaccessible, and even death in essential
IoT systems.

In this research, an effectiveDLdependent BN attack
detection algorithm that increases detection rates. The
following are the research’s significant contributions:

1. For extremely unbalanced network traffic data, an
effective DL-based botnet attack detection system
known as CNN-POA is suggested, which creates
additional minority samples to establish class bal-
ance.

2. The Bot-IoT dataset is utilized to train, validate
and test CNN-POA models to categorize samples
of network traffic into the normal class as well as
10 botnet attack classes.

3. The influence of class imbalance on the CNN-POA
models’ precision, accuracy, recall andF1 scorewas
explored.

4. Experiments revealed that the suggested CNN-
POA approach outperformed a number of cur-
rent metaheuristic algorithms, with an accuracy of
99.5%.

The research is organized as follows: Section 2
explains the relevant works; Section 3 provided a full
explanation of the CNN-POA algorithm as well as the
model generation process; Section 4 addressed the out-
comes; and Section 5 highlighted the key conclusions of
the research.

2. Related works

In addition, for given severely unbalanced network
traffic data, the Deep RNN model delivers poor clas-
sification outcomes and Synthetic Minority Oversam-
pling Technique (SMOTE) and DRNN for develop-
ing a memory-saving DL algorithm, named LS-DRNN
method reduced the dimensionality of network traf-
fic features, and data storage memory requirements
were lowered. [10]. Relied on the chosen optimal

hyperparameters, such as the rectified linear unit
(ReLU) activation function, 20 epochs, and Adam
optimizer, a deep Bidirectional gated recurrent unit
(BGRU) multi-class classifier is established [11], and
the outcomes display that the suggested methodology
could contribute to the establishment of an effective
network IDS for IoT-enabled home automation services
with a low false alarm rate (FAR).

Different ML methods were utilized to construct a
model where data were trained using the IoT dataset,
including Naive Bayes model, K-Nearest Neighbour
(KNN). A reference point was used to choose the opti-
mal method relying on accuracy and the area under the
receiver operating characteristics curve (ROC AUC)
score [12,13]. At the access router level, an IoT bot-
net detection and also isolation strategy is described
that enables IoT devices highly attack resilient and
helps to avoid IoT device compromise without the
requirement for knowledge of technological adminis-
tration in depth, making it practical for end users and
clients [14].

The Particle Deep Framework (PDF) is an innova-
tive network forensics structure that characterizes the
investigation stages for recognizing attack characteris-
tics in IoT networks. It has three innovative features:
(1) retrieving data flows in network and validating their
integrity (2) utilizing a Particle Swarm Optimization
(PSO) algorithm to adjust deep DL variables; and (3)
constructing a Deep NN relying on the PDF [15].

Using the Programming language Python and pack-
ages including Tensorflow, scikit-learn, an algorithm
utilizing a DL method [16] revealed that a DL model
could boost accuracy, enabling for the most success-
ful mitigation of attacks on an IoT network. The con-
cern of scalability is acknowledged, and a fog anomaly
detection framework is suggested herein utilizing a vec-
tor convolutional deep learning (VCDL) framework
that could efficiently manage scalable data compared to
conventional centralized DL approaches in aspects of
accuracy, precision and recall [17].

The hybrid CNN-LSTM algorithm [18], which
might employ a real IoT dataset retrieved from
an authentic system, which include benign as well
as malicious patterns, was suggested to detect bot-
net attacks. Furthermore, software-defined network-
ing (SDN), which is gradually displacing traditional
networking, particularly in the IoT, recommends a
detection of botnet technique relied on DL techniques,
which was assessed on an innovative, SDN dataset and
demonstrated higher accuracy in classification [19].

IoTBoT-IDS [20] is a quantitative learning-depen-
dent structure for botnet detection that safeguards IoT-
dependent smart networks from botnet attacks as well
as aims to capture the normal behaviour of IoT net-
works by incorporating statistical learning relied tech-
niques, such as the Correntropymodel with the average
accuracy of detection 99.2%, which is around 2–5%

252 S. THOTA AND D. MENAKA

Figure 1. CNN-POA for detecting botnet attacks in IoT networks

higher compared to other IDS. CNN is utilized for data
processing and even for feature optimization, while
the Bidirectional LSTM (BiLSTM) were utilized for
classification in the BiLSTM-CNN model. Among the
three separate models, the RNN achieves the highest
accuracy [21].

An innovative secure framework as well as attack
detection methodology that employs a CNN to retrieve
the precise feature description of data and further-
more classifies with 96% accuracy, employs aDL frame-
work, which might then easily detect malicious gadgets
[22]. A detection system predicated on anomalies that
employs unsupervised DL techniques to identify IoT
BN activities to measure its threat detection poten-
tial, as well as its FPR reduction and influence on the
detection system [23]. Amethod for detecting potential
botnets by examining the behaviours of network traf-
fic from network packets that samples the packets over
time and extracts the behavioural features [24–27].

By utilizing the performance of a Grey Wolf Opti-
mization algorithm (GWO) and Genetic algorithm
(GA) to optimize the hyperparameters, the recom-
mended approach’s principal feature is to identify Inter-
net of Things botnet attacks generated by infected IoT
endpoints [28,29].

3. Proposed POA-CNN algorithm

This section incorporates information on the net-
work traffic data, data pre-processing, CNN and POA
(Figure 1). Figure 1 incorporates information on the
network traffic data, data pre-processing, CNN and
POA. CNN’s typical POA with a twist. When com-
pared to traditional approaches, this method’s unique
pattern recognition characteristics include the ability

to minimize data dimension, extract features sequen-
tially, and categorize within a single network structure.
However, excessively uneven network traffic data in the
training set degrades the classification skills of cutting-
edgeML andDL algorithms, particularly in classes with
tiny sample counts.

3.1. Dataset

The Bot-IoT dataset includes 43 network traffic vari-
ables as well as three label categories for 11-class
classification. Only 37 of such 43 features were revealed
to be beneficial in detecting botnet attacks in IoT net-
works. An 11-class categorization scenario is explored
to detect botnet attacks in a detailed manner. DH,
DDH, DE, Norm and KE are considered minority
classes in this research since they had fewer samples
than the majority classes DDU, DDT, DT, SS, OSF and
DU.

The Industry IoT (IIoT) smart-home equipment
used to capture IIoT traffic samples was built into the
Bot-IoT dataset in the Cyber Range Lab of UNSW
Canberra Cyber. Smart IIoT goods encompass the ther-
mostats, lighting that is turned on by motion, garages
door openers, refrigerator including freezers and mete-
orological tracking technologies. There are two versions
of the data accessible: the entire version, which has
about 72million entries, and the 10%variant, which has
over 3.6 million recordings.

3.2. Data preprocessing

Feature normalization, feature reshaping, label encod-
ing and data splitting are all part of the data preprocess-
ing. First, using the min–max normalization technique

AUTOMATIKA 253

described in Equation (1), each one of the traffic fea-
ture of network readings was scaled towards a scale of
0 and 1:

xnorm = x − xmin

xmax − xmin
(1)

where x represents a feature vector of network traf-
fic while xmin and xmax are the minimum as well as
maximum x values. A unit time step was represented
by an additional dimension in the set of features. This
varies the feature set dimension from X ∈ RP × q to
X ∈ RP × q× 1, where p symbolizes the overall samples
and q indicates the overall features. Integers 0–10 were
employed to symbolize the numerical values of the 11
classes. To train and assess, the entire data were ran-
domly partitioned into validation (20%), training (60%)
and test sets (20%).

3.3. One-dimensional CNNmodel

CNN is a multi-layer NN, with each layer consisting of
many two-dimensional planes. The elements’ weighted
average in the preceding layer obtains and activates
each neurone’s output.

(1) The input layer becomes the first layer.

There are five basic attributes of network traffic data,
as the characteristic attribute is to acquire 5 time peri-
ods with 23 statistical characteristic data. Each sample’s
input dimension is assigned to the feature plane of
23× 5 in this scenario. The outcome of the jth neurone
in the ith feature plane in C1 layer specified by C1outij is
given as follows:

C1outij = F
(∑fl×5

i=1
Win

t × f _rawin
t

)
(2)

whereWin
t denotes the ith position weight of the convo-

lution kernel, fl indicates the filter’s length and f _rawin
t

signifies the characteristic plane position within input
layer that corresponds towards the convolution ker-
nel weight. Three forms of nonlinear activation func-
tions tanh sigmoid and relu were highlighted by
Fi(.)(i = 1, 2, 3) are shown as follows:

F1(x) = sigmoid(x) = 1/(1 + exp−x) (3)

F2(x) = tanh(x) = (expx − exp−x)/(expx + exp−x)

(4)

F2(x) = relu(x) = max(0, x) (5)

The convolution layer extracts the original data’s
deeper and more sophisticated features. Furthermore,
before the layer is joined to the next layer, the fea-
ture plane is compressed. Over fitting happens when
there is strong precision occurring on training set but
inadequate precision in the validation set during the
training network process. 50% of the feature detectors

stop operating while training is performed each time,
which can increase the network’s generalization ability,
also referred as dropout. As a result, certain neurones
don’t really work with a particular probability, while
each bunch of samples is learned, the neurone nodes
functioning at every training cycle are distinct. Con-
sequently, not all neurones could boost the network’s
generalization ability.

(2) The first full connection layer seems to be the
second layer (F2 layer).

The connective layer controls the amount of neurones
and their activation mode. In each batch training, the
neurone present within full connection layer is inter-
connected to the neurones within the preceding layer.
The output of themth neurone full1outm in F2 layer is the
following:

full1outm = F
(∑nkeep

n=1
Wkeep

mn × keepn + bf 2m
)

(6)

where nkeep represents the volume of neurones follow-
ing flattening and dropout, Wkeep

mn resembles the con-
nection weight among nth neurone of the surviving
working neurone following the preceding layer’s pro-
cessing and the mth neurone of the F2 layer, keepn sig-
nifies the nth neurone of the left-over working neuron
and bf 2m specifies the value of the offset of bf 2m neurone
of the F2 layer.

(3) The second full connection layer seems to be the
third layer (F3 layer). Initially, the quantity of F3
neurones as well as activationmodewere specified.
This layer’s neurones interact in the similar man-
ner as the preceding layer that the F2 layer does.
The full connection layer’s third and fourth layers
are developed to learn the non-linear arrangement
of features effectively, as well as the advanced fea-
tures retrieved by the convolution layer utilizing
weight connection.

In order to improve a network’s stability, a batch nor-
malization layer, also known as the batch norm, nor-
malizes the information received from a convolutional
layer, or FC layer. It usually resides among the convo-
lutional layer and the activation layer. Since it features
a minor regularization, the main benefits of this layer
are an increase in the network’s training speed and a
decrease in overfitting.

The output layer constitutes the fourth layer. The
amount of neurones within the layer is controlled by
amount of categorization of network traffic data classi-
fication tasks, and the outcome of F3 in the last layer is
transmitted to it. Softmax formulation is being utilized
to classify many forms of network attacks, i.e. the final
layer reports the probability of every category of traffic

254 S. THOTA AND D. MENAKA

data using the softmax formula:

softmax(y)i = expyi/
∑kind

i=1
expyi (7)

here yi implies the ith neurone’s output value within
the output layer, kind indicates the several forms of
network attacks.

The prediction outcomes during training have
the highest likelihood. The distance among the real
probability distribution p(x) as well as the estimated
probability distribution q(x) is measured using the
cross-entropy loss function H(p,q).

H(p, q) = −
∑

x
p(x)logq(x) (8)

Finally, the optimizer chosen throughout the model
training cycle is considered.

The SGD offers the highest testing accuracy, how-
ever Adam causes a generalization gap in the mean-
while. As a consequence, although Adam accelerates
the convergence speed beyond SGD by combining the
first-order momentum along with the second-order
momentum, its eventual convergence outcome is still
inferior to SGD. SGD is subsequently chosen to opti-
mize the model’s training procedure for greater detec-
tion accuracy. The first-order momentum, set at 0.9, is
introduced in order to combat the SGD’s frequent oscil-
lation in the neighbourhood’s optimal gully, whereas
the learning rate was constantly attenuated to enhance
the training effect. As a consequence, the optimizer
employs the SGD approach predicated on the eval-
uation presented above, whereby modifies the con-
nection weight as well as bias value of neurones by
the cross-entropy loss function value at a predeter-
mined learning rate. It is possible to enhance the over-
all classification’s accuracy through perpetual network
training.

3.4. Proposed pelican optimization algorithm
(POA)

3.4.1. Inspiration and behaviour of pelican during
hunting
The pelican is a huge birdwith a longmouth and a capa-
cious bag in its throat for catching and swallowing prey.
This bird likes to be in groupings of several hundred
pelicans and survives in them. Pelicans have the follow-
ing appearance: they weigh 2.75 to 15 kg and 1.07 to
1.82m tall,. Pelicans consume primarily fish, with a few
frogs, turtles and crustaceans sprinkled in for excellent
measure; if those were hungry, they’ll perhaps consume
shrimp. Pelicans frequently hunt in groups. Pelicans
plunge to their prey from a height of 10–20metres after
detecting its location. Of course, some species hunt
their prey at lower elevations as well. Then it extend
their wings on the water’s surface to pressurize the fish
into shallow water, where it can easily catch their prey.

When a pelican catches a fish, a considerable volume of
water that penetrates its beak, causing it to push forward
prior consuming the fish to remove the extra water.
Pelicans’ hunting behaviour and approach is a sophisti-
cated strategy that have turned these birds into excellent
predators.

To update candidate solutions, the proposed POA
replicates pelican behaviour and strategy when attack-
ing and maybe even hunting prey. In two phases, this
hunting method is simulated:

(i) Moving towards prey (exploration stage).
(ii) Winging on the water surface (exploitation stage).

3.4.2. Phase 1: Moving towards prey
In the initial stage, the pelicans locate the prey and
migrate to that position. The exploration stage of the
suggested POA in uncovering diverse regions of search
space is enhanced by modelling this pelican’s method.
The crucial aspect of POA is that the prey’s location
in the search space is produced at random. POA’s
exploration ability in specific search of resolving a
dilemma space is increased as a result of this. The
foregoing notions, as well as the pelican’s strategy for
approaching the prey, are mathematically represented
in Equation (9).

xP1i,j =
{
xi,j + rand.(pj − I.xi,j), Fp < Fi;
xi,j + rand.(xi,j − pj), else, (9)

where xP1i,j represents the i
th pelican’s new status in the

jth dimension, I denotes random which equals to one
or either two, pj indicates the position of prey in the
jth dimension, and Fp symbolizes its objective function.
The variable I specifies a number whichmight be either
1 or 2 at random. This parameter is arbitrarily chosen
for each member as well as iteration.When this param-
eter’s value is equivalent to two, a member experiences
greater displacement, which could result to newer loca-
tions. As a result, parameter I has an impact on the
POA’s ability to precisely examine the search space.

The pelican’s new position is acknowledged in
the proposed POA if the objective function’s value
improves in that location. The algorithm is stopped
frommigrating towards non-optimal places in this sort
of updating, known as effective updating. Equation is
used to model this process (10).

Xi =
{
xP1i , FP1i < Fi;
Xi, else

(10)

where xP1i is the ith pelican’s new status and FP1i is
premised on stage 1’s objective function value.

3.4.3. Phase 2: Winging on the water surface
After reaching thewater’s surface, pelicans expand their
wings to lift the fish higher, then gather the catch

AUTOMATIKA 255

in their pouch in throat. Pelicans catch more addi-
tional fish in the attacked region as a result of this
tactic. The proposed POA converges to better places in
the hunting region after modelling pelican behaviour.
This technique improves POA’s local search as well as
exploitation capabilities. To converge to a better result,
the algorithm should investigate the points near the
pelican’s location mathematically. Equation mathemat-
ically simulates the behaviour of pelicans throughout
hunting (11).

xP2i,j = xi,j + R.
(
1 − t

T

)
.(2.rand − 1).xi,j (11)

where xP2i,j symbolizes ith pelican’s new status in the jth
dimension, R implies constant, which was equivalent to
0.2, R.(1 − t/T) implies the neighbourhood radius of
xi,j, The iteration counter seems to be t, and the max-
imal number of iterations was T. The coefficient “R.(1
− t/T)” signifies the radius of the population members’
neighbourhood to explore locally around every mem-
ber to discover a best solution. This coefficient has an
effect on the exploitation of the POA in order to become
nearer to the best global solution. The value of this coef-
ficient is significant in the first iterations, so a broader
area over each member is investigated. The “R•(1 t/T)”
coefficient falls as the method replicates, leading in
lesser radii of every member’s neighbourhood. This
permits us for scanning the region over each popula-
tion member in smaller, more precise steps, permitting
the POA to converging to solutions that are nearer to
(and even precisely) the global (and also accurate) ideal
depending on the utilization notion.

Effective updating was indeed employed at this stage
to approve or discard the updated pelican position,
which would be modelled in Equation (12).

Xi =
{
xP2i , FP2i < Fi;
Xi, else

(12)

where xP2i is the ith pelican’s new status and FP2i
indicates its objective function value dependent on
stage 2.

After most members had been updated dependent
through first as well as second phases, the best can-
didate solution would indeed be updated relying on
the new population status and the values of the goal
function. The algorithm moves on to the subsequent
iteration, and the recommended POA based on Equa-
tions (9)–(12) is replayed until the entire execution is
completed. Finally, as an optimal solution for the issue
and the best candidate solution produced throughout
the iterations of the algorithm is displayed. Algorithm 1
demonstrates its pseudo-code.

4. Results and discussion

The experiment was performed using an Intel Core
i7-6700HQ processor (2.59GHz along with 64 GB).

Algorithm 1. POA Pseudo-code

Start POA.
1. Input the optimization information of the problem.
2. Define the amount of iterations (T) and the size of the POA

population (N).
3. Pelican’s position were initialized and calculate the objective

function.
4. For t = 1:T
5. Prey position is generated at random.
6. For i = 1:N
7. Phase 1: Moving towards prey.
8. For j = 1:m
9. Calculate the jth dimension’s new status with Equation (9).
10. End.
11. The ith population member is updated using Equation (10).
12. Phase 2: Winging on the water surface.
13. For j = 1:m.
14. Evaluate new status of the jth dimension using Equation (11).
15. End.
16. The ith member of population were updated (7).
17. End.
18. best candidate solution were updated.
19.End.
20. Output optimal solution.
End POA.

MATLABR2021b is the development framework of the
Windows 10 operating system.

4.1. Performancemetrics

The classification performance of theCNN-POAmodel
with the NN model and the other ML/DL methodolo-
gies relied on training and validation loss, detection
rate, accuracy, recall, precision as well as F1 score were
represented by Equations (13)–(16):

Accuracy: This metric is used to calculate the rate at
which data are classified correctly.

Accuracy = TP + TN
TP + TN + FP + FN

(13)

Precision: This metric describes the classifier’s abil-
ity to predict normal data without conditions. It is
defined as the number of TPs divided by the number
of TPs, plus the number of FPs as follows.

Precision = TP
TP + FP

× 100% (14)

Recall: Recall is the ratio of the number of records
correctly classified to the number of all corrected events
and can be computed as follows

Recall = TP
TP + FN

× 100% (15)

F1-Score: This is defined as the harmonic mean of
recall and precision, which can be computed as follows.

F1 = 2 × TP
(2 × TP) + FP + FN

× 100% (16)

where TP symbolizes the total count of BN attack sam-
ples accurately classified, FP exemplifies the number
of normal samples misclassified, TN denotes the total

256 S. THOTA AND D. MENAKA

Figure 2. Training losses of the CNN-POA and other models.

Figure 3. Validation losses of the CNN-POA and other models.

Figure 4. Comparison of precision in different models.

AUTOMATIKA 257

Figure 5. Recall comparison of different models.

Figure 6. F1 score comparison of different models.

count of normal samples correctly categorized as nor-
mal traffic, and FNdepicts the volume of attack samples
misclassified to be normal traffic.

This subsection, analyse the cross-entropy losses of
the CNN-POA, CNN-LSTM, RaNN and LGBA-CNN
models during training and validation to evaluate their
robustness/reliability against underfitting and overfit-
ting, respectively.

Figure 2 shows the training losses of CNN-POA
and compared with other models. As the number of
epochs continued to increase between 1 and 10, the
training losses decreased in all circumstances. When
POA were utilized, however, the CNNmodel exhibited

the minimal training losses. The CNN-LSTM model
was decreased from 0.0804 to 0.0023 at the comple-
tion of the 10-epoch training, whereas the CNN-POA
model was lowered from 0.0387 to 0.0008. The CNN-
POA model had a 66.34% lower training loss than the
conventional models at the end of the research. This
implies that the SMOTE-DRNNmodel is robust against
overfitting compared to the DRNNmodel.

Figure 3 depicts the validation losses of CNN-
POA and other methodologies. However, proposed
model have lower validation losses when POA was
applied. The outcomes of validation losses generated
by CNN-POA were very close towards CNN-LSTM.

258 S. THOTA AND D. MENAKA

Figure 7. Detection rate comparison of different algorithms.

Figure 8. ROC comparison of different algorithms.

At the end of the 10-epoch validation, proposed
CNN-POA achieved a validation loss of 0.0321 while
that of CNN-LSTM was 0.0325. On the other hand,
LGBA-CNN,RaNNproduced relatively high validation
losses respectively. As the overall epochs extended
from 1 to 10, the validation losses dropped in all
scenarios.

Precision as well as recall of different models are
highlighted in Figures 4 and 5. By decreasing the feature
space, the suggested model CNN-POA outperforms its
predecessors in terms of precision and recall. Further-
more, the results reveal that the suggested model is
adaptive and consistent in a variety of IoT contexts.

Feature selection strategies, which might reduce the
number of features for training phase, were overlooked
by preceding research. Therefore, in this case the train-
ing time is reduced and employs minimal processing
power.

F1-score for various models is highlighted in
Figure 6. From the outcomes, it could be examined that
the suggested CNN-POA ensures consistent F1-score
compared to three relevant models. As a result, the sug-
gested method could detect malicious patterns with-
out relying on the environment. The recommended
method’s accuracy is contrasted with other approaches
in Table 1.

AUTOMATIKA 259

Table 1. Comparison of accuracy with other methodologies.

References Methodology Accuracy (%)

Alharbi et al.[30] LGBA-NN 85.2
Letteri et al.[19] SDN 97
Ashraf et al.[20] BMM 99.2
Hezam et al.[21] BiLSTM-CNN 89.77
Proposed methodology CNN-POA 99.5

The minimum loss directly indicates the CNN-POA
approach maximizes the overall attack detection accu-
racy and detection rate shown in Figure 7. The pro-
posed CNN-POA approach recognizes the network
attacks with a maximum detection rate (98.99%).

Figure 8 depicts the suggested CNN-POA model’s
ROC AUC curve for the dataset. It demonstrates that
the CNN-POA model efficiently differentiates botnet
traffic from typical traffic having an AUC of approx-
imately 99.5%. The botnet detection system should
utilize the CNN-POA algorithm alternatively.

5. Conclusion

The nature of IoT applications, which include mil-
lions of sensors, results in tremendous amounts of
data being generated. Furthermore, a crucial concern
arises from these applications in terms of ensuring the
confidentiality as well as protection of these data. The
research provides the Convolutional Neural Network-
Pelican Optimization System (CNN-POA), a DL-based
botnet attack detection algorithm. For extremely unbal-
anced network traffic data, an effectiveDL-based botnet
attack detection system CNN-POA is suggested, which
creates additional minority samples to establish class
balance. Adopting POA, which has a strong ability to
locate viable regions that provide the optimal solution
and improved CNN’s performance. The influence of
class imbalance on the CNN-POA models’ precision,
accuracy, recall and F1 score was explored. Experi-
ments revealed that the suggested CNN-POA approach
outperformed a number of current metaheuristic algo-
rithms, with an accuracy of 99.5%.

Futureworkmight involve techniques to simplify the
algorithm and minimize its computational complexity.
It is feasible to combine and analyse the existing net-
work attack data sets as well as determine the most
useful aspects in the context of the heterogeneous issues
associated with various platforms.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] Popoola SI, Adebisi B, Ande R, et al. smote-DRNN:
a deep learning algorithm for botnet detection in the
internet-of-things networks. Sensors. 2021;21(9):2985.
doi:10.3390/s21092985

[2] Maisirreem a Kamal, Ibrahim Laheebm, Al-Alusi
Abdulsattara. Dolphin and elephant herding optimiza-
tion swarm intelligence algorithms used to detect Neris
botnet. J Eng Sci Technol. 2020;15(5):2906–2923.

[3] Doshi R, Apthorpe N, Feamster N. Machine learn-
ing DDOS detection for consumer internet of things
devices. 2018 IEEE Security and Privacy Workshops
(SPW). 2018:29–35. IEEE.

[4] Li J, Zhao Z, Li R, et al. Ai-based two-stage intru-
sion detection for software defined IoT networks. IEEE
Internet Things J. 2018;6(2):2093–2102. doi:10.1109/JI
OT.2018.2883344

[5] Latif S, Zou Z, Idrees Z, et al. A novel attack detec-
tion scheme for the industrial internet of things using
a lightweight random neural network. IEEE Access.
2020;8:89337–89350. doi:10.1109/ACCESS.2020.299
4079

[6] Kuzlu M, Fair C, Guler O. Role of artificial intelligence
in the Internet of Things (IoT) cybersecurity. Discover
Internet Things. 2021;1(1):1–14. doi:10.1007/s43926-
020-00001-4

[7] Fatani A, Dahou A, Al-Qaness MA, et al. Advanced
feature extraction and selection approach using deep
learning and Aquila optimizer for IoT intrusion detec-
tion system. Sensors. 2021;22(1):140. doi:10.3390/s2201
0140

[8] Alzahrani MY, Bamhdi AM. Hybrid deep-learning
model to detect botnet attacks over internet of things
environments. Soft Comput. 2022: 1–15.

[9] Popoola SI, Adebisi B, Hammoudeh M, et al. Stacked
recurrent neural network for botnet detection in
smart homes. Comput Electr Eng. 2021;92:107039.
doi:10.1016/j.compeleceng.2021.107039

[10] Popoola SI, Adebisi B, Ande R, et al. Memory-efficient
deep learning for botnet attack detection in IoT net-
works. Electronics. 2021;10(9):1104. doi:10.3390/electr
onics10091104

[11] Popoola SI, Ande R, Fatai KB, et al. Deep bidirec-
tional gated recurrent unit for botnet detection in smart
homes. In: Machine Learning and Data Mining for
Emerging Trend in Cyber Dynamics. Cham: Springer;
2021. p. 29–55.

[12] Alshamkhany M, Alshamkhany W, Mansour M, et al.
Botnet attack detection using machine learning). 2020
14th International Conference on Innovations in
Information Technology (IIT). 2020;203–208.
IEEE.

[13] Pokhrel S, Abbas R, Aryal B. “IoT Security: Bot-
net detection in IoT using Machine learning.” arXiv
preprint arXiv:2104.02231. 2021.

[14] Dietz C, Castro RL, Steinberger J, et al. IoT-botnet
detection and isolation by access routers. 2018 9th Inter-
national Conference on the Network of the Future
(NOF). 2018;88–95, IEEE.

[15] Koroniotis N, Moustafa N, Sitnikova E. A new net-
work forensic framework based on deep learning for
Internet of Things networks: a particle deep frame-
work. Future Gener Comput Syst. 2020;110:91–106.
doi:10.1016/j.future.2020.03.042

[16] Susilo B, Sari RF. Intrusion detection in IoT net-
works using deep learning algorithm. Information.
2020;11(5):279. doi:10.3390/info11050279

[17] Bhuvaneswari Amma NG, Selvakumar S. Anomaly
detection framework for Internet of Things traffic
using vector convolutional deep learning approach
in fog environment. Future Gener Comput Syst.
2020;113:255–265. doi:10.1016/j.future.2020.07.020

https://doi.org/10.3390/s21092985
https://doi.org/10.1109/JIOT.2018.2883344
https://doi.org/10.1109/ACCESS.2020.2994079
https://doi.org/10.1007/s43926-020-00001-4
https://doi.org/10.3390/s22010140
https://doi.org/10.1016/j.compeleceng.2021.107039
https://doi.org/10.3390/electronics10091104
https://doi.org/10.1016/j.future.2020.03.042
https://doi.org/10.3390/info11050279
https://doi.org/10.1016/j.future.2020.07.020

260 S. THOTA AND D. MENAKA

[18] Alkahtani H, Aldhyani TH. Botnet attack detection
by using CNN-LSTM model for Internet of Things
applications. Secur Commun Networks. 2021;2021.
doi:10.1155/2021/3806459

[19] Letteri I, Della Penna G, De Gasperis G. Security in the
internet of things: botnet detection in software-defined
networks by deep learning techniques. Int J High
Perform Comput Networking. 2019;15(3–4):170–182.
doi:10.1504/IJHPCN.2019.106095

[20] Ashraf J, Keshk M, Moustafa N, et al. IoTBoT-IDS:
a novel statistical learning-enabled botnet detection
framework for protecting networks of smart cities. Sus-
tain Cities Soc. 2021;72:103041. doi:10.1016/j.scs.2021.
103041

[21] Hezam AA, Mostafa SA, Baharum Z, et al. Combin-
ing deep learning models for enhancing the detec-
tion of botnet attacks in multiple sensors Internet of
Things networks. JOIV: Int J Inform Visualization.
2021;5(4):380–387. doi:10.30630/joiv.5.4.733

[22] Sahu AK, Sharma S, TanveerM, et al. Internet of Things
attack detection using hybrid Deep Learning Model.
Comput Commun. 2021;176:146–154. doi:10.1016/j.co
mcom.2021.05.024

[23] Apostol I, Preda M, Nila C, et al. IoT Botnet anomaly
detection using unsupervised deep learning. Electron-
ics. 2021;10(16):1876. doi:10.3390/electronics10161876

[24] Shi W-C, Sun H-M. DeepBot: a time-based botnet
detection with deep learning. Soft Comput. 2020;24
(21):16605–16616. doi:10.1007/s00500-020-04963-z

[25] Saif S, Yasmin N, Biswas S. Feature engineering based
performance analysis of ML and DL algorithms for
Botnet attack detection in IoMT. Int J Syst Assur Eng
Manag. 2023;14(Suppl 1):512–522.

[26] Fraihat S, Makhadmeh S, Awad M, et al. Intrusion
detection system for large-scale IoT NetFlow networks
usingmachine learningwithmodifiedArithmeticOpti-
mization Algorithm. Internet Things. 2023: 100819.
doi:10.1016/j.iot.2023.100819

[27] Hosseini F, Gharehchopogh FS, Masdari M.
MOAEOSCA: an enhancedmulti-objective hybrid arti-
ficial ecosystem-based optimization with sine cosine
algorithm for feature selection in botnet detection in
IoT. Multimed Tools Appl. 2023;82(9):13369–13399.
doi:10.1007/s11042-022-13836-6

[28] Al Shorman A, Faris H, Aljarah I. Unsupervised intelli-
gent system based on one class support vector machine
and Grey Wolf optimization for IoT botnet detection.
J Ambient Intell HumanizComput. 2020;11:2809–2825.
doi:10.1007/s12652-019-01387-y

[29] Liu X, Du Y. Towards effective feature selection for IoT
botnet attack detection using a genetic algorithm. Elec-
tronics. 2023;12(5):1260. doi:10.3390/electronics1205
1260

[30] Alharbi A, Alosaimi W, Alyami H, et al. Botnet attack
detection using local global best bat algorithm for
industrial internet of things. Electronics. 2021;10(11):
1341. doi:10.3390/electronics10111341

https://doi.org/10.1155/2021/3806459
https://doi.org/10.1504/IJHPCN.2019.106095
https://doi.org/10.1016/j.scs.2021.103041
https://doi.org/10.30630/joiv.5.4.733
https://doi.org/10.1016/j.comcom.2021.05.024
https://doi.org/10.3390/electronics10161876
https://doi.org/10.1007/s00500-020-04963-z
https://doi.org/10.1016/j.iot.2023.100819
https://doi.org/10.1007/s11042-022-13836-6
https://doi.org/10.1007/s12652-019-01387-y
https://doi.org/10.3390/electronics12051260
https://doi.org/10.3390/electronics10111341

	1. Introduction
	2. Related works
	3. Proposed POA-CNN algorithm
	3.1. Dataset
	3.2. Data preprocessing
	3.3. One-dimensional CNN model
	3.4. Proposed pelican optimization algorithm (POA)
	3.4.1. Inspiration and behaviour of pelican during hunting
	3.4.2. Phase 1: Moving towards prey
	3.4.3. Phase 2: Winging on the water surface

	4. Results and discussion
	4.1. Performance metrics

	5. Conclusion
	Disclosure statement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

