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ABSTRACT
Breast cancer remains a pervasive global health concern, necessitating continuous efforts to
attain effectiveness of recurrence prediction schemes. This work focuses on breast cancer recur-
rence prediction using two advanced architectures such as Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU), integrated with feature selection techniques utilizing Logis-
tic Regression (LR) and Analysis of Variance (ANOVA). The well-knownWisconsin cancer registry
dataset, which contains vital diagnostic data from breast mass fine-needle aspiration biopsies,
was employed in this study. The mean values of accuracy, precision, recall and F1-score for the
proposed LR-CNN-LSTM model were calculated as 98.24%, 99.14%, 98.30% and 98.14% respec-
tively. The mean values of accuracy, precision, recall and F1-score for the proposed ANOVA-GRU
model were calculated as 96.49%, 97.04%, 96.67% and 96.67% respectively. The comparison
with traditional methods showcases the superiority of our proposed approach. Moreover, the
insights gained from feature selection contribute to a deeper understanding of the critical fac-
tors influencingbreast cancer recurrence. Thecombinationof LSTMandGRUmodelswith feature
selectionmethods not only enhances prediction accuracy but also provides valuable insights for
medical practitioners. This research holds the potential to aid in early diagnosis and personalized
treatment strategies.
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1. Introduction

The alarming prevalence of breast cancer necessitates
continuous advancements in diagnostic and prognostic
methodologies to improve patient outcomes and qual-
ity of life [1]. In this context, predictive modelling and
the integration of Deep Learning (DL) offer promis-
ing avenues to address the complex problems in breast
cancer recurrence. Breast cancer recurrence remains a
critical concern for patients and healthcare providers.
Recurrence occurs when cancer cells reappear after ini-
tial treatment, often leading to more aggressive forms
of the disease and challenging treatment scenarios [2].
Accurate prediction of breast cancer recurrence is cru-
cial for guiding treatment decisions, enabling early
intervention, and enhancing overall survival rates. The
risk of distant recurrence after years of occurrence is
depicted in Figure 1.

Traditional clinical risk assessment tools have lim-
itations in handling the multifaceted nature of breast
cancer recurrence, and there is a pressing need formore
sophisticated predictive models that can leverage the

wealth of available patient data [3]. Deep learning has
been a popular approach for predictive modelling in
several medical fields, including oncology, in recent

years. By revealing hidden patterns and linkages in
intricate datasets, these technologies have the poten-
tial to increase the precision and dependability of breast
cancer recurrence prediction [4]. Among the diverse
ML techniques available, Recurrent Neural Networks
(RNNs) have demonstrated remarkable capabilities in
modelling dynamic biological processes, such as cancer
progression [5].

This work presents a comprehensive investigation
into the application of RNNs, specifically Long Short-
Term Memory (LSTM) and Gated Recurrent Unit
(GRU), for breast cancer recurrence prediction. In con-
junction with RNNs, we explore the integration of fea-
ture selection techniques utilizing Logistic Regression
(LR) and Analysis of Variance (ANOVA) to identify
the most influential diagnostic features associated with
breast cancer recurrence. The Wisconsin Breast Can-
cer (WBC) dataset serves as our primary data source,
containing a wealth of pertinent information extracted
fromfine-needle aspiration biopsies of breastmass. The
motivation behind this research lies in the potential
to revolutionize breast cancer recurrence prediction by
harnessing the power of deep learning and statistical
methods. We aim to address several critical research
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Figure 1. Chance of recurrence over years.

questions: Can LSTM and GRU, as advanced RNN
architectures, improve the accuracy of breast cancer
recurrence prediction compared to traditional machine
learning algorithms? How can feature selection tech-
niques, including LR and ANOVA, enhance the inter-
pretability of predictive models and contribute to a
better understanding of the factors influencing breast
cancer recurrence.

Initially preprocess the WBC dataset, ensuring data
quality and suitability for modelling. Next, we employ
LR-based and ANOVA-based feature selection meth-
ods to identify the most relevant features associ-
ated with breast cancer recurrence. Subsequently, we
develop predictive models using LSTM and GRU
on the selected features. Finally, we rigorously eval-
uate the performance of these models against tra-
ditional machine learning algorithms, drawing valu-
able comparisons and conclusions. The significance of
this research lies in its potential to provide health-
care professionals with more accurate tools for breast
cancer recurrence prediction, enabling early inter-
vention and tailored treatment strategies. Moreover,
the insights gained from feature selection can con-
tribute to a deeper understanding of the complex
interplay of factors in breast cancer recurrence [6].
Ultimately, this work aims to enhance patient out-
comes, reduce the burden of breast cancer recur-
rence, and advance the field of predictive modelling in
oncology.

2. Literature review

Advances in treatment have improved survival rates,
the prediction of breast cancer recurrence remains a
complex and crucial challenge [7]. Accurate recurrence
prediction is essential for tailoring treatment strategies,

improving patient outcomes, and reducing the burden
of recurrent breast cancer. In recent years, ML and DL
techniques have exhibited the potential to enhance the
accuracy of recurrence prediction models [8]. Breast
cancer recurrence occurs when cancer cells reappear
after initial treatment, often in a more aggressive form
[9]. Accurate prediction is crucial for guiding treatment
decisions, enabling early intervention, and improving
overall survival rates. Traditional clinical risk assess-
ment tools, while valuable, may have limitations in
capturing the complex interplay of factors influencing
recurrence [10]. ML approaches have shown promise
in addressing these challenges. Various studies have
explored the application of ML techniques, such as
KNN and SVM, for breast cancer recurrence predic-
tion [11].

DL techniques, particularly RNNs, have emerged
as powerful tools for modelling sequential data [12].
LSTM and GRU networks, have demonstrated the abil-
ity to identify dependencies for modelling dynamic
biological processes, such as cancer progression [13].
LSTM, with its memory cells and gating mechanisms,
has been widely used in various medical domains,
including cardiology and genomics, for modelling
sequential data [14]. GRU, a simpler RNN variant,
offers advantages in terms of training efficiency while
maintaining competitive performance in sequence
modelling tasks [15]. The success of predictive mod-
els often depends on the quality and relevance of
input features. Feature selection methods play a cru-
cial role in identifying the most informative attributes
while reducing dimensionality and enhancing model
interpretability [16]. Regression-based feature selection
techniques, such as Lasso regression, assign coefficients
to features, highlighting their importance in predic-
tive models [17]. ANOVA evaluates the significance of
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different variables and their impact on recurrence risk.
Recent research has explored the integration of LSTM
and GRU networks with feature selection techniques
to improve breast cancer recurrence prediction. This
approach combines the capabilities of deep learning in
modelling sequential data with the benefits of feature
selection in enhancing model interpretability.

Smith et al. [18] demonstrated the effectiveness of
LSTM-based models in capturing temporal patterns
in patient data, leading to significant improvements
in recurrence prediction accuracy compared to tradi-
tional methods [19]. The incorporation of regression-
based feature selection allowed for the identification
of critical clinical and genomic factors contributing to
recurrence risk. Similarly, Garcia et al. [20] extended
this approach by incorporating GRU models into the
predictive framework, highlighting the advantages of
GRU’s simplified architecture and efficient training.
While the integration of LSTMandGRUnetworks with
feature selection methods shows promise, several chal-
lenges and avenues for future research exist. One chal-
lenge is the need for larger and more diverse datasets to
ensure the generalizability of predictive models. Model
interpretability remains a critical concern in clinical
applications. Addressing this challenge may involve
developing techniques to visualize and explain the deci-
sions made by LSTM and GRU models. Furthermore,
ethical considerations surrounding the use of AI in
healthcare, including breast cancer prediction, warrant
careful attention [22]. Ensuring transparency, fairness,
and privacy in model development and deployment is
essential.

The integration of LSTM and GRU networks
with feature selection techniques holds promise for
improving breast cancer recurrence prediction. These
approaches offer the potential to enhance prediction
accuracy while providing valuable insights into the fac-
tors contributing to recurrence risk. As researchers
continue to explore these methodologies and address
the associated challenges, the future holds promise for
more precise and interpretable predictive models that
can positively impact the lives of breast cancer patients.

3. Dataset

This study employed the publicly available WBC
dataset, which was downloaded without any restric-
tions. Subsequently, we conducted a thorough dataset
pre-processing phase [23]. During this phase, we
applied alternative techniques to structure and prepare
the dataset for analysis. Data pre-processing is a cru-
cial step in filtering and formatting the data in a way
that makes it suitable for analysis. Real-world datasets
often exist in various formats, and it is essential to
adapt them for comprehensible utilization. Data pre-
processing serves as a reliable method for addressing

these challenges by transforming the dataset into a
usable format for standard operations.

The data for this study was sourced from the WBC
repository, comprising 569 cases. It includes a single
class attribute, “outcome,” with two primary values
denoted as “R” for recurring and “N” for non-recurring,
alongside 34 additional attributes. Among the cases,
there were 47 instances of recurrence and 151 instances
of non-recurrence. Each entry in this dataset contains
follow-up information related to breast cancer cases,
specifically focusing on patients diagnosed with inva-
sive breast cancer without remote metastasis. The ini-
tial 30 attributes are derived from breast lump images,
which was obtained through Fine Needle Aspiration
(FNA). To facilitate the utilization of categorical fea-
tures in our analysis, we employed a label encoder.
This tool effectively transforms categorical feature lev-
els into numerical values. In this study, label values
ranging from 0 to 1 were assigned using the Label
Encoder. Specifically, “Recurrence” was encoded as 1,
while “No-recurrence” was encoded as 0.

Data normalization is a technique employed to
rescale one or more parameters within a range of 0–1.
This process ensures that the maximum value of each
attribute becomes 1, while theminimumvalue becomes
0. Normalization is particularly beneficial when the
researcher lacks prior knowledge about the data distri-
bution. Following the application of the Label Encoder
technique, which converts text-labelled datasets into
numerical datasets, the entire dataset is transformed
into a numeric format. The process of normalizing
numeric datasets is elucidated through Equation 1.

|xi| = xi√
x2i + y2i + z2i

(1)

After completing the data pre-processing phase, we
derived a set of 30 unique features, each of which
exhibits specific interconnections. The distribution of
these geometric features is visually represented in
Figure 2 through a histogram. These geometric fea-
tures, such as perimeter, area, and shape, play a vital
role in characterizing the structure and dimensions of
cancer-affected tissues. In the domain of image analysis,
geometric features are commonly employed to describe
and quantify the characteristics of objects within an
image. Extracting these features from mammograms
holds particular significance as they furnish valuable
insights into the geometric shapes of cells. These geo-
metric attributes serve as essential indicators of tissue
morphology and are consequently crucial for our pro-
posed DL models’ training process.

In image analysis, structural features are instru-
mental in capturing the spatial arrangements of pixels
within an object, thereby providing insights into its tex-
ture, patterns, and shape. Figure 3 serves as a visual
representation of the distribution of these structural
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Figure 2. Geometrical feature distribution.

features within our dataset. These features are numer-
ically encoded, facilitating the analysis of the relation-
ships between different components within an object.
Texture information is encapsulated through the exam-
ination of binary patterns within a circular neighbour-
hood surrounding each pixel. Additionally, our analysis
encompasses other structural attributes, including the
utilization of Gabor filters to ascertain the orientation
and frequency of texture patterns. Furthermore, shape
context descriptors play a significant role in characteriz-
ing object shapes by comparing the distribution of their
contour points with those of a reference shape.

Texture-based features belong to a category of
attributes that elucidate the spatial fluctuations in pixel
intensities within an image. The depiction of the dis-
tribution of these specific features can be observed in
Figure 4. Their primary function is to encapsulate valu-
able details regarding the texture or surface qualities
exhibited by an object within the image. The computa-
tion of texture-based features is accomplished through
diverse methodologies, including frequency analysis
and transform-based analysis. The dataset consists of
the records of 569 patients. The correlation between
data indicates the ability of the dataset to predict breast
cancer recurrence in an efficient way. The feature hav-
ing perfect correlation (1) is dropped and the remain-
ing features are considered. The correlation analysis
of the given dataset is depicted in Figure 5. Highest

correlation is obtained for “diagnosis” and lowest cor-
relation is obtained for “smoothness_se”. The correla-
tion of remaining features falls in between these two
features.

Feature correlation pertains to the degree of asso-
ciation or similarity between two or more attributes
within a dataset. This aspect holds significant impor-
tance in both feature selection and the functioning of
deep learning algorithms. This is because highly cor-
related features can have adverse effects on a model’s
performance and accuracy. When two features exhibit
a strong correlation, it signifies that they convey com-
parable information and may potentially introduce
redundancy, ultimately leading to overfitting. Conse-
quently, it becomes imperative to assess and detect cor-
relations among features in order to identify the most
pertinent and mutually independent attributes for a
given task.

In a heat map, data is presented in a matrix format
where rows and columns symbolize distinct categories,
with colours denoting the intensity of the values. Typ-
ically, the colour intensity adheres to a gradient scale,
with darker hues signifying higher values and lighter
shades representing lower values. Heat maps prove
invaluable for detecting correlations, clusters, or out-
liers within the dataset. They offer insights that may
be challenging to extract from alternative visualization
techniques. To illustrate the correlation among features
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Figure 3. Structural feature distribution.

Figure 4. Texture feature distribution.
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Figure 5. Correlation of features.

within the dataset, a heat map, as illustrated in Figure 6,
is utilized.

4. Methodology

The primary aim of the proposed classifiers is to predict
the likelihood of breast cancer occurrence in patients.
Leveraging DL techniques, these classifiers automati-
cally discern features from raw data through supervised
learning, employing an end-to-end training process.
The approach adopts two models: the ANOVA-GRU
model and the LR-CNN-LSTM framework, both tai-
lored for these predictions. Incorporating dropout lay-
ers after GRU layers, except for the dense layers, is
essential to prevent overfitting in this model’s design.
It’s imperative to fine-tune hyperparameters during
model development to maximize its efficiency. This
section outlines the model specifications and its asso-
ciated hyperparameters. Hyperparameter adjustments
play a crucial role in enabling the model to achieve
optimal predictive performance. The deep learning

models are fed with optimized features and subse-
quently trained to determine the likelihood of breast
cancer recurrence.

4.1. Classification using CNN-LSTM and logistic
regression

The proposed LR – Convolutional Neural Network
(LR-CNN-LSTM) model consist of two parts. The
LSTM memory model specializes in learning discrete
participant features, classifying them into two cate-
gories: dense and sparse features. Among these, only
the dense features are retained and utilized for train-
ing the CNN-LSTM classifier. On the other hand, the
sparse features are disregarded. The CNN-LSTM-based
generalization model is designed to learn shared fea-
tures across participants. This approach serves to mit-
igate overall classification bias, ultimately enhancing
the overall efficiency. The architecture of the LR-CNN-
LSTMmodel is visually presented in Figure 7.

LR stands as one of the machine learning algorithms
employed for addressing classification tasks. It serves
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Figure 6. Correlation heatmap of the dataset.

Figure 7. Architecture of LR-CNN-LSTMmodel.

the purpose of estimating the probability of an instance
belonging to a specific class. Notably, LR is primarily
utilized in the context of binary classification, where the
objective is to classify instances into one of two possi-
ble classes. A graphical depiction of the LR operation is
presented in Figure 8.

The model introduced in this study consists of two
distinct components: a memory cell and a generaliza-
tion scheme. The memory-based structure is concep-
tualized for the retrieval of data and it is articulated as:

f (x) = sig(xwT + b), x (2)

wT = w1,w2, . . . . . . ..wd1+d2+dφ (3)

x = x1, x2, . . . . . . ..xd1+d2+dφ (4)

In this equation, regression coefficient is indicated by
wT, bias is denoted by b, X denotes independent vari-
ables and dense data is denoted by d1. Here d2 stands

for the sparse feature data associated with the given
data, The transformation of cross-product is defined as:

φ(x) =
d∏

i=1
x
ci
i=1, ci ∈ {0, 1} (5)

Within Equation (5), the variable ci operates as a
Boolean value, responsible for regulating features. The
prediction function, as demonstrated in Equation (2),
adopts the form of a sigmoid function. This function
plays a pivotal role in controlling prediction values
within the range of (0, 1) and facilitating classification
for the provided dataset. The depiction of the segrega-
tion of dense and sparse features through LR is visually
illustrated in Figure 9.

During the training phase, Stochastic Gradient
Descent (SGD) served as the optimizer, and logistic
loss was employed to quantify the loss. The logistic loss
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Figure 8. Logistic regression operation.

function for LR is defined as:

R(w) = 1
m

m∑
i=1

y1 log(σ (b + wxi)) (6)

Consider a scenario involving “m” samples, where each
sample “x” is characterized by a dimension of “m”.
Within this context, “σ ” represents the sigmoid func-
tion, and “w” is the parameter vector. The “y1” variable
represents the estimate of ith sample in question. In con-
structing the loss function for LR, it’s noteworthy that
when “y” equals 1, the latter equation becomes 0, and
conversely, when “y” equals 0, the former is reduced
to 0. Subsequently, the average of these individual loss
values, computed across all “m” samples, yields the
comprehensive loss function for LR. LSTM represents
an advancement over traditional RNNs, introducing
crucial improvements in handling sequential data. In
LSTM, the current output is intricately linked to the
previous state, allowing it to address some of the inher-
ent limitations of conventional RNNs. One of themajor
challenges that LSTM tackles ismitigating issues related
to long-term dependencies by incorporating gradient
descent techniques. The recurrent hidden state ht and
the output yt depend solely on the previous hidden
state ht−1 and the current input xt LSTM’s architecture
introduces mechanisms that enhance efficiency.

ht = Uxt + Wht−1 (7)

yt = Vht (8)

Bi-directional RNNs can encounter challenges dur-
ing training, particularly when dealing with long-term
dependencies in sequential data. The issues of vanish-
ing and exploding gradients can become pronounced,
rendering Bi-RNNs less suitable for scenarios involving
extended dependencies. This represents a fundamen-
tal concern within recurrent networks. LSTMs have

Figure 9. Separation of dense and sparse features.

demonstrated their effectiveness in managing the van-
ishing and exploding gradient problems efficiently, par-
ticularly in contexts with longer dependencies. Impor-
tantly, LSTMs incorporate three critical gates allowing
for the effective capture and retention of important
sequential patterns. This architectural enhancement is
visually represented in Figure 10.

In this formulation, the LSTM architecture intro-
duces several crucial components to enhance its ability
to capture and manage sequential data effectively. The
“ct” memory cell plays a central role in storing and
maintaining information over time. Additionally, three
gating mechanisms are employed: the “i” (input) gate,
responsible for introducing new information into the
memory cell; the “f” (forget) gate, which controls the
clearing of cell memory; and the “o” (output) gate, reg-
ulating the exposure of memory content in producing
the output. In this context, LSTMproves valuable in the
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Figure 10. Proposed LSTM cell.

computation of an enhanced hidden state as follows:

it = σ [Uiht−1 + ViCt−1 + Wixi] (9)

ft = σ [Uf ht−1 + Vf Ct−1 + Wf xt] (10)

Ot = σ [Uoht−1 + VoCt−1 + Woxt] (11)

ct = tanh[Ucht−1 + Wcxt] (12)

ct = f it ⊗ ct−1 + it ⊗ c̃t (13)

ht = tanh(ct) (14)

The gating mechanisms are facilitated by spe-
cific activation functions, with the sigmoid function
denoted as σ (.) and the hyperbolic tangent function
as tanh(.). This sophisticated architecture and gating
mechanism of LSTM effectively address the challenge
of capturing longer dependencies in sequential data.
The architecture and parameters of a LR-CNN-LSTM
model can be tailored to the specific problem and
dataset, providing flexibility and adaptability across
various applications. Hyperparameter tuning and care-
ful design are necessary to achieve optimal results for
any regression task. The LR-CNN-LSTM algorithm
used the classification of given dataset is described in
Algorithm 1.

Algorithm 1: LR-CNN-LSTM Classification

Input:Wisconsin Breast Cancer Dataset
Output: Breast Cancer Recurrence Prediction
Step 1: Initialize the values in the Dataset.
Step 2: Compute the regression coefficient wT

Step 3: Using wT separate sparse and dense features.
Step 4: Discard the sparse features and select the dense features.
Step 5: Convert the data into a 1-D matrix.
Step 6: Perform convolution operation to extract the features.
Step 7: Utilize the LSTM to categorize the features.
Step 8: Obtain the predicted output.

In this novel approach, the features optimized using
the LR model are given as the input to the CNN-LSTM
classifier. During each layer, numerous network param-
eters influence the classification result. The layers in the
proposed classifier are explained in Table 1.

Figure 11 shows the proposed CNN-LSTM model
for WBC dataset that initialize with 30 features. After
the processing in convolutional and hidden layers, final
output is generated with two classes (Recurrence = 1,
No-Recurrence = 0). In this model 512 neurons and
200 epochs were utilized for training and validation.
200 epochs were used because it is the best value at
which the CNN-LSTM model converges and the loss
and accuracy are stable providing best results.

4.2. Classification Using GRU and ANOVA

The proposed model, (GRU-ANOVA) model, is com-
posed of two distinct components: the Gated Recur-
rent Unit (GRU)-based generalization model and the
ANOVA-based feature optimization model. Within the
ANOVA model, its function is to identify the variance
within individual participant features and uncover any
correlated features. Among these, only the correlated
features are retained and utilized for training the GRU-
DNN classifier, while any remaining features are dis-
regarded. The GRU-based generalization model then
proceeds to learn the correlated features shared among
participants. This comprehensive approach aims to
mitigate overall classification bias and enhance the
overall accuracy of classification tasks. The architec-
tural representation of the ANOVA-GRUmodel can be
observed in Figure 12.

Through the application of ANOVA for feature
selection, the dataset undergoes a ranking process
based on F-statistic values assigned to each set of fea-
tures. This ranking effectively identifies the optimal
subset of features within the dataset. ANOVA, a sta-
tistical test, is particularly valuable when dealing with
a combination of both numerical and categorical vari-
ables. It serves as a means to investigate the correlations
between these features, with the F-test for ANOVA
being instrumental in assessing these correlations. The
calculation of the sum of squares is achieved through
the following equations.

SSw =
k∑

j=1

l∑
j=1

X − X̄j (15)

Table 1. Proposed CNN-LSTMmodel summary.

Layers Type Output shape Parameters

Input Layer Conv1D 30× 256 1024
Batch Normalization Batch Norm 30× 256 1024
ReLU Activation 30× 256 0
Convolution Layer Conv1D 30× 128 98432
Batch Normalization Batch Norm 30× 128 1024
ReLU Activation 30× 128 0
Maxpooling Pooling 15× 128 0
LSTM Recurrent 64 49408
Hidden Layer Dense 128 930
Fully Connected Layer Dense 1 129
Total 158849
Trainable 158081
Non-Trainable 768
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Figure 11. Proposed CNN-LSTMmodel for breast cancer recur-
rence prediction.

SSb =
k∑

j=1

l∑
j=1

X̄j − X (16)

The degrees of freedom (df ) are a crucial concept used
to determine the variability in a dataset and to calcu-
late test statistics. Degree of freedomare associatedwith
different sources of variation in the ANOVA model is
given by,

dfw = k − 1 (17)

dfb = n − k (18)

Mean Square (MSW) is calculated by dividing SSW
within groups by df associated with group variability
given in following equations.

MSw = SSw
dfw

(19)

MSb = SSb
dfb

(20)

The F-statistic, often referred to as the F-test or F-ratio,
holds a pivotal position within the realm of ANOVA.
This statistical measure serves as a critical tool for
assessing whether significant variations exist in the
means of two or more groups or treatments. The F-
statistic, as defined in Equation 21, is employed to rig-
orously test the null hypothesis positing that the group
means are equal. It essentially aids in the evaluation of
whether any observed disparities between these groups
carry statistical significance.

F = MSb
MSw

(21)

GRUs employ a gating mechanism to regulate the flow
of information, distinguishing them from LSTM net-
works by not having a distinct cell state. Instead, GRUs
utilize a hidden state (Ht). This simplified architecture
offers the advantage of faster training. During every
timestamp (t), input (Xt) is taken along with (Ht−1).
Subsequently, Ht is generated, which is transferred on
to the next timestamp in the sequence. Unlike LSTMs,
which feature three gates, GRUs incorporate primar-
ily two gates named reset and update. The GRU cell
structure is visually depicted in Figure 13.

Update Gate (z) plays a pivotal role in deciding the
extent to which prior knowledge should be carried for-
ward into the future, serving as an analogous counter-
part to the output gate, as outlined in Equation 21.

zt = σ [Wz(ht−1, xt)] (21)

Reset Gate (r) is responsible for determining the por-
tion of previous knowledge to discard, bearing similar-
ity to the combined function of the input gate and the
forget gate in an LSTM recurrent unit.

rt = σ [Wr(ht−1, xt)] (22)

The current memory gate (ht) in a GRU, although often
overlooked in standard GRU discussions, is integrated
as a means to present non-linearity and ensure zero-
mean input, aiming to diminish the influence of prior
information being propagated to future. The ANOVA-
GRU algorithm used the classification of given dataset
is described in Algorithm 2.

h̃t = tanh[W(ht−1 ∗ rt , xt)] (23)

ht = h̃t ∗ zt + ht−1 ∗ (1 − zt) (24)
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Figure 12. Architecture of ANOVA-GRUmodel.

Figure 13. Structure of GRU cell.

Algorithm 2: ANOVA-GRU Classification

Input:Wisconsin Breast Cancer Dataset
Output: Breast Cancer Recurrence Prediction
Step 1: Calculate all the means in the Dataset.
Step 2: Compute the Sum of Squares
Step 3: Compute the Degrees of Freedom (df).
Step 4: Compute the Mean of Squares.
Step 5: Calculate the F-Statistic.
Step 5: Using F-statistic value, optimize the features in the dataset.
Step 6: Perform GRU operation to extract the features.
Step 7: Utilize the sigmoid function to categorize the features.
Step 8: Obtain the predicted output.

In this novel approach, the features optimized using
the ANOVA model are given as the input to the
GRU classifier. During each layer, numerous network
parameters influence the classification result. The lay-
ers involved in the proposed GRU classification model
are explained in Table 2.

Figure 14 shows the proposed GRUmodel for WBC
dataset that initialize with 30 features. After the pro-
cessing in convolutional and hidden layers, final output
is generated with two classes (Recurrence = 1, No-
Recurrence = 0). In this model 512 neurons and 200

Table 2. Proposed GRUmodel summary.

Layers Type Output shape Parameters

Input Layer (GRU) Recurrent 30× 50 7950
Dropout Dropout 30× 50 0
GRU Recurrent 30× 50 15300
Dropout Dropout 30× 50 0
GRU Recurrent 30× 50 15300
Dropout Dropout 30× 50 0
GRU Recurrent 30× 50 15300
Dropout Dropout 30× 50 0
Fully Connected Layer Dense 1 51
Total 53901
Trainable 53901
Non-Trainable 0

epochs were utilized for training and validation. 200
epochs were used because it is the best value at which
theGRUmodel converges and the loss and accuracy are
stable providing best results.

5. Results and discussion

Training loss represents the amount of loss relative to
the training data at the conclusion of each epoch, with
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Figure 14. Proposed GRU model for Breast Cancer recurrence
prediction.

the optimization process aiming to minimize it, hence
lower values indicating better performance. Accuracy,
on the other hand, is the ratio of correct predictions
to all predictions made on the training data, typically
inversely related to the loss. Validation metrics, like
trainingmetrics, provide similarmeasures but are com-
puted using validation data, ensuring that they remain

unseen by the model during training. The Binary
Cross-Entropy (BCE) is employed to quantify the loss
during each iteration, where “y” signifies the output
label (1 for recurrence and 0 for no-recurrence), and
“p(y)” represents the prediction probability for all “N”
data points. The mathematical expression for BCE is
presented in Equation 25.

Hp(q) = − 1
N

N∑
i=1

yi. log [p(yi)]

+ (1 − yi). log [1 − p(yi)] (25)

The identification of pertinent features that aptly char-
acterize the case type holds paramount importance in
the realm of breast cancer recurrence prediction. Typ-
ically, these relevant features are chosen based on their
correlation with the target variable and their capac-
ity to differentiate between distinct categories. Once
selected, these features serve as the foundation for con-
structing predictive models that excel in forecasting
the outcomes of new cases. This process of pinpoint-
ing relevant features is a fundamental and pivotal stage
in numerous data-driven applications, exerting a pro-
found influence on the performance and precision of
the ultimate model. In this formula, we observe that
for all correctly predicted points (y = 1), the loga-
rithm of the predicted probability (log(p(y))) is added
to the loss to account for the log probability correction.
Conversely, for incorrectly predicted points (y = 0),
the sum of the logarithm of (1-p(y)) is computed to
determine the log probability of the result being incor-
rect. Overfitting becomes a concern when the training
loss and accuracy appear favourable, but the valida-
tion counterparts exhibit poor performance, indicat-
ing an inability to generalize to new data. To com-
prehensively evaluate the performance of breast cancer
recurrence prediction, these metrics are typically com-
bined into training and validation loss plots. These
visual representations illustrate how the model’s accu-
racy evolves across epochs or iterations during train-
ing. Throughout this training process, the model is
exposed to labeled data, striving to discern underly-
ing patterns and features associated with each label.
Over multiple epochs, the model adapts its parameters
and weights to better align with the data, enhancing
its accuracy. The analysis of accuracy fluctuations over
epochs can reveal the impact of novel feature optimiza-
tion techniques in mitigating overfitting. In assessing
the efficiency of the breast cancer recurrence predic-
tion algorithm, training and validation accuracy are
assessed across various epochs, as depicted in Figure 15
and Figure 16.

In the process of analyzing accuracy, the dataset
is divided into two distinct categories: validation data
and training data. Notably, metrics like precision,
accuracy, recall, and F1-score tend to decrease as
the percentage of validation data within the dataset
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increases. Conversely, the performance metrics exhibit
an upward trend as the percentage of training data
increases. Throughout the experiment, various combi-
nations of training and validation data are explored,
with the optimal results achieved when using 30% for
training and 70% for validation. Incorporating 30 fea-
ture maps and utilizing cross-validation, a diverse set
of performance parameters is computed. The best per-
formance is attained when allocating 30% of the data
to validation and 70% to training. These results are
derived from a 10-fold cross-validation approach, with
the highest recorded accuracy reaching 97.63%. After
rigorous experimentation with the dataset, the pro-
posed models are fine-tuned, leading to improved clas-
sification outcomes. The choice of the algorithms is

driven by its capability to enhance performance param-
eters, and this implementation of deep learning tech-
niques stands out for its accuracy and computational
efficiency.

The confusionmatrix depicted in Figure 17 provides
a clear idea about the performance of proposed LR-
CNN-LSTM classification algorithm in discriminating
various classes in the validation data. The total num-
ber of patients considered for validation is 114. In this
validation dataset, 71 patients belong to class 0 (No-
Recurrence) and 43 patients belong to class 1 (Recur-
rence). In the case of no-recurrence all 71 patients
are correctly categorized. In the case of recurrence, 41
patients are correctly categorized and 2 patients are
wrongly categorized. This indicates that, the proposed

Figure 15. Average accuracy and loss per epoch for LR-CNN-LSTM classifier.

Figure 16. Average accuracy and loss per epoch for ANOVA-GRU classifier.
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Table 3. Performance comparison.

Methodology Accuracy (%) Precision (%) Recall (%) F1-score (%)

Naïve Bayes [18] 92.94 93.85 90.89 92.63
Random Forest [27] 96.71 96.77 95.14 94.36
KNN [26] 95.03 95.24 94.18 95.52
SVM [28] 95.70 96.28 93.48 95.83
Decision Tree [29] 90.46 91.34 90.18 90.89
Logistic Regression [30] 95.74 96.83 95.32 95.10
General CNN [31] 85.83 87.34 83.13 86.38
LR-CNN-LSTM 98.24 99.14 98.30 98.14
ANOVA-GRU 96.49 97.04 96.67 96.67

algorithm is able to discriminate between both classes
in an efficient way.

The confusion matrix depicted in Figure 18 pro-
vides a clear idea about the performance of proposed
ANOVA-GRU classification algorithm in discriminat-
ing various classes in the validation data. The total
number of patients considered for validation is 114. In
the case of no-recurrence, 70 patients are correctly cate-
gorized and only 1 patient is wrongly categorized. In the
case of recurrence, 40 patients are correctly categorized
and 3 patients are wrongly categorized. This indicates
that, the proposed algorithm is able to discriminate
between both classes in an efficient way.

The Receiver Operating Characteristic (ROC) curve
serves as a visual representation of the binary prediction
algorithm’s performance. This curve plots the true pos-
itive rate (TPR) along the y-axis against the false pos-
itive rate (FPR) along the x-axis, while systematically
varying the discrimination threshold. The area under
the curve (AUC) stands as a key metric that assesses
the algorithm’s overall performance. Higher values of

AUC indicate improved discrimination between pos-
itive and negative classes. In Figure 19, we present
the ROC curve and AUC for the proposed CNN-
LSTM Classifier, offering insights into its classification
capabilities.

TheROCcurve is a vital tool for evaluating amodel’s
capacity to separate classes, offering valuable insights
as the decision threshold varies. This graphical repre-
sentation showcases the trade-off between sensitivity
and specificity. The resultant curve visually depicts how
themodel’s performance fluctuates across various deci-
sion thresholds. In Figure 20, we present the ROC
curve and AUC for the proposed ANOVA-GRU Clas-
sifier, shedding light on its classification performance
characteristics.

The performance of the proposed breast can-
cer recurrence prediction scheme is compared with
existing schemes. The mean values of accuracy, preci-
sion, recall and F1-score for the proposed LR-CNN-
LSTM model were calculated as 98.24%, 99.14%,
98.30% and 98.14% respectively. The mean values

Figure 17. Confusion matrix for LR-CNN-LSTM classifier.
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Figure 18. Confusion matrix for ANOVA-GRU classifier.

of accuracy, precision, recall and F1-score for the
proposed ANOVA-GRU model were calculated as
96.49%, 97.04%, 96.67% and 96.67% respectively. The
reason for obtaining good performance is due to the
incorporation of recurrence and additional layers. The

comparison of performance among proposed schemes
with existing schemes is presented in Table 3 and
depicted in Figure 21.

The average performance of WBC dataset is com-
pared with seven existing techniques. From the above

Figure 19. ROC curve of CNN-LSTM classifier algorithm.
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Figure 20. ROC curve of ANOVA-GRU classifier algorithm.

Figure 21. Comparison of performance.

comparison, the accuracy for proposed LR-CNN-
LSTM method is 12.41% higher than general CNN
model and 1.53% higher than Random Forest. The pre-
cision measure of proposed LR-CNN-LSTM method
is 11.8% higher than CNN and 2.31% higher than
LR. The recall measure for proposed LR-CNN-LSTM
method is 15.17% higher than CNN and 2.98% higher
than Logistic Regression. The F1-score for LR-CNN-
LSTM scheme is 11.76% higher than CNN and 2.31%

higher than SVM. The ANOVA-GRU method outper-
forms the general CNNmodel, showcasing a significant
10.66% increase in accuracy. Moreover, in terms of pre-
cision, the proposed ANOVA-GRU method excels by
9.7% compared to CNN. When considering recall, the
ANOVA-GRU method boasts an impressive 13.54%
improvement over CNN and a 1.35% edge over
LR. Additionally, the F1-score for the ANOVA-GRU
approach surpasses CNN by 10.29% and SVM by
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0.84%. Optimized layer selection effectively mitigates
overfitting concerns while enhancing network perfor-
mance.

6. Conclusion

This study introduces two innovative systems for the
prediction and classification of breast cancer recur-
rence, leveraging CNN, LSTM, and GRU models.
Fuzzy Computation. Many system performance crite-
ria, parameters, and decision factors are not always
essential, nor is it always practicable, to quantify them
precisely. Variables are considered uncertain or fuzzy
when their values are not well-defined.

The evaluation is conducted on the WBC dataset,
encompassing both training and validation phases.
In this framework, 30 features extracted from the
WBC dataset are employed to predict breast cancer
recurrence likelihood. Feature optimization is achieved
through LR and ANOVA techniques. The training
phase involves minimizing validation loss by optimiz-
ing the number of epochs. Various combinations of
training and validation datasets are explored in the
experimentation process.

Themean performancemetrics for the proposed LR-
CNN-LSTM model are as follows: accuracy (98.24%),
precision (99.14%), recall (98.30%), and F1-score
(98.14%). Similarly, the mean metrics for the pro-
posed ANOVA-GRU model are as follows: accuracy
(96.49%), precision (97.04%), recall (96.67%), and F1-
score (96.67%). Empirical findings affirm that the
LR-CNN-LSTMmodel-based breast cancer recurrence
prediction system outperforms alternative algorithms.
To further enhance the algorithm’s performance, fine-
tuning of network parameters is a potential avenue.
Future research directions involve refining the CNN
model by incorporating additional layers and conduct-
ing fine-tuning for continued performance enhance-
ment.
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