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ABSTRACT
The digital filters play a significant role in the field of digital signal processing (DSP). The finite
impulse response (FIR) filter is an attractive choice because of the ease of design and good sta-
bility. The digital filters have a wide variety of applications such as signal processing, control
systems, telecommunication, etc. They are better than the analogue filters due to their per-
formance. In recent times, software radios have achieved attention owing to requirements for
integrated and reconfigurable communication systems. Hence, reconfigurations have emerged
as a significant problem in the designs of FIRs. To match the frequencies of DSP applications,
higher-order FIRs are required. If length of filters rises, addition and multiplication operations
also increase. This paper proposes an efficient hardware design of RFIR that employs modi-
fied bacterial foraging optimizations (MBFOs) and common sub-expression eliminations (CSEs)
in its executions. MBFOs output restricted counts of filter coefficients with sums of signed-
power-of-two (SPT) terms while maintaining the quality of filtered responses. On obtaining
coefficients, eliminations are executed by CSEs where hardware complexities are determined
in terms of adders. Model sim software validated RFIRs using the Verilog code. The proposed
design of RFIRs was compared with existing designs in terms of power usages, frequencies
and areas.
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1. Introduction

The fast-paced progress of communication technology
and multi-media applications has emphasized rising
demands for digital signal processing (DSP) systems
[1]. Digital filters are essential systems that process dis-
crete time signal inputs to achieve filtered outputs. The
fundamental advantage of digital filters is their abil-
ity to easily alternate discrete values stored in registers
and can be classified into infinite impulse responses
and finite impulse responses (FIRs) where FIRs find
common utility in nearly all advanced digital applica-
tions including image and speech processing, channel
equalizations, signal enhancements and digital audio
due to their intrinsic stable responses without poles
in their transfer functions and easily attainable linear
phase characteristics. FIRs have been sought for direct
implementations in very large-scale integration circuits
because of their inherent high stability and linear phase
features [2]. Linear phase responses, required in appli-
cations such as data transmissions and crossover filters,
can be achieved with symmetric coefficient FIRs. There
are established filter parameters for applications includ-
ing the processing of images, voices and hearing aids.
Hearing aid devicesmust fit into a patient’s ear and have

reduced sizes, rapid working and batteries with longer
lifetime. As a result, building FIRs that are efficient in
terms of sizes, delays, power and specified specifications
is critical.

Particularly, in the sphere of software-defined radio,
filters based on reconfigurable architectures need to
function as an integrated platform for customizing real-
time digital signal processes. Moreover, these recon-
figurable FIRs (RFIRs) are developed based on an
adaptive strategy having variable Tapped delay line
(TAP) parameters, with different frequency response
demands allowed to be satisfied [3]. As mentioned ear-
lier, RFIRs find frequent applications in places requiring
low-power usage and self-adjustments. Very high-order
FIRs are required to achieve great spectrum adjust-
ments and/or noise reductions. Coefficient multipli-
cations are critical challenges in the construction of
RFIRs and their implemented designs determine per-
formances in terms of operating frequencies, power
dissipations, silicon areas and so on. Common sub-
expression eliminations (CSEs) were first proposed in
[4], to reduce the use of logic resources by eliminat-
ing certain repetitive computations. Among the other
approaches, the CSE algorithms have been used as a
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powerful tool for eliminating hardware redundancies
and reducing area and power consumption, especially
for higher-order filters in low complexity fixed-point
FIR filter implementations. The main idea of CSE is to
detect instances of identical bit patterns in any particu-
lar representation of the coefficients and eliminate those
redundant bit patterns by reusing the results between
the common sub-expressions (CSs) but with appro-
priate shifts in bit positions. Even though the focus
was on FIRs with fixed coefficients, the CSE algorithm
was examined in detail and optimized for enhancing
efficiency concerning the use of logic resources. Dif-
ferent reconfigurable models were also built following
the notions of the CSE algorithm. A pre-computer was
used as a part of a paradigm called computation shar-
ing multiplier for the production of two generic partial
products. The coefficients could be multiplied simply
by performing shift and adding operations on those
common partial products. A Bbinary common sub-
expression eliminations (BCSEs) approach was devel-
oped to reduce the number of adders that perform
recurrent BCSs [5]. Two BCSE designs were inves-
tigated: constant shifts methods and programmable
shifts methods. The pre-computers of these two archi-
tectures use BCSEs for the creation of required partial
products, which are distributed to every processing ele-
ment (PE) so that the multiplication of coefficients can
be completed.

Besides its expression in the binary form, the rep-
resentation of the filter coefficients can also be equiva-
lently done in canonic signed digits (CSDs) [6]. It has
been found that the CSE method earlier studied has
to be much more efficient in binary compared to CSD
forms. This is primarily because CSD representations
need an additional sign bit, making the computational
overhead increase. However, the coefficients of filters
can be modified for specific outputs. As a result, effec-
tive filters may be created by obtaining new sets of
coefficients and optimizing the filter’s orders and word
lengths [7]. Shifts and adder circuits replace the multi-
pliers used in FIRs, and these adders are dependent on
the number of SPT terms used in filter coefficients. As
a result, the goal of the suggested approach was to get a
set of filter coefficients with restricted SPT terms and
achieve ideal word lengths and orders of filters, such
that the filters would be enhanced in terms of latencies
[8], area and power. Several algorithms are available to
decrease the number of SPT terms.

Few methods consider how the FIR design param-
eters behave statistically to simplify the computation
process [9]. According to previous research, a binary
form of representation must be chosen for pre-
computing canonic forms. This is because the occur-
rence frequencies of the CS patterns chosen in the
former are higher compared to the latter [10]. But,
as it was seen, this possibility may not be true at all

times, particularly in the scenarios where the CS pat-
terns are specified in a particular way aiming at the
computational operations’ reduction.

Recently, some scholars have reviewed the use of the
evolutionary algorithms to design filters, and pointed
out that the evolutionary algorithms are very suit-
able for filter design [11]. These algorithms include
simulated annealing (SA) algorithm [12], genetic
algorithm (GA) [13], particle swarm optimization
(PSO) algorithm, differential evolution (DE) algorithm
[14], ant colony optimization (ACO) algorithm [15],
cuckoo search algorithm (CSA) [16], etc. These opti-
mization algorithms have been used for digital filter
design, and have made some progress. However, these
also have various limitations. The SA algorithm has
slow convergence, long execution time and sensitive
parameters, whichmake it an inefficient and even infea-
sible algorithm. GA andACO algorithms are difficult to
apply to practical applications because of their complex
structure and slow operation speed. The PSO algorithm
is easy to fall into the local optimum because each
particle in the swarm only searches in a limited sam-
ple space. Similar to the commonly used evolution-
ary algorithm, the DE algorithm achieves the optimal
solution crossover and selection of the difference vec-
tor between the individuals. Therefore, for some com-
plex optimization problems, the DE algorithm also has
a local optimum and premature convergence. There
are some problems in CSA, such as low convergence
accuracy and low convergence speed. Furthermore, the
search probability and search step have a great influ-
ence on the performance of the CSA. In other words,
these mature intelligent optimization algorithms have
more parameters to be adjusted, and improper param-
eter adjustment is easy to make the algorithm fall into
local extremism, and so forth also get good filter design
results. Therefore, it is worth studying to find an intelli-
gent computational algorithm with a simple structure,
strong robustness, few parameters and ease of adjust-
ment for the design of the FIR filter.

In this work, a hardware-efficient RFIR filter design
method is presented which employs modified bacte-
rial foraging optimizations (MBFOs) and CSEs. The
primary contributions made by this article are briefly
described below:

• A new CSD coefficient grouping technique is intro-
duced that only identifies if there is a single “zero”
bit between two “nonzero” bits, analysing the dis-
tributions of the selected CSs amongst multiple
CSD coefficients drawn from a wide range of FIR
designs.

• A novel PE form for the medium-grain array archi-
tecture utilizing RFIRs is advocated to achieve
optimal use of logic resources and outstanding
performance.
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• Using theMBFOs approach, a set of filter coefficients
with a restricted amount of SPT terms is identi-
fied initially, with the quality of the filter response
remaining unaffected.

• Once coefficients are obtained, CSEs are used and
the hardware complexity is decided in terms of
adders.

• The cascading of the proposed PE can be read-
ily done on a module level and can be easily
used for field-programmable gate arrays (FPGA)
or application-specified integrated circuit (ASIC)
implementations. The filters were developed by
applying MBFOs for different filter orders, and the
implementation of the same was done in the TDF
structure.

The other sections of the technical work are struc-
tured as follows. Section 2 provides an overview of
the related eeconfigurable FIR designs along with their
coefficient optimization. Section 3 discusses the process
of the proposed RFIR design along with the coefficient
optimization utilizing the proposed modified bacte-
rial foraging optimization algorithm (MBFOA) with
CSE-based concepts. In Section 4, the results are stud-
ied. Section 5 provides the conclusion and the work
intended for the future.

2. Related work

The designs to implement the FIRs can be done in
many ways for both fixed and RFIR applications where
the latter filter coefficients can be varied dynamically
during run time. Meanwhile, the fixed architecture has
pre-defined coefficients. The techniques studied are
primarily different in terms of their filter structure.
Few methods choose block-based mechanisms owing
to their rapid speed in parallel processing.

Mohanty and Meher [17] proposed powerful dis-
tributed arithmetic (DA) derivations in their imple-
mentations of block least mean squares (BLMSs).
To compute filter outputs and weight increments of
BLMSs, their suggested DA-based architecture lever-
aged an innovative look-up table (LUT) sharing tech-
nique. A parallel architecture executed BLMSs in com-
pliance with suggested DA derivations and adaptive
digital filters (ADFs).When compared to the finest DA-
based least mean square (LMS) models available, their
suggested schemes had around L/6 time’s adders and
LUT words with throughputs closer to L times of the
balance. This was the most significant advantage of
their suggested design since area delay products (ADPs)
decreased, particularly during implementations of
high-order ADFs with bigger block sizes. It was shown
fromASIC synthesis results that the study’s model with
a filter length of 64 exhibited 14–30% reductions in
ADPs and 25–37% reductions in Energy per operation

compared with other architectures using block sizes of
4 and 8.

Guo and DeBrunner [18] filtered finite impulse
responses adaptively usingDA-based techniques, unlike
traditional DA approaches where LUTs with delayed
and scaled inputs are accessed with coefficients. The
study created two outstanding LUT updating strategies
used LMSs to ensure that weights were updated and
mean square errors (MSEs) between the predicted and
needed outputs were reduced. Their results showed that
their designs enhanced speeds, minimized calculation
complexity and reduced area costs.

Gunasekaran andManikandan [19] proposed archi-
tectural frameworks for creating RFIR filters with
decreased power usage and space optimizations. FIR
digital filters are used in DSP because of their lin-
ear phases, low finite precision errors, stability and
outstanding implementations. Their suggested struc-
tures accomplished low power and area by modify-
ing adders at appropriate locations and thus reducing
power consumption and area. Their suggested struc-
ture outperformed other available RFIRs when sim-
ulated and validated on Spartan-3 xc3s200-5pq208
FPGAs.

Haridas and George [20] used area-optimized archi-
tectures of low-power FIRs based on spanning trees and
adapted Booth multipliers for direct form implemen-
tations. Area-optimized modified spanning tree adders
were presented to increase the area efficacies of FIRs.
Their design was implemented using Xilinx 14.2 ISE
tools, Model Sim and VHDL (hardware description
language) programming. FIRs were constructed in the
MATLAB Simulink tool where multiple filter coeffi-
cients were selected.

Ramachary and Siva [21] introduced novel pipelined
structures for low-power, high-throughput and low-
area implementations of adaptive filters based on DA.
Their proposed technique achieved a significant boost
in throughput rates by updating parallel LUTs, parallel
implementations of filters and weight updates. Tradi-
tional adder-based shift accumulations for DA-based
inner product calculationswere replaced by conditional
signed carry-save accumulations to reduce sampling
periods and area complexities [22]. The study suggested
architecture reduced power dissipations using fast-bit
clocks to collect carry-save adders while using slower
clocks in other operations. The study’s comparisons
with existing DA-based architectures [23] showed an
equivalent number of multiplexors but with smaller
LUTs and only half of the adders’ count. Their syn-
thesis showed that their proposed design’s power con-
sumption was 13% lower while ADPs were 29% lower
than previous DA-based adaptive filters with an aver-
age of filters with lengths of 16 and 32. When com-
pared to outstanding designs, the suggested structure
generated 9.5 times less power and 4.6 times reductions
in ADPs.
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Kadam et al. [24] examined the pipeline and paral-
lel processing structures of FIRs for efficiently imple-
menting FPGAs. It was proven from the simulation
outcomes that the efficiency of the parallel process-
ing structure is much better than that of the pipeline
structure. Also, a fast FIR structure is highly desir-
able in comparison with a traditional parallel process-
ing structure as its hardware complexity is reduced.
There is a 25% improvement in an area in fast FIR
structures when matched with traditional parallel pro-
cessing structures for similar performance. Pristach
et al. [25] presented an improved structure of digital
infrared filters. For data storage, their proposed struc-
tures had singular units for accumulations of multi-
plication units using random access memories. Area
requirements were reduced by serial computations.
The proposed structure was suitable for application-
specific integrated circuits and FPGAs. The structure’s
key advantages are increased operational frequency,
decreased power dissipation and less area utilization in
specified conditions.

Jia et al. [26] suggested a simple CSD coefficient
group for reducing the count of CSs and in addition,
the occurrence of CSs was statistically examined for
various types of FIRs, and representations of distribu-
tions for likely CS patterns in generated 16-bit coeffi-
cients. Their plans resulted in a novel processing design
that produced medium-grain arrays that were effec-
tive for computational implementations of FIR recon-
figurations. It is shown from the experimental results
that these design implementations usually gain a 21%
reduced silicon area, power dissipation reduced by 20%
and a 14% increase in operational speed compared to
other traditional FIR models.

Sriadibhatla and Baboji [27] present the design
and implementation of an area and power-efficient
RFIR filter. We present a method for designing are
configurable filter with low binary complexity (BC)
coefficients and thus optimize the filter while satis-
fying the design specifications. The total number of
nonzero binary bits is taken as a measure of the
BC of a coefficient. We propose two implementation
architectures, namely signed-magnitude architecture
(SMA) and signed-decimal architecture (SDA), which
are based on the 3-bit BCSE algorithm and vertical hor-
izontal BCSE algorithm, respectively. SMA and SDA
reduce the redundant computations of the coefficient
multiplications in the filter. The proposed filters are
synthesized on the tsmc 65 nm Complementary metal
oxide semiconductor technology.

Lian and Tian [28], proposed an FIR digital filter
design method based on an improved artificial bee
colony (ABC) algorithm to optimize the design of the
FIR filter. This improved ABC algorithm can adaptively
adjust the step size of the selected neighbourhood of
the nectar source location. At the same time, the infor-
mation on the global optimal solution is used to guide
the search for a candidate solution, which improves the

global search ability of the algorithm. The improved
ABC algorithm can balance the conflict between local
search ability and global search ability, so it can achieve
a better optimization effect. The time and space com-
plexity of the algorithm is analysed in detail. Then, the
improved ABC algorithm is used to design low-pass,
band-pass and band-stop filters.

From the above discussion, it is identified that each
method has some advantages and disadvantages. To
meet the correct frequency requirements in many DSP
applications, higher-order FIRs are required. However,
when the filter length increases, the number of adds and
multiplications increases linearly, increasing the com-
puting complexity. The existingmethod exhibits a slight
rise in the filter complexity, but the frequency response
is considerably improved.

3. Proposedmethodology

Digital filters are costly in terms of hardware and
power-dissipating components in signal-processing
devices. Therefore, it is always desirable to use a
hardware-optimized and low-power digital filter even
if the time taken for the design process is high. In
this work, a hardware-optimized RFIR filter design that
employs MBFOA and a CSE elimination algorithm is
presented.

• Anovel CSD coefficient grouping approach that only
determines if singular “zero” bits are added between
two “nonzero” bits, analysing selected CS distribu-
tions amongst CSD coefficients belonging to multi-
ple FIR designs.

• A novel PE form for medium-grained array archi-
tectures utilizing RFIRs is advocated to achieve opti-
mum logic resource use and greater performance.

• MBFOs are used to find filter coefficient sets with a
restricted number of SPT terms while maintaining
the quality of filter responses.

• On obtaining the coefficients, CSE eliminations are
used and hardware complexity is determined in
terms of adders.

• The cascading of the proposed PE can be readily
done on a module level and can be easily used for
FPGA or ASIC implementations. The filters were
developed applyingMBFO for different filter orders,
and the implementation of the same was done in
transposed direct form (TDF) structures.

The filters were developed with the help of MBFO-
CSE for different filter orders, and the implementation
of the same was done in the TDF method.

3.1. Design of RFIRs

FIR digital filters are being employed extensively in
DSP applications as they are finite without feedback.
N-tap FIRs include adders (N) and multipliers (N+ 1)
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consuming larger areas and voluminous power dissipa-
tions. FIR’s transfer function can be depicted as

y(n) =
M−1∑
k=0

h(k)× (n− k) (1)

Generally, the representation of the FIRs takes the TDF,
the popular structure for representing the filters. Fil-
ters are called reconfigurable if their TAP parameters
are variable totally. Multipliers have an important part
to play in filter design realization. The two most com-
mon filter designs are combinational and sequential
multipliers. When input word lengths increase, the
area required for combinational multiplications grows
exponentially while space is saved when using sequen-
tial multipliers. However, its main drawback lies in
its clock cycles in executions, making it complex to
be applied to real-world applications. As an increased
speed is necessary for filtering, its implementation is
done with the help of a combinational multiplier design
whose power dissipation is excessive due to a bigger
area. The implementation of coefficient multiplication
decides the design performance including power dis-
sipation, operational frequency and area. Also, a pop-
ular pre-computer is designed to generate a few par-
tial products, which are generally developed during
the multiplication step. The remaining partial products
developed during the multiplication process are just
acquired through the shift and added operation of the
pre-computed values.

When the computation y[n] is performed directly,
many partial products get generated and they require
higher-order multiplications which in turn consume
more space while increasing computing times. To
reduce computational overhead, the grouping of coef-
ficients, depicted in Figure 1, follows the procedures
listed below:

i) On the existence of a 0 bit between two non-0 bits,
the 3 bits are merged into one group.

ii) If multiple 0 bits exist between two non-0 bits, they
are treated as two separate groups.

The coefficients are organized into three bits, starting
with the least significant bit values. Figure 2 depicts
the grouping flow for CSD coefficients. When sub-
groups are multiplied by an input X, it results in one
of the alternatives, namely 1X, 2X, 3X, 4X, 5X, 6X
and 7X. Pre-computations of 1X, 2X and 4X addi-
tionally simplify multiplications where the remaining
numbers are determined by adding them to these pre-
computed values. For example, combining 2X with 1X
results in 3X, and combinations of 1X, 2X and 4X result
in 7X. Thus, parallel multiplications of subgroups are

Figure 1. CSD grouping method.

Figure 2. Proposed grouping flow for CSD coefficients.

Figure 3. The architecture of RFIRs.

executed and calculated values are shifted and summa-
rized for final results.

As seen in Figure 3, filter constructions necessi-
tate the use of pre-computing for the three partial
product computations used in coefficient multiplica-
tions along with a cascaded array of PEs. PEs con-
duct input multiplications in two subgroups, and in
the last step, appropriate shifts are applied to all values
which are then summarized for the final multiplication
result.

As seen in Figure 4, Z1, Z2 and Z3 (partial prod-
ucts) are passed into PEs when coefficient multipli-
cations using shifts and adds are executed. PEs have
four inputs while their outputs are singular where three
derived inputs are partial products while the fourth
is an additional input derived from the previous PE
block’s output that can be used for cascading.

3.2. Problem formulation

A RFIR coefficient defined, as a summation of sums of
signed-power-of-two (SPT) terms, is expressed by

hspt(n) =
M∑

m=1
sm, 2−m (2)
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Figure 4. Operation of a single PE.

where sm,n ∈ {−1, 0, 1} and n = l, . . . .N. N refers to
lengths of filters andM indicates filter coefficient word
lengths. During the design of this filter, it is necessary
to decide the values of Sm,n so that their correspond-
ing frequency responses from Hspt(ω) filters are min-
imal normalized peak rippled (NPR) or have minimal
deviations from frequency responses Hd(ω). For mak-
ing Equation (2), every sm,n term to match differences
between two non-negative terms in Equation (3) may
be used:

hspt(n) =
M∑

m=1
(qm,n2−m − q−m,n2−m) (3)

where qm,n represents FIR coefficient’s positive SPT
terms and q−m,n ∈ {0,1} represents FIR coefficient’s
negative SPT terms. Qk ≡ (q1,1, q1,2, . . . qM,N , q−1,1,
q−1,2, . . . q−M,N) represents the feasible coefficient

solution for k non-0 element’s filters or
N∑

n=1

M∑
m=1

(qm,n +
q−m,n) = k. In this manner, a filter representation
with two coefficients hspt(1) = 2−1 − 2−4, hspt(2) =
2−3, for instance, can be given by Q3 having q1,1 =
q−4,1 = q3,2 = 1 while others are equal to zero (qm,n).
Assuming {Qk} represents a set of (2MN/k) feasible
solutions and npr(Qk) points to Q′ks PR filter coeffi-
cients, {Qk}+ represents {Qk}’s subset elements consti-
tuting 2MN Qk for the bestNPR values andQ+km,n

stands
for the elements in {Qk}+.The design of filters with pre-
defined K SPT terms can be derived as appropriate Qk
that reduces NPR in filters:

{npr(Qk)} (4)

For the filter design problem studied, the above expres-
sion implies

{npr(Qk)} = {npr(qm,n)+ npr(Qk−1|qm,n�=1)} (5)

Dynamic programming is a bottom-up technique
that begins by finding solutions to the smallest sub-
problems and subsequently combines these solu-
tions incrementally till actual solutions are found.
Hence, dynamic programming develops filters initially
from exactly k – 1 SPT terms and minimal NPRs
min{npr(Qk−1)} (the second term of Equation (5)’s
right-hand side). Subsequently,new filter sets with k
SPT termsmin{npr(Qk)} (Equation (5)’s left-hand side)
are designed by adding correct SPT terms to the previ-
ous solution sets. These operations are repeated until
the required SPT period counts are attained. Unfor-
tunately, the additive connection in (5) is inaccurate
because the amount of NPR enhancement that an SPT
term provides is also reliant on the other SPT terms that
a filter contains. As a result, the solution obtained using
the standard dynamic programming technique cannot
be guaranteed to be optimum.

Nevertheless, k SPT terms-based filters can be
obtained by adding correct SPT terms to good fil-
ters with k−1 SPT terms and filter designs with SPT
coefficients can be achieved by recursive optimizations
similar to dynamic programming as given below:

{npr(Qk)} ∼= Qk ∈ {{Qk−1} + {npr(Qk)}} (6)

Recursive optimizations of (5) are proposed by using
MBFOs to optimize the coefficients of RFIRs. The
“Linear phase” stands for circumstances when filter
responses are provided by straight line functions (lin-
ear frequency) except when the phase wraps at +/−
180 degrees. RFIRs adhere to a linear phase when their
coefficients are symmetrical around the centre coeffi-
cients which are the primary coefficients equal to the
final coefficient and the second coefficient is equiva-
lent to the next-to-end coefficient. The accurate con-
trol of the various frequency spectrums is the main
objective function for the designing of ideal digital fil-
ters which exhibit high nonlinearity, non-uniformity,
non-differentiable and multimodal behaviour. These
objective functions cannot be optimized by classical
optimizations and fail to converge for global mini-
mum solutions. To minimize all these disadvantages
which are faced with the conventional optimization
approaches, many researchers have used heuristic and
meta-heuristic evolutionary optimizations related to
evolutionary and natural techniques.

The escalating levels of power dissipation are the
second major concern associated with the develop-
ment of processing power and the complexity of signal
processing algorithms. Two types of power dissipa-
tion occur: static dissipation, which occurs as a result
of leakage current or another current from the power
source, and dynamic dissipation, which occurs as a
result of switching transient current. The main activ-
ities of the RFIRs have filtered coefficient multiplica-
tions and accumulations of digital inputs and attained
the use of more adders and multipliers matching filter
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coefficient counts. Because multipliers consume a lot
of power and space, it is usual to employ multiplier-
less realization, which replaces multipliers with adders
and shift registers. The purpose of the optimization
approach is to decrease the discrepancy between the
obtained and necessary frequency magnitude response
and adjust the filter coefficients. However, one disad-
vantage is that one or more design parameters, such
as filter length, number of SPoT terms and filter taps,
are set throughout the design process. As a result of
this disadvantage, filter design becomes more sophis-
ticated than necessary. The main aim of this study is to
investigate linear phase optimization approaches using
MBFOs and hardware complexity using CSEs.

3.3. Co-efficient optimizations usingMBFOs

An improved technique for discrete optimizations of
RFIR digital filter coefficients, whose representation is
in the form of CSD codes [29], i.e. integers that may be
expressed as sums or differences of powers-of-two, is
introduced in this paper. To compensate for the severely
non-uniform behaviour of CSD coefficient distribu-
tions, the suggested search method gives an extra non-
zero digit in CSD codes to the larger coefficients. The
filter complexity increases somewhat, but the improve-
ment in frequency response is significant. The CSEs are
provided in the next section to prevent this difficulty.

When all of the filter coefficients are multiplied by
fixed scales, the form of frequency responses of RFIRs
remains unchanged. The scale factor simply adds gains
or attenuations to response frequencies. However, this
scale factor also has significant influences on coefficient
optimizations when the coefficients are CSDs. The rea-
son for this improvement is that the set of numbers
that can be represented by CSD codes using a constant
number of nonzero digits has a highly non-uniform
distribution, and thus correct scaling of the optimal
filter coefficients, before rounding them to the closest
CSD codes, can generally result in a significant reduc-
tion in the magnitudes of the coefficient quantization
errors and it is immediately depicted in a higher fre-
quency response. The suggested modification to the
MBFOs comprises the addition of a nonzero digit to the
CSD coefficient representation for the filter coefficients
with large values, which results in a significant gain in
performance in the scaling section of the optimization
method.

3.3.1. Distribution of CSD coefficients
Representing a number in the form of sums and dif-
ferences of powers-of-two is technically referred to as
a radix-2 signed-digit code. The radix-2 signed-digit
representation of a fractional number x is generally
expressed as

x =
L∑

k=1
sk2−Pk (7)

where sk ∈ {−1, 0, 1} and pk ∈ {0, 1, . . . ,M} The rep-
resentation in (7) contains M+ 1 total (ternary) digit
and L nonzero digits. Typically, a given number has
many signed-digit representations. The minimum rep-
resentation denotes a coding that requires a small
amount of nonzero digits, from which several options
may be accessible. Representations of CSDs are defined
as minimum representations where there are no con-
secutive two nonzero digits sk, the representations of
numbers differ. They are simple procedures that trans-
late binary representations into their CSD forms. The
adder/subtractor counts for implementations of CSD
coefficients are lesser than the code’s non-zero digits.
Themain advantage ofCSDs compared to typical radix-
2 binary codes like 2’s complement lies in the added
flexibility of negative digits that allow representations
of most integers with minimal nonzero digits.

The optimal distribution of realizable filter coeffi-
cient minimizations of greatest quantization errors is
uniform. 2’s complement can be an example of uni-
formly distributed representations. As seen in Figure 5,
CSD coefficient distributions represented as nonzero 6-
digit and 8-digit CSD codes are highly non-uniform.
Gaps in 1/8 widths can be seen in the set of integers
represented in Figure 3.Moreover, nonzero digit counts
of CSD codes are kept constantly at 2, gaps will not
decrease even if CSD code word lengths come closer to
infinity (i.e. L = 2 and M+CO in (7)) and hence only
incrementing nonzero digit counts in CSD codes can
reduce these gaps.

However, incrementing nonzero digits in CSD codes
may not be an effective way of reducing coefficient
quantization errors. CSD coefficient distributions (refer
to Figure 5) are dense for lower coefficient values.
Hence, when filter coefficients are rounded to the near-
est CSD codes, quantization error levels will increase
for coefficients with large values. This work mini-
mizes coefficient quantization errors without increas-
ing their complexity (normalizing coefficient’s impulse
responses to a maximum value of 1):

Coefficient’s impulse responses >1/2 are allocated
one extra nonzero digit in CSD representations.

Figure 5. CSD coefficient distributions for sets of 6- and 8-digit
codes having two non-zero digits.
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Themaximumnumber of RFIRs results in low hard-
ware complexity as low-pass impulse responses gen-
erally contain a sin(x)/x envelope and thus only a
small number of coefficients in the primary lobe of the
sin(x)/x response will be >1/2.

3.3.2. Scalingmechanism
The coefficient’s impulse responses were the first to be
scaled for obtaining 1 as the value of the largest coef-
ficient. During optimizations, L and M parameters in
(7) are selected for the construction of viable CSD coef-
ficients in the range [0,1] for future use. It is worth
noting that L was increased by 1 for coefficients with
magnitudes greater than 1/2.

As the quantization of coefficients is non-linear,
early predictions of scale factors would provide highly
unrealistic results and hence scale factors need to be
obtained using brute force search. Scaling by a factor of
two had no influence on quantization processes, hence
one octave of scale factors was explored and coefficients
of filters were rounded to the nearest CSD number
in the table for scale factors in the range [0.5,1] and
the resulting frequency response peak weighted ripples
denoted below were determined:

δ =
[

δp

w, δs

]
/b (8)

where δ stands for the pass and stop band ripple ampli-
tude, b indicates the average pass band gains and W
is the ripple weighing factor. Using Fast fourier trans-
form (FFT) applications, frequency responses are com-
puted by padding zeros to the coefficient’s impulsive
response. The selected FFT points were a power-of-
two multiple of 8 times the filter length and step size A
between scale factors was set for balancing the length of
searches and quality of eventual results. Another reason
for selecting scale factors was to make the most of the
relationships between coefficient quantizationmistakes
and frequency response errors where scale factors with
the lowest coefficient quantization error values were
selected.

3.3.3. Modified bacterial foraging optimization
algorithms
MBFOAs are based on BFOAs [30] and are intended
to discover solutions to constrained numerical optimi-
zation problems (CNOPs). One of the advantages of
using this method is that it eliminates the need to select
the filter order beforehand. It decreases MSEs between
the preferred frequency responses and the frequency
responses corresponding to approximations. If a mis-
take occurs, the algorithm increases the filter order.
All of its elements are explained in the order they are
supplied.

(i) A bacterium: It implies the best solution to CNOPs
(n-dimensional real value vectors identified as

x→), represented as θ i (j, G), where j is the
chemotaxis loop index while G is the generation
cycle’s loop index. A cycle performs three inner
processes, namely chemotaxis, reproductions and
eliminations where swarming processes are a part
of chemotaxis processes.

(ii) Chemotaxis: In this process, the bacterium of
current swarms’ takes tumble-twirl moves where
tumbles (as studied by Passino) include search
directions (i) which are produced randomly after
uniform distributions and expressed as

ϕ(i) = �(i)√
�(i)T�(i)

(9)

where�(i) is the randomly produced n-dimension real
value vector from uniform distributions in the range
[−1, 1]. Twirls permit bacteria θ i(j,G) to stick to their
search directions and travel to new positions θ i(j+
1,G). Twirl can be computed using Equation (10):

θ i(j+ 1,G) = θ i(j,G)+ C(i)ϕ(i) (10)

where (i) stands for the step size vectors and is com-
puted by using threshold values of design variables k, as
depicted in Equation (11):

C(i)k = R ∗
(

�xk√
n

)
, k = 1, . . . n (11)

where �xk represents differences between the upper
and lower thresholds of variables xk:Uk− Lk, n implies
variables to count, and R∈[0, 1] is a user-determined
parameter used in bacteria’s step size scales. It has a
constant value during searches. New positions, θ i (j+
1,G), may be better than prior positions θ i(j,G) (9)
or the objective function’s new position may be better
(10) or new positions may be possible when earlier (11)
both positions are impossible but depict the reduced
sum of constraint infringements. Another twirl in the
same direction is executed making it the start position
on completion of entries, the procedure is terminated.

(iii) Swarming: If no bacteria exist in current swarms,
MBFOAs use attractor movements inside chemo-
taxis processes for the bacterium in swarms to
move towards the bacterium in search space’s
most potential area, which is a practical bacterium
with the best objective function values or bac-
terium with the least sum of constraint infringe-
ments. Feasible movements used in chemotaxis
processes are shown below:

θ i(j+ 1,G) = θ i(j,G)+ β(θB(G)− θ i(j,G))

(12)

where θ i(j+ 1,G) stands for bacterium i’s new
location, while θ i(j,G) represents its current posi-
tion. (G) refers to the optimal bacterium’s cur-
rent position in the swarm at cycle G, and β is a
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parameter (user-defined) indicating the proxim-
ity of bacterium i’s new position concerning the
optimal bacterium (G)’s location. Attractor move-
ments are used a single time in chemotaxis loops,
while tumble-twirl movements are used in subse-
quent phases. Outside of their bounds, the tumble-
twirl and swarmingmovementsmay both produce
a variety of values. As a result, the broken limit is
deleted and the violated amount is multiplied by
two (i.e. xvalid = 2∗violated limit− xinvalid).

(iv) Reproduction: The swarm is sorted using the
same three principles that are used in the chemo-
taxis process, and the first Sr reproduced (these
bacteria are considered the best), while the rest
of the Sb− Sr (the worst bacteria) are discarded
(Sbindicates the swarm size).

(v) Elimination-dispersal: This method removes the
worst bacterium (j, G) based on previously estab-
lished feasibility rules, and another randomly gen-
erated microbe replaces the bacterium.

Tandem-twirl MBFOA (TT-MBFOA)

TT-MBFOA revisits the tandem-twirl presented in
MBFOA to increase its search potential and simplify it.
Tandem-twirl is employed inside the chemotaxis pro-
cess, as illustrated in this study effort in this manner.
The purpose of the first twirls is to complement swarm-
ing operators by allowing the bacterium to search in
additional fields of search spaces and the direction of
randomly selected bacteria. Second spins use real twirls
but with minuscule step size values, concentrating on
minute bacterial motions. Each of the tandem-twirls
proposed is described in detail below.

(1) Exploration twirl

The first twirl is computed, as indicated in the
following:

θ i(j+ 1,G) = θ i(j,G)+ β − 1(θ r1(j,G)− θ r2(j,G)

(13)

where represents user-specified value greater than 1
for use by MBFOA’s swarming operator. θ r2(j,G) and
θ r2(j,G) are swarm’s randomly selected bacteria and
(i �= r1 �= r2), respectively. Twirl operators use the posi-
tions of these two bacteria to decide on search direc-
tions and start to twirl from the bacteria θ i(j,G).

Figure 6 depicts the twirl operator’s behaviour with
two decision variables in the range [−5, 5]. On com-
pletion of the twirl the new position of the bacterium
will slip into the purple spot that bact1 and bact2
specify and are referred to as θ r2(j, )G, and θ r2(j,G),
correspondingly.

The ideal bacterium is inserted, showing that this
operator is working to get all of the search space’s areas
(i.e. not those present in the neighbourhood of the

Figure 6. A graphical example of the first exploration twirl.

best current solution as it is pushed by the swarming
movement).

(2) Exploitation twirl

The second twirl reverts to the original twirl based on
random search directions, but it is now merged with
small random step size values so that smooth motions
may be precisely determined, as illustrated below:

θ i(j+ 1,G) = θ i(j,G)+ C(i,G)ϕ(i) (14)

where the step size values consist of an n-dimensional
random vector referred to again (i, G), computed at
every generation as given below:

C(i,G)k = R ∗�(i)k′ k = 1, . . . , n (15)

where �(t) refers to an arbitrarily produced value
exhibiting uniform distributionwithin [Lk,Uk] of deci-
sion variable k. R indicates a user-specified parameter
for increasing the step size, and its valuemust be almost
zero, for instance, 5.00E− 03. During the first cycle,
the computation of the step size is done with only �(t)
to let the bacteria in the initial swarm traverse in var-
ious directions within the search space and escaping
attractors when the process starts.

Figure 7 depicts the twirl behaviour where the green
triangle representing the bacterium can move in any
random search direction but near its current position
irrespective of other bacterial positions in the swarm.

The combined effect of both suggested twirls with
the swarming operator, with all three inside the chemo-
taxis process, demonstrates an increased potential to
escape the local optimal solutions and encourages a
rapid convergence. This result is feasible because TT-
MBFOA includes a twirl for exploration (the initially
suggested twirl), a twirl for choosing convergence (the
MBFOA swarming operator) and a fine twirl to boost
the excellent quality solutions (the second proposed
twirl).
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Figure 7. Random twirl behaviour.

These suggested TT-MBFOs are very resilient and
efficient in obtaining the optimal coefficient of FIRs.
Power usage may be lowered in this manner as well.

CSEs algorithm

Strength reduction at the algorithm level reduces the
number of additions and multiplications in arithmetic
circuits. One such numerical technique is called sub-
expression elimination [31]. This technique improves
the speed, power and area of the circuit greatly. This
strength reduction reduces the total capacitance and,
therefore, reduces the power consumption. The sub-
expression eliminationmethod is used over expressions
which have a set of common multiplicands. It identi-
fies recursive occurrences of identical bit patterns in the
coefficients.

To facilitate comparison of the transposed with
the original, the input and output signals remain
“switched”, so that signals generally flow right-to-left
instead of the usual left-to-right. The FIRs are given
by Equation (1). The variable x is calculated using just
the coefficient h at different time point k. Consider the
following:

y(n) =
N−1∑
k=0

h(k)× (n− k) (16)

The goal of CSEs [32] is to find the filter coeffi-
cient’s common factors which are shared multiplica-
tion blocks (MBs) in transposed form, as shown in
Figure 8. Pooling MBs allow for decreases in the total
sizes of FIR circuits. This section elaborates on the

Figure 8. Transposes direct form structure.

Algorithm 1 Pseudo-code of the proposed CCSE algorithm

Input: Set boundary conditions 0�N� (filter’s order−1)
Output: Optimal coefficients with the same Common Sub-expression (CS)

value
Define Filter Tap;
Max = Filter Tap-1;
//Set conditional terminations
While (true)
{
N= 0; MaxSECnt = 0; //Initialize Variable.
While (N< = Max)
{
Record Table← Count SE (Filter Coefficient); //Step 1
N= N+1; //Step 2
}
Record Table← Inverse Count (Record Table);
//Step 3
For (i= 0; i< Record Table.size; i++)
MaxSECnt = Max (Record Table[i].Counts, MaxSECnt);
//Step 4
If (MaxSECnt> 1) //Step 5
Filter Coefficient← Simplify Coefficient (Filter Coefficient);
Else
Break; //Step 5 terminated
}

use of novel CSEs for extracting the coefficient’s com-
mon factors in CSD notations. The programme obtains
data on the frequency of occurrences of coefficients and
their inverses for searching common components. The
pseudo-code for the proposed the CSD-based common
sub-expression elimination (CCSE)method is shown in
Algorithm 1.

Initialization is fixing boundaries 0≤N≤ (filter’s
order−1) and setting = 0.

Step 1: Get the Nth coefficient and all of the coeffi-
cient’s nonzero bit locations (from high to low). Save
these places and look for Sub-expression elimination
(SE) combinations with multiple non-zero bits. To sim-
plify, all combinations are employed in the formof Basic
-expression eliminations (BEs) (list the BEs). When
input elements match table BE’s frequencies, statisti-
cal frequencies of BEs are increased. When they do not
match, they are added as a new BE to the table.

Step 2: Initializing N = N+ 1 and determining if N
is greater than the set values of boundary condition dur-
ing initializations. When it is lesser, Step 1 is repeated,
else Step 3 is executed.

Step 3: Evaluate all table BEs to get their correspond-
ing and reciprocal SEs. When SEs are reversed, positive
SEs are used as fundamental elements. Determining
negative SEs instance counts.

Step 4: Evaluate all table BEs to assess the high-
est occurrences. When the maximum frequency is 1,
executions proceed to the next stage and for max-
imum frequencies >1, BEs are chosen as CSs and
if it surpasses BEs with the same maximum fre-
quency and frequency >1, shorter BEs are chosen as
extracted CSs.

Step 5: Collect all coefficients with the same CSs as
those produced in Step 4 and those with the respective
inverted CSs, and carry out the elimination procedure.
When the procedure is complete, a new variable is
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Table 1. Specification of the benchmark FIRs designs.

Selected FIRs Type Taps ωs2(π) ωp1(π) ωp2(π) ωs2(π) NS1 NS2 NS3 P1 P2 P3

FIR1 LP 51 0.41 0.51 14 37 0 27.45% 72.55%
FIR2 102 0.64 0.69 40 62 0 39.22% 60.78%
FIR3 254 0.23 0.25 146 108 0 57.48% 42.52%
FIR4 507 0.95 0.96 436 71 0 86.00% 14.00%
FIR5 HP 57 0.11 0.21 18 39 0 31.58% 68.42%
FIR6 111 0.25 0.30 48 63 0 43.24% 56.76%
FIR7 277 0.49 0.51 154 123 0 55.60% 44.40%
FIR8 551 0.79 0.80 418 133 0 75.86% 24.14%
FIR9 BP 51 0.15 0.25 0.3 0.4 16 35 0 31.37% 68.63%
FIR10 102 0.53 0.58 0.68 0.73 44 58 0 43.14% 56.86%
FIR11 254 0.63 0.65 0.7 0.72 160 94 0 62.99% 37.01%
FIR12 507 0.82 0.83 0.88 0.89 366 141 0 72.19% 37.81%
FIR13 BS 57 0.16 0.26 0.31 0.41 22 34 1 38.60% 59.65% 1.75%
FIR14 111 0.35 0.40 0.50 0.55 64 46 1 57.66% 41.44% 0.9%
FIR15 277 0.56 0.58 0.68 0.70 194 83 0 70.04% 29.96%
FIR16 551 0.82 0.83 0.88 0.89 468 83 0 84.96% 15.06%

Figure 9. Operation of two cascaded PEs.

inserted back into the real expressions, the loop value
Ni is set to zero and the process is returned to Step 1.

The suggested optimization technique is adaptable,
resilient and easily manageable with non-differential
objective functions related to RFIRs. This is the most
effective co-efficient optimization and hardware com-
plexity approach. The findings of the experiments are
presented in the next section.

4. Results and discussion

This section demonstrates the proposed MBFO-CSE
algorithm using an example. The RFIRs were designed
with MBFO-CSE and implemented in the TDF struc-
ture for various word lengths. With the aid of the Ver-
ilog code, Modelsim software was utilized to validate
the RFIR design. The benchmark filter parameters are
shown in Table 1. The normalized pass band and stop
band edge frequencies were 0.3 π and 0.5 π , respec-
tively. The ripple values in the pass band and stop
band were both 0.00316. The filter was designed to
work with a wide range of word lengths and ordering.

Table 2. Adders and shifters counts of RFIRs.

Architecture
Distributed
arithmetic

Multiple constant
multiplications MBFOA-CSE

Adders 6 6 4
Shifters 6 5 4

The aim function specified the filter criteria. Two cas-
caded PEs involve operations for three or four CSs,
as shown in Figure 9. The two cascaded PEs may
perform coefficient multiplications for three or four
CSs. As shown in Figure 9, the output Do of PE1
is linked to the input Di of PE0. Every additional
configuration, except the Mux4 in each PE, may be
defined in the same way as in Case 1. The output of
adder/subtractor 2 is transmitted to the Mux4 of PE1
through the Di of PE0, and the Mux4 of PE0 propa-
gates the output of the register (Z−1) to the next step.
As a result, an integrated PE0 and PE1 operation may
perform coefficient multiplication for nearly any four
coefficients.

Tables 1 and 2 illustrate the design specification of
the RFIRs.
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Figure 10. Area comparisons between the proposed and existing RFIR designs. (a) Number of filter vs. area and (b) area vs. varying
with tap counts.

Figure 11. Power consumption comparisons between the proposed and existing RFIR designs. (a) Number of filter vs. power
consumption and (b) power consumption vs. varying with tap counts.

Figure 10 illustrates the synthesized area attained
for three kinds of designs, referred to as the DA-based
filters, Multiple constant multiplication (MCM)-based
filters and the proposed MBFOA-CSE-based RFIR
designs over 16 sets of specifications. It shows that the
proposed MBFOA-CSE design must have an edge over

the existing design concerning area reduction, irrespec-
tive of the filter order. For instance, nearly 55.4% of
hardware resources are reduced in the proposed filter
design compared to the existing design, in the case of
551-tap FIRs (in 16-bit). About the DA-based filters,
MCM-based filters, the proposed MBFOA-CSE must

Figure 12. Maximum frequency comparisons between the proposed and existing RFIR designs. (a) Number of filter vs. maximum
frequency and (b) maximum frequency vs. varying with tap counts.
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have nearly identical area takeover, if the tap count is
below 254. But, as the tap count increases, the sav-
ings in the area are also increased in the proposed
MBFOA-CSE design.

Figure 11 illustrates the power consumption values
achieved for the synthesized designs provided, known
as the DA-based filters, MCM-based filters and the
proposedMBFOA-CSE-based RFIR design realizations
over 16 sets of filter specifications. In the case of lower-
order filters, the power dissipation is matchable among
the three designs. If the filter order is greater than 255,
the proposed MBFOA-CSE design intends to consume
much reduced power compared to DA-based filters and
MCM-based filter designs.

In Figure 12, the maximum frequency for the three
contemporary designs is compared. The count of the
adder utilized in the proposed MBFOA-CSE design is
higher than the count in the available designs. There-
fore, the maximum clock frequency of the proposed
MBFOA-CSE design is the least among all the three
structures. Since fewer partial products are required in
the proposedMBFOA-CSE design in its calculation, the
maximum working frequency is greater in comparison
with the other two architectures. The filter order and
coefficient optimization are effectively utilized with the
help of the proposedMBFOAalongwith theCSE-based
design in this work. On average, the proposedMBFOA-
CSE design achieves nearly 58.4% (the highest one) and
13.4% (the least one) rise in the maximum frequency
correspondingly compared to the DA and the MCM
designs.

5. Conclusion

This paper has described a design strategy for hardware-
optimized RFIR filters using MBFOs and CSEs. The
filter was designed using MBFOs for different filter
orders, and the implementation was done in a TDF
structure. The validation of the RFIR structure was car-
ried out in Modelsim software using the Verilog code.
The enhanced RFIRs coefficient optimization approach
has been presented, which adds some extra non-zero
digits to the CSD codes to balance the non-uniform
distribution while reducing the hardware complexity
required to create equal rippled FIRs. This technique
begins with creating the filter using the usual equal
rippled method to attain a minimal order. The order
is optimized until the criteria are precisely met, at
which point the filter’s grouping of CSD coefficients
are quantized. The MBFOs find the initial set of fil-
ter coefficients using a restricted amount of SPT terms
while retaining filter response quality. On obtaining
coefficients, CSEs are used and hardware complexity
is determined in terms of adder counts. Finally, the
suggested reconfigurable filter design was compared
to the best works already available in terms of area,
power consumption and frequency. According to the

preceding research, when the filter order exceeds 255
taps, the suggested MBFOA-CSE design expects to uti-
lize significantly less power than DA-based filters and
MCM-based filter designs. Also it shows that nearly
55.4% of hardware resources are reduced in the pro-
posed filter design compared to the existing design,
in the case of 551-tap FIRs (in 16-bit). Hence, the
proposedMBFOA-CSE-based systemoutperforms pre-
vious reconfigurable FIR solutions in terms of per-
formance and hardware complexity. The suggested
approach focuses largely on enhancing filter perfor-
mance. Future research might investigate its dynami-
cally reconfigurable techniques.
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