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ABSTRACT
Systems using graphical processing units (GPUs) and field-programmable gate arrays (FPGAs)
have increased due to their advantages over central processing units (CPUs). However, such
systems require the understanding of hardware-specific technical specifications such as Hard-
ware Description Language (HDL) and compute unified device architecture (CUDA), which is a
high hurdle. Based on this background, we previously proposed environment-adaptive software
that enables automatic conversion, configuration and high-performance operation of existing
code according to the hardware to be placed. As an element of this concept, we also proposed a
methodof automatically offloading loop statements of application source code for CPUs toGPUs
and FPGAs. In this paper, we propose a method for offloading a function block, which is a larger
unit, instead of individual loop statements in an application to achieve higher speed by auto-
matically offloading to GPUs and FPGAs. We implemented the proposedmethod and evaluated
it using current applications offloading to GPUs and FPGAs.
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1. Introduction

It is mentioned in [1] that Moore’s law will be slow
down and a central processing unit’s (CPU’s) transis-
tor density cannot be expected to double in 1.5 years.
Based on this situation, systems with heterogeneous
hardware, such as graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs), are increas-
ing. For example, Microsoft’s search engine Bing uses
FPGAs [2], and AmazonWeb Services (AWS) provides
GPUs and FPGAs using cloud technologies [3–6].

However, to achieve high application performance
using heterogeneous hardware, developers need to
appropriately program and configure such hardware
and use high skill technologies such as compute unified
device architecture (CUDA) [7] and open computing
language (OpenCL) [8]. This is a high barrier to using
GPUs or FPGAs for offloading.

Along with the progress in Internet of Things (IoT)
technology (e.g. Industrie 4.0 [9] and so on [10–15]),
connected IoT devices are increasing rapidly. Gartner,
Inc. forecasts the number of IoT devices will reach sev-
eral tens of billions in 2020 and will be connected to
networks. There are various application fields of IoT
such as manufacturing, distribution, medical, and agri-
culture, and many applications are developed. In IoT
applications, the knowledge of embedded software and
assembly is required for precise control of IoT devices.
In many applications, one gateway (GW) controls sev-
eral IoT devices, but design studies according to the
environments are necessary.

The expectation of applications using various het-
erogeneous hardware and many IoT devices is get-
ting higher; however, the hurdles are currently high
for using them. To surmount such hurdles, it will be
required that application programmers will only need
to write common logics to be processed, then soft-
ware will adapt to the environments with heteroge-
neous hardware to make it easy to use such hardware
and IoT devices. Java, which appeared in 1995, caused
a paradigm shift in environment adaptation that allows
software written once to run on another CPUmachine.
However, no consideration was given to the application
performance at the migration porting destination.

Thus we previously proposed environment-adaptive
software that effectively runs once-written applications
by automatically executing code conversion and con-
figurations so that GPUs, FPGAs, IoT devices and so
on can be appropriately used on deployment envi-
ronments [16]. To enable low-skilled users to take
advantage of heterogeneous hardware, environment-
adaptive software concept extracts appropriate offload-
able parts from existing applications and offloads to
heterogeneous hardware automatically. The features are
“offloading existing applications”, “automatic extrac-
tion of appropriate offloadable parts” and “automatic
conversion suitable for hardware of deployment envi-
ronment”.

Basically, there are manual, semi-automatic, and
automatic modification methods when offloading to
heterogeneous devices, however, there are few examples
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of automatic modification offloading because of its dif-
ficulty. Our research aims at full automation by search-
ing for an appropriate offload pattern through actual
performance measurement. As an element technology
of environment-adaptive software concept, we have
developed a method for fully automatically offloading
loop statements of application source code to GPUs
or FPGAs [17–19]. These research can be automated
but the performance improvements are not sufficient.
Therefore, in this paper, the motivation and challenge
are proposing a method for offloading function blocks,
which are larger units, rather than individual loop state-
ments in applications to achieve higher performance
by automatic offloading to GPUs or FPGAs. We imple-
mented the proposed method and evaluated its effec-
tiveness of offloading several applications to GPUs or
FPGAs. Of course, some applications which are not
suitable for offloading to GPUs or FPGAs to improve
performances are out of scope.

The rest of this paper is organized as follows. In
Section 2, we review technologies in the market and
our previous proposals. In Section 3, we also describe
recent research. In Section 4, we present the proposed
automatic offloading method for function blocks to
GPUs and FPGAs. In Section 5, we explain its imple-
mentation. In Section 6, we discuss its performance
evaluation and the results. In Section 7, we conclude
this paper.

2. Existing technologies

2.1. Technologies in themarket

Java is one example of environment-adaptive software.
In Java, using a virtual execution environment called
Java Virtual Machine, written software makes it possi-
ble to run even on machines of different OSes without
more compiling (Write Once, Run Anywhere). How-
ever, it was not considered whether the expected per-
formance could be attained at the porting destination,
and there was too much effort involved in performance
tuning and debugging at the porting destination (Write
Once, Debug Everywhere). If software uses heteroge-
neous hardware, such as GPUs or FPGAs, the tuning
effort increases.

CUDA is a major development environment for
general-purpose GPUs (GPGPUs) that use GPU com-
putational power for more than just for graphics
processing. To control heterogeneous hardware and
many core CPUs uniformly, OpenCL specification and
its software development kit (SDK) are widely used.
CUDAandOpenCL require not only C language exten-
sion but also additional descriptions such as mem-
ory copy between GPU or FPGA devices and CPUs.
Because of these programming difficulties, there are few
CUDA and OpenCL programmers.

For easy heterogeneous hardware programming,
there are technologies that specify parallel processing

areas by specified directives, and compilers transform
these directives into device-oriented codes basis on
specified directives.Open accelerators (OpenACC) [20]
is one directive-based specification, and the Portland
Group Inc.(PGI) compiler [21] is one directive-based
compiler. For example, users specify OpenACC direc-
tives on C/C++ codes to process them in parallel, and
the PGI compiler checks the possibility of parallel pro-
cessing and outputs and deploys execution binary files
to run on GPUs and CPUs. IBM JDK supports GPU
offloading based on Java lambda expression [22].

In this way, CUDA, OpenCL, OpenACC, and oth-
ers supportGPUor FPGAoffloadprocessing. Although
processing on a GPU or FPGA can be done, suffi-
cient application performance is difficult to attain. For
example, when users use an automatic parallelization
technology, such as the Intel compiler [23] for multi-
core CPUs, possible areas of parallel processing such as
“for” loop statements are extracted.However, naive par-
allel execution performances with GPUs or FPGAs are
not high because of overheads of CPU and GPU/FPGA
memory data transfer. To achieve high application per-
formancewithGPUs/FPGAs, CUDA/OpenCLneeds to
be tuned by highly skilled programmers or an appropri-
ate offloading area needs to be searched for by using the
PGI compiler or other technologies.

Therefore, it is difficult to attain high application per-
formance for users without GPU or FPGA skills. More-
over, if users use automatic parallelization technologies
to obtain high performance, it takes many efforts to
determine if each loop statement is parallelized, and
there are many applications that cannot be improved.

This paragraph shows a basic taxonomy. There are
manual, semi-automatic and automatic modification
methods when offloading to heterogeneous devices.
Manual modification is a method of modifying using
detail languages such as CUDA andHardware Descrip-
tion Language (HDL), and semi-automatic modifica-
tion is a method of specifying the offload part using
an instruction directive and the compiler generates an
offload binary, using simple languages such asOpenMP
and languages of High Level Synthesis (HLS) tools.
Automatic modification is a method that analyses a
normal CPU program and the tool automatically deter-
mines the offload part and generates an offload binary.
However, basically, even if a machine can analyse
whether a loop statement can be processed in parallel, it
cannot determine whether it is suitable for parallel pro-
cessing, so there are few examples of automatic modi-
fication offloading. This research challenges automatic
modification.

2.2. Previous our proposals

Based on the background, to adapt software to an
environment, we previously proposed environment-
adaptive software [16], the processing flow of which is
shown in Figure 1.
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Figure 1. Processing flow of environment adaptive software.

Step 1: Code analysis
Step 2: Offloadable-part extraction
Step 3: Search for suitable offload parts
Step 4: Resource-amount adjustment
Step 5: Placement-location adjustment
Step 6: Execution-file placement and operation verifi-

cation
Step 7: In-operation reconfiguration

Then, we explain our previous automatic loop-
statement-offloading method for GPUs. It regarded as
a elemental technology to achieve an environmental
adaptation concept. We proposed using the genetic
algorithms (GA) [24] to automatically find an appropri-
ate loop statement to be offloaded to a GPU [16]. First,
a parallel loop statement is checked from a general-
purpose program that is not supposed to be paral-
lelized, and loop-statement offload patterns aremapped
to genes with a value of 1 for GPU execution and 0 for
CPU execution. Then the performance verifications are
repeated in the verification environment to search for
an appropriate offloading area.

For FPGAs, since it takes more than hours to imple-
ment codes to be processed on FPGAs unlike GPUs, we
carried out actual FPGA measurements after narrow-
ing down the offload candidate loop statements [19].
For detected loop statements, a loop statement having
a high arithmetic intensity is extracted using an arith-
metic intensity analysis tool. Then this method pre-
compiles the generated OpenCL codes and finds a loop
statement with high resource efficiency. For narrowed-
down loop statements, it generates OpenCL codes that
offload each loop statement or combination of those
loop statements, implements codes to be processed on
FPGAs, measures application performance, and selects
the highest-performance OpenCL code.

In the case of GPUs or FPGAs acceleration, however,
it is often the case that an algorithm forCPUs is changed

to one suitable for hardware processing. For this reason,
simple offloading of loop statements is often insuffi-
cient in application performance compared to manu-
ally changing algorithms. However, it is very difficult
for machines to automatically extract the hardware-
oriented algorithms appropriate for each application.
Therefore, this paper targets automatic offloading to
GPUs or FPGAs with sufficient performances com-
pared to previous our loop statement offloading.

3. Recent research

Wuhib et al. studied resourcemanagement and effective
allocation [25] on the OpenStack cloud. e target appro-
priate offloading on heterogeneous hardware servers
including the cloud. We previously proposed methods
for selecting appropriate servers from heterogeneous
hardware servers. The methods of this paper improve
previous methods with automatically function block
offloading.

The papers of [26–32] study offloading mobile
devices processing to edge computing or other servers.
Research are done to offload the processing of mobile
devices to edge computing to distribute the load. The
paper [33] also aims at comfortable application oper-
ation by performing processing offload from mobile
devices to edge servers and reducing the processing of
mobile devices with small resources based on Neuro-
Fuzzy approach. The issue is how to distribute the
load and it is assumed that the calculation will be pro-
cessedmainly by CPUs. On the other hand, the author’s
research aims to offload processing that takes a long
time in CPUs to heterogeneous devices such as GPUs
and FPGAs, and the main issue is code conversion in
different devices.

Regarding offloading to GPUs, Chen et al. [34]
used metaprogramming and just-in-time (JIT) com-
pilation for GPU offloading of C++ expression tem-
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plates, Bertolli et al. [35] and Lee et al. [36] are working
on offloading to GPU using OpenMP. There have been
few studies on automatically converting existing code
to the GPU without manually inserting new targeted
directives or a new development model.

We use an OpenACC PGI compiler for C/C++
application offloading evaluations. In addition to
C/C++ language, Java is often used for OSS applica-
tions. From Java 8, parallel processing can be specified
by lambda expression. IBM provides a JIT compiler
that offloads processing with lambda expressions to a
GPU [22]. In the case of Java, we can extract an appro-
priate offloading area by using this JIT compiler and the
proposed method checks whether function blocks and
loop statements require GPU processing with a lambda
expression.

Regarding FPGA offloading, Liu et al. [37] proposed
a technology that offloads nested loops to FPGAs. The
nested loops can be offloaded with an additional 20
minutes of tools run time. Alias et al. [38] proposed
a technology in which an HLS configures an FPGA
by specifying C language code, loop tiling, and so on
using Altera HLS C2H. Sommer et al. [39] proposed a
technology that can interpret OpenMP code and exe-
cute FPGA offloading. Putnum et al. [40] used a CPU-
FPGA hybrid machine to speed up a program with
a slightly modified standard C language. For FPGA
offloading, instructions needed to be manually added
such as which parts to parallelize using OpenMP or
other specifications. There have been few studies on
automatically offloading existing codes to FPGAs.

Generally, CUDA and OpenCL control intra-node
parallel processing, and message passing interface
(MPI) controls inter-node or multi-node parallel pro-
cessing. However, MPI also requires high technical
skills of parallel processing. Thus MPI concealment
technology has been developed that virtualizes devices
of outer nodes as local devices and enables such devices
to be controlled by only OpenCL [41]. When we select
multi-nodes for offloading destinations in the future,
we plan to use this MPI concealment technology.

Even if an extraction of an offloading area is appro-
priate, application performance may not be high when
the resource balance of a CPU and devices is not appro-
priate. For example, a CPU takes 100 seconds and GPU

1 second when one task is processed, so a CPU slows
down processing. Shirahata et al . [42] attempted to
improve total application performance by distributing
map tasks with the same execution times of a CPU and
GPU in MapReduce processing. The study by Kaleem
et al. [43] is also related to task scheduling when the
CPU and GPU are integrated chips of the same die.
Referring to their papers, we also investigate how to
deploy functions on appropriate locations and resource
amounts to avoid bottlenecking CPUs or GPUs.

The papers of [44–46] are the recent papers such
as for time critical applications. The work of [44] con-
trols load balancing of CPU, GPU and FPGA devices
by EngineCL which is a high-level framework based
on OpenCL. The work of [45] studies a method for
accelerating Web search engines using FPGA. In the
search process, various pipeline processes are per-
formed. By implementing hardware processing based
on the clock timing, performance is improved by
2 orders of magnitude. The work of [46] proposes
SWITCH, amiddleware service for infrastructure plan-
ning and provisioning for time critical applications.
According to the programming model described in
the abstract layer, the cloud infrastructure is coordi-
nated to satisfy the constraints. Although the [44]’s
target of controlling heterogeneous hardware is close to
our research, programming with EngineCL is needed
and automatic adaptation of existing applications like
this paper is not considered. As for [45], we will con-
sider using this idea for FPGA offloading of function
blocks that require real-time processing such as Web
search processing. In consideration of [46], automatic
conversion for each hardware has not been sufficiently
studied.

Figure 2 shows a comparison of related work of het-
erogeneous device offloading. There are many reports
on using GPUs and FPGAs to achieve high perfor-
mance of applications manually with much effort such
as design space exploration (DSE). Our approach is
novel because our method achieves high performance
with GPUs and FPGAs automatically by detecting
offloadable function blocks with name matching and
a similarity detection tool. Particularly, using a simi-
larity detection tool for offloadable function detection
is a new approach because similarity detection tools

Figure 2. Comparison of related work of heterogeneous devices offloading.
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Figure 3. (a) Image of function-block offloading and (b) sequence of function-block offloading.

are basically used to detect code clones in software
maintenance.

4. Proposed automatic offloadingmethod for
function blocks

We aimed to improve application performance by
replacing function blocks implemented with hardware-
oriented algorithms, with large units such as matrix
manipulation and FT in CPU codes. This is because it
is difficult to automatically extract hardware-oriented
algorithms. In other words, we use the existing know-
how of developers. This function block offloading is
regarded as another approach to achieve an envi-
ronmental adaptation concept from loop offloading
because focus points of offloading small loops and
offloading large function blocks are opposite.

4.1. Outline of function-block offloading and
considerations

Because designing hardware circuits requires a large
amount of time regarding FPGAs, it is often possible to

use circuit design in the form of an “IP core” for func-
tions already designed. Typical examples of IP cores
are encryption/decryption processing, arithmetic cal-
culations such as FFT, image processing and voice pro-
cessing. Many IP cores have licensing fees, but some
are offered free of charge. Since an IP core can be
said to involve the existing know-how of developers,
we consider using IP cores for automatic offloading to
FPGAs.

For GPUs, fast FT (FFT) and matrix calculation are
frequently used, and cuFFT and cuSOLVER are imple-
mented by CUDA and provided free as GPU libraries.
We considered using these libraries (not IP core) for
GPUs.

If existing source code created for CPU includes
function blocks that can be accelerated by offloading to
GPUs or FPGAs, such as FFT processing, GPU libraries
or FPGA IP cores are replaced with the function blocks
to increase offloading performance.

An overview of function-block offloading is illus-
trated in Figure 3(a,b). Figure 3(a) shows an image
of offloading behaviour and (b) shows a sequence
of offloading behaviour. In Step 1, source codes are
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analysed using a parse tool, such as Clang, and outer
library calls and function processing are analysed with
the loop-statement structure. For the library calls and
function processing analysed in Step 1, function blocks
that can be offloaded to GPUs or FPGAs are found by
checking with the code-pattern DB in step 2. In Step 3,
offloadable function blocks are replaced with libraries
for GPUs or IP cores for FPGAs by creating interfaces
with CPU programs. At this time, since it is not known
whether function-block offloading to GPUs or FPGAs
will lead to immediate increasing performance, per-
formance measurements are repeated in a verification
environment to extract faster offloading patterns with
or without offloading of certain function blocks. With
function block offload, the devices that are offloaded
are limited to those in the same node. This is because
offloading to another node device needs network pro-
cessing time, so there is no merit in speeding up.

With regard to offloading of loop statements, which
was done in previous studies, individual loop statement
detection is carried out with a parse tool, and loop state-
ments can be offloaded to GPUs or FPGAs using Ope-
nACC’s #pragma or OpenCL. However, with regard
to function-block offloading, we need to consider the
following three points; discovering function blocks in
source codes, checking whether the function blocks
have offloadable GPU libraries or FPGA IP cores, and
matching interfaces between replaced libraries or IP
cores and the host CPU program.

4.2. Function-block-offloadingmethod

Based on the three points in the previous subsection, we
developed a function-block-offloading method for this
study.

A. Discovering function blocks in source codes
A-1: In parsing, the proposed method detects that

external libraries are called from source codes. For pars-
ing, parsing tools such as Clang are used. A parsing
tool can detectmethod calls, then the proposedmethod
checks registered external libraries list with the code-
pattern DB. For example, FFT library calls are detected.
The code-pattern DB holds the external libraries list
beforehand.

A-2: To detect function processing other than reg-
istered library calls, classes and structures are detected
from source-code-definition description by using parse
tools.

B. Checking whether the function blocks have
offloadable GPU libraries or FPGA IP cores

B-1: The code-pattern DB holds GPU libraries,
FPGA IP cores, and related information which improve
specific libraries or function-block processing. For
replacement source libraries and function blocks, codes
and executable files with function names are registered.
For library calls detected in A-1, the proposed method

searches for GPU libraries or FPGA IP cores that can be
accelerated using the library name as a key.

B-2: The information registered in the code-pattern
DB in B-1 is used. A similarity-detection tool detects
whether there are libraries or IP cores that can be accel-
erated for the function processing of the classes and
structures detected in A-2. A similarity-detection tool,
such as Deckard [47], detects a copy code or a changed
code after copying. There are many types of similarity-
detection tools such as line-based detection, lexical
unit-based detection, abstract syntax tree-based detec-
tion, program-dependent graph-based detection, met-
ric and fingerprint-based detection and so on.However,
detection accuracy is not 100% of all tools. Among
them, Deckard uses an abstract syntax tree for detec-
tion, and it is unlikely that multiple function blocks
will have the same abstract syntax tree characteristics.
Such a tool can detect some codes that have similar
descriptions when calculated by a CPU such as matrix
manipulation, and changed descriptions after copying
fromother codes. It cannot detect newly created classes;
thus these classes are out of the scope of this study.
For functions with libraries or IP cores registered in
the code-pattern DB that accelerate specific function
blocks, a similarity detection tool determines whether
the similarity is high based on the tool threshold. Since
it is clear that the detection range with this tool is
not 100%, artificial intelligence (AI) pattern recognition
will also considered for detection in future. A support
vector machine (SVM), which is frequently used for
pattern recognition in supervised learning, deep learn-
ing and unsupervised learning, can be applied. How-
ever, even in the case of AI processing, it is difficult to
make themachine understand the intention of codes, so
the newly created class and structure may be difficult to
detect.

C. Matching interfaces between replaced libraries or
IP cores and host CPU program

C-1: Since the corresponding library or IP core is
searched in B-1 for the library call detected in A-1, the
replacement library or IP core is installed in the GPU
or FPGA, and a host (CPU) program is connected. A
library, such asCUDA, is assumed as a library forGPUs.
Since methods of using CUDA libraries from C lan-
guage codes are open with libraries, the code-pattern
DB holds such methods as well. When GPU libraries
are used, these libraries and the host program are con-
nected referring to these methods. In an FPGA IP core,
hardware description language (HDL) is assumed. The
code-pattern DB also holds OpenCL code as IP-core-
related information. From the OpenCL code, the con-
nection between a CPU and FPGA using the OpenCL
interface and implementation of an IP core on an FPGA
can be done using high-level synthesis tools of FPGA
vendors such as Xilinx and Intel (Xilinx Vivado, Intel
HLS Compiler, etc.).
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C-2: For classes and structures detected in A-2, we
search for libraries and IP cores that can be accelerated
in B-2 and implement the corresponding libraries and
IP cores on the GPU and FPGA. In C-1, because it is
a library or IP core that speeds up specific library calls,
it is necessary to generate an interface, but the number
and type of arguments and return of library or IP core
and offloadable functions are matched. However, since
B-2 is determined based on similarity, there is no guar-
antee that the basic items, such as the number and type
of arguments and return, match.

If they do not match, because libraries and IP cores
are existing know-how and cannot be changed fre-
quently, we will confirm with a user on whether to
change them. After receiving confirmation, wewill pro-
ceed with performance tests. Regarding to differences
in variable types, if we only need to cast such as float and
double, we can proceed with performance tests without
user confirmation. Also, when the numbers of argu-
ments and returns differ between the source programs
and libraries or IP cores, but if there is no problem
even it is omitted, the proposed method does need not
to notify the user and proceeds with the performance
tests. For example, if arguments A and B are required
and C is optional in the source program and arguments
A and B are required in the library, we may treat to
omit the option argument automatically. Note that if
the numbers of arguments and returns are the same, we
proceed the same as in C-1.

Here, we assume that cloud operators or carrier
operators such as NTT who provide heterogeneous
hardware for the cloud or so on prepare code-pattern
DB with GPU libraries and FPGA IP cores that are use-
ful to many users. To help users’ applications speed up
automatically by using the code pattern DB, the merit
of operator is that the use of services such as the cloud
will increase and profits will increase.

Regarding to GPU libraries, NVIDIA provides many
CUDA libraries for free such as cuFFT [48] and
cuSOLVER [49], and it is assumed that the operator
will register them in the DB. Regarding to IP cores of
FPGA, many IP cores need license fee. Therefore, it is
assumed that IP cores implemented by the operator are
registered in the DB. For example, the signal processing
function implemented by the carrier operator is regis-
tered. Regarding to OpenCL for FPGA, there are some
open releases, and it is possible to register them.

5. Implementation

5.1. Tools used

In this section, we explain the implementation of the
proposed method. To confirm the method’s effective-
ness in function-block offloading, we used C/C++
language applications, NVIDIA Quadro P4000 as the
GPU, and Intel PACwith Intel Arria10 GX FPGA as the

FPGA. We also carried out compiling to the FPGA on
DELL EMC PowerEdge R740.

GPU processing uses PGI compiler 19.4. This PGI
compiler is anOpenACC compiler for C/C++/Fortran
languages. The bytecode for the GPU can be extracted
by specifying parallel processable parts, such as loop
statements, by OpenACC directive #pragma acc ker-
nels, #pragma acc parallel loop and executed on the
GPU. This PGI compiler can also use CUDA libraries
such as cuFFT or cuRAND.

To control the FPGA, we used Intel Acceleration
Stack Version 1.2 (Intel FPGA SDK for OpenCL 17.1.1,
Quartus Prime Version 17.1.1). The Intel FPGA SDK
for OpenCL is a high-level synthesis tool (HLS) that
compiles #pragma directives in addition to the standard
OpenCL. It compiles OpenCL code that describes the
kernel program processed by the FPGA and the host
program processed by the CPU, outputs information
such as the amount of resources, performsFPGAwiring
and so on to operate the code using the FPGA. Time
of implementing codes to be processed on an FPGA
depends on many factors such as code size, resource
amount and so on.When we use Intel FPGA SDK, even
a small program of about 100 lines takes about 3 hours
to be able to operate on an actual FPGA, but an error
occurs early when the amount of used FPGA resources
is exceeded a limit of available resources. By includ-
ing the existing OpenCL codes of the FPGA into kernel
codes, they can be offloaded to the FPGA after OpenCL
program compiling.

We used MySQL8.0 as the code-pattern DB. Since
the code-pattern DB searches for offloadable GPU
library or FPGA IP core using the called library name
as a key, the source library name and the corresponding
destination GPU library and/or FPGA IP core names
are linked and managed. The names of the libraries
and IP cores that are registered are linked with the exe-
cutable files of the libraries, IP cores and the codes
such as CUDA and OpenCL. Since the execution file is
replaced and called automatically after being detected,
the usage procedure such as method name, calling
order, protocol to use is also registered. Next, when the
offloadable function block is detected by the similarity
detection tool, the code that performs the function is
also linked to the source library name. The similarity
detection tool compares the registered code with the
code specified by the user.

We used Deckard v2.0 [47] as the similarity-
detection tool. Deckard is used to expand function
blocks for offloading. It determines the similarity
between the partial code to be verified and the code
for comparison registered in the code-pattern DB to
detect functions. Deckard can detect function blocks
even if there are comments and little modification.
We think Deckard is suitable for detecting offload-
able function blocks. Though detecting function blocks
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using abstract syntax tree similarity is a language inde-
pendent method, Deckard can analyse C and Java
applications.

We implemented the method with C language and
Python 2.7.

5.2. Implementation behaviour

When a C/C++ application is specified, this imple-
mentation parses C/C++ code and detects loop state-
ments for loop offloading of previous studies called
libraries (A-1) and defined classes and structures (A-2).
For parsing, the implementation uses parsing libraries
of Clang. When the implementation searches if there is
an external library call, it checks the external library list
in the code-pattern DB.

Next, the implementation detects GPU libraries and
FPGA IP cores that can speed up the called library (B-
1). Using the called library name as a key, it obtains an
executable file or OpenCL code that can be accelerated
from the registered record in the code-pattern DB. If a
replacement function that can be accelerated is found,
the implementation then generates an executable file.
In a GPU library, the implementation deletes the source
part and replaces it with the found GPU library call in
the C/C++ code so that the replaced CUDA library
is called. In an IP core of FPGA, the implementa-
tion deletes the source part and replaces the acquired
OpenCL code with the kernel code. After completing
the replacements, the PGI compiler compiles for GPU
and Intel Acceleration Stack for FPGA (C-1). Based on
the OpenCL code, the CPU and FPGA are connected
using Intel’s high-level synthesis tool.

The above description is the case of a library call,
and detection processing is carried out in parallel
when using a similarity detection tool. In this imple-
mentation, Deckard detects the similarity between the
detected partial codes such as classes and the compar-
ison code registered in the code-pattern DB, and the
comparison codes exceeding the threshold are detected
(B-2). Detected codes are associated with the corre-
sponding GPU library or FPGA IP cores. Then the
implementation acquires executable files and OpenCL
codes, as the same way as in B-1. Next, it generates exe-
cutable files, as the same way as in C-1. However, if
the interface of the source code and the replacement
library or IP core arguments differ, the interface that
matches the replacement library or IP core is notified
to the user who requested the offload, and the user can
confirm whether it can be changed. If the user accepts,
the implementation generates executable files.

At this point, execution files are created that can
be used to measure application performance on GPUs
or FPGAs in a verification environment. For function-
block offloading, if there is only one functional block
to be replaced, it only considered whether that one is
offloaded. However, if there are several function blocks,
the implementation generates a verification pattern that

offloads a certain function block to find a fast solu-
tion. This is because even if it is possible to increase
the performance based on existing know-how, it will
not be clear whether the speed will be increased under
the deployed environment condition until application
performance is actually measured. For example, if there
are five function blocks that can be offloaded and the
measurement results show that the performances of
offloading of #2 and #4 can be improved, the implemen-
tationmeasures this againwith the pattern of offloading
both #2 and #4. If it is faster than offloading #2 and
#4 separately, it selects the offloading of both as the
solution.

Therefore, focusing on the processing of A, B and
C as a whole, source codes are parsed, function blocks
are detected, replaceable functions are found, interfaces
with CPU sides are created, the performances of several
offload patterns are measured in a verification environ-
ment, and high performance patterns are searched.

The degree of performance improvement by offload-
ing function blocks is verified. The processing of A-1,
B-1 and C-1 is fundamental, but to increase the num-
ber of offloadable targets, the processing of A-2, B-2 and
C-2 is also verified. Using Deckard, the implementa-
tion detects codes which can be replaced to offloadable
libraries or IP cores when the codes with comments and
modification are similar to registered codes.

In the performance measurement, along with the
processing time, the implementation checks whether
the calculation result is valid or not. For example, the
PCAST function of the PGI compiler can check the dif-
ference in calculation results. If the difference is large
and not allowable, the implementation sets the offload
pattern invalid. If no function block can be offloaded,
the implementation moves on to the trial of loop state-
ment offload which is reported in other papers [19].

6. Evaluation

6.1. Evaluationmethod

6.1.1. Evaluated applications
Based on the implementation, we evaluated the applica-
tion performance improvement of offloading. We eval-
uated three applications for GPU offloading, FT, matrix
calculation and random number generation, which are
used inmany areas such as IoT.We evaluated one appli-
cation for FPGA offloading, finite-impulse response fil-
ter of signal processing. It is evaluated that not only
the processing time performance but also the electric
power usage can be reduced by offload. The evaluation
targets are Himeno benchmark for fluid calculation for
GPU offload and MRI-Q for MRI image processing for
FPGA offload.

FT processing is used in various types ofmonitoring,
such as vibration frequency analysis.When considering
an IoT application that transfers data from a device to
the network, it is assumed that the device side performs
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primary analysis such as FFT processing to reduce
network cost. To speed up FFT processing, CUDA’s
existing library cuFFT [48] is automatically replaced to
original codes.

Matrix calculation is used in many types of analy-
sis such as machine-learning analysis. Because matrix
calculation is used not only on cloud sides but also
device sides due to the spread of IoT and AI, automatic
performance improvements for various applications are
needed. We used matrix calculation of lower–upper
(LU) decomposition. To speed up LU decomposition,
CUDA’s existing library cuSOLVER [49] is automati-
cally replaced to original codes.

Random number generation is used in many areas.
For example, option pricing simulation often uses ran-
dom number generation. To speed up random number
generation, CUDA’s existing library cuRAND [50] is
automatically replaced to original codes.

The time-domain finite-impulse response filter per-
forms processing in a finite time on the output when
an impulse function is input to a system. We used
MITLincoln laboratory’s high-performance embedded
computing (HPEC) Challenge Benchmark Suite C code
and sample tests with it for offloading performance
measurement, and Intel sample OpenCL [51] is auto-
matically replaced to original C codes. When consider-
ing applications that transfer signal data from devices
over the network, to reduce network costs, it is assumed
that signal processing such as filters are conducted
on devices sides, thus signal processing offloading to
FPGA is important, we think.

The original codes of calculation applications for
GPU are from Numerical Recipes in C [52].

Himeno benchmark [53] is a performance mea-
surement benchmark software for incompressible fluid
analysis and solves Poisson’s equation by the Jacobi
iterative method. Himeno benchmark has C language
and Fortran, but this time we decided to use Python
for power measurement and described the processing
logic in Python. The data is calculated in a large size
of 512∗256∗256 grid. CPU processing is processed by
Python’s Numpy, and GPU processing is processed via
the Cupy library [54] that offloads the Numpy Interface
to the GPU.

MRI-Q [55] computes the matrix Q representing
the scanner configuration used in the 3D MRI recon-
struction algorithm in non-Cartesian space. MRI-Q is
written in C language, and 3D MRI image processing
is performed during performance measurement, and
the processing time is measured with Large data of
64∗64∗64 size. CPU processing is in C language, and
FPGA processing is processed based on OpenCL.

6.1.2. Experiment conditions
Function-block offloading to GPUs and FPGAs is
combined with loop-statement offloading for actual
production use. However, since loop-statement

offloading has been evaluated previously [17], we only
evaluate offloading of function blocks for this paper.
For the target applications, we prepared function blocks
that can be offloaded in the code-pattern DB before-
hand and measured application performance when
original codes are automatically replaced.

The experimental conditions are as follows.
Offload sources: FT, Matrix calculation, Random

number generation and Time-domain finite-impulse
response filter.

Offload targets: cuFFT, cuSOLVER, cuRAND and
Intel OpenCL of Time-domain finite-impulse response
filter.

Offload-source-discovery method: The code of the
offload source application calls the external library on
the code side and discovered by DB name matching.
To discover byDeckard, we prepared target applications
which include library codes with added comments and
slight modifications to the original codes. We prepared
both two patterns for this experiment.

Methods to be compared: All-CPU-processing
method, Proposed function-block-offloading method
and Loop-statement-offloading method.

Our previous loop-statement-offloadingmethod [17]
involves using the GA to search for appropriate loop-
offloading patterns in a verification environment.

Performance measurement: In FT, sample test pro-
cessing is carried out with a grid size of 2048 × 2048,
and the processing time is measured. In matrix calcu-
lation, the processing time of the 2048 × 2048 orthog-
onal matrix LU decomposition is measured. In random
number generation, 2048 × 2048 × 2 float-type ran-
dom numbers are generated. In time-domain finite-
impulse response filter, HPEC’s sample test process-
ing is carried out with 64 filters and 4096 length of
input/output vectors.

In the power usage evaluation, the processing time
and power usage are measured when processing is exe-
cuted after offload. The time change of the power usage
is acquired and the power reduction compared to the
case where all processing is executed by only CPU is
confirmed.

6.1.3. Experimental environment
We used physical machines with NVIDIA Quadro
P4000 for GPU offloading evaluation. The CUDA core
number of NVIDIA Quadro P4000 is 1792. To con-
trol GPU, PGI compiler community edition v19.4 and
CUDA toolkit v10.1 were used. We also used physi-
cal machines with Intel Arria 10 GX FPGA for FPGA
offloading evaluation. To control FPGA, Intel Acceler-
ation Stack v1.2 was used. Figure 4 shows the experi-
mental environment and environment specifications. A
client note PC specifies the C/C++ application codes,
which are converted and vivificated on verification
machines, and the final codes are deployed in running
environments for users after verification.
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Figure 4. Experimental environment.

For power usage measurement, LEVEL-F039-
LCRT2W-XYVI of BTO PC was used as GPU, and Dell
PowerEdge R740 of verification machine was used as
FPGA. GPU power usage is measured by NVIDIA’s
nvidia-smi and CPU power usage is measured by s-
tui [56]. For the FPGA, Intelligent Platform Manage-
ment Interface (IPMI) tool of the Dell server measured
the power of the entire server and compares power
usage when using the FPGA and when using only the
CPU.

6.2. Performance results

We confirmed the performance improvements of three
applications to GPU and one application to FPGA that
are expected to be used by many users.

Figure 5 shows an example of FT performance
improvement on our previous study using GA [17]. It
shows maximum performance change of FT in each
generation with GA generation transitions (the vertical
axis shows how many times faster GPU offloading was
than using only a CPU). FT performance improved and
GPU offloading was about 5.4 times faster. During GA
processing, it tookmore than several hours to search for
appropriate offloading loop statements.

Based on these previous results, we present the
measurement results of how much these applications
improved with the proposed method. The offload-
source-discovery method can be replaced with the
DB name matching and similarity detection tool

Figure 5. Reference graph: performance change of FT with GA
generation transitions [17].

depending on whether the library is called or the
code is copied. Table 1 shows how much the four
applications improved in performance with the pro-
posed function-block offloading method compared
to the all-CPU-processing method. 1 means that the
applications performed the same with both meth-
ods. The performance improvements with the loop-
statement-offloading method are also shown. FT
improved in performance 730 fold with the proposed
method, which was only 5.4 times that with the
loop-statement-offloading method. Matrix calculation
improved 130,000 fold with the proposedmethod com-
pared to 38 fold with the loop-statement-offloading
method. Random number generation, it was found that



AUTOMATIKA 397

Table 1. Comparisonof applicationperformance improvement
between loop-statement-offloading and proposed function-
block-offloading methods.

Performance
improvement of loop
statement offloading

Performance
improvement of
function block
offloading

Fourier transform (to GPU) 5.4 730
Matrix calculation (to GPU) 38 130,000
Random number

generation (to GPU)
19 27

Time domain finite impulse
response filter (to FPGA)

4.0 21

the improved 27 fold with the proposed method com-
pared to 19 fold with the loop-statement-offloading
method. Time-domain finite-impulse response filter
execution time was shortened from 0.298 to 0.0139
seconds, thus the processing performance improved
21 fold with the proposed method compared to 4.0
fold with the loop-statement-offloading method. From
these four measurements, function block offload per-
formance is superior to loop statement offload perfor-
mance. Because CUDA libraries are implemented suit-
able algorithms for specific calculations, they are much
faster than simply offloading loop statements when
function block offloading can be conducted. In addi-
tion, GPU library and IP core are built inwhen using, so
there is no delay in external calls when function block
offloading can be conducted.

For these four cases, the offloading of function
blocks was completed in a few seconds because our
implementation only checked DB name matching and
similarity detection. When code size is larger, Deckard
may take more time, but it will complete in 1 minute.

Figure 6(a) shows watt and time when the Himeno
benchmark was offloaded to the GPU. Compared to all
CPU processing, the processing time is shortened from
153 to 19 seconds, but it can be seen that the power
usage is about 27–109 watts. As a result, watt ∗ sec is
about 1/2 of 2070 watts ∗ sec from 4080 watt ∗ sec in
the case of all CPU processing.

Figure 6(b) shows watt and time when MRI-Q was
offloaded to the FPGA. Compared to all CPU process-
ing, the processing time has been shortened from 14
to 2 seconds, and it can be seen that the power usage
of the entire server is about 121–111 watts. As a result,
watt ∗ sec has changed from 1690 watt ∗ sec for all CPU
processing to 223 watt ∗ sec, which is about 1/8.

We confirmed power usage reduction in GPU and
FPGA offload applications. At the time of GPU offload
of Himeno benchmark, watt was increased, but the
power usage could be reduced as a whole due to the
effect of shortening the processing time. At the time of
FPGA offload of MRI-Q, watt was reduced, which was
combined with the shortening of time, and the power
usage could be greatly reduced. It is generally said that
FPGAs have good power efficiency, and this time it was
confirmed that the power usage of FPGAs is low in the

MRI-Q experiment. Therefore, if the GPU and FPGA
have similar performance when offloaded in a mixed
environment, it is conceivable to select the FPGA by
looking at the power usage.

6.3. Discussion

In our previous study on loop-statement offloading to
GPUs and FPGAs, we used a method of measuring the
performance of multiple offloading patterns in a veri-
fication environment and searching high-performance
patterns automatically. For example, even large appli-
cations with more than 100 loop statements, such as
Darknet, are automatically offloaded toGPUs and triple
in performance. However, there have been many cases
in which the performance improved by more than
10 fold through manual program development using
CUDA for GPUs and HDL for FPGAs and in some
cases automatic performance improvement was insuffi-
cient. Therefore, the proposedmethod can achieve high
performance with specific processing, such as FFT and
matrix calculation, by offloading them to the CUDA
library or IP core.

Function-block offloading can greatly contribute
to performance improvement, particularly for FPGAs
because FPGAs often require algorithms that are suit-
able for hardware processing compared to GPUs.

Regarding the offloading effect with costs of hard-
ware, GPU boards, such as NVIDIAQuadro, cost about
2 000 USD and FPGA boards, such as Intel Arria, cost
about 3 000 USD. Therefore, hardware for GPUs or
FPGAs costs about twice to three times as much as
that for only CPUs. In data centres, hardware, devel-
opment, and verification costs of systems, such as a
cloud systems, are about a 1/3 the total cost, electric-
ity and operation/maintenance cost is more than 1/3,
and other expenses, such as service orders, is the other
1/3. Regarding AWS, a GPU instance with one GPU
costs about 650 USD/month, which is the same as host-
ing a general dedicated server. Therefore, we believe
improving application performancemore than 10 times
that takemuch time will have a sufficiently positive cost
effect even though the hardware cost is about twice to
three times. For example in this paper’s experiment, the
GPU server was 6 000 USD the FPGA server was 9 000
USD, and the CPU server was about 3 000 USD. All
applications offloaded to GPU or FPGA has more than
three times the performance improvement, therefore,
all applications can be said cost-effectivewith automatic
offloading.

Regarding the time to start production services, in
only function-block offloading, it is assumed that pro-
cessing will be completed in a fewminutes. When there
is no function block that can be offloaded, applica-
tion performance improves using the loop-statement-
offloading method, and the application performance
is increased from several hours to half day through
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Figure 6. (a) Power usage of Himeno benchmark after GPU offload and (b) power usage of MRI-Q after FPGA offload.

repeated verification.Whenwe provide production ser-
vices, we provide the first day for free and try to speed
up the verification environment during the first day,
and from the second daywe provide the production ser-
vice using GPUs and FPGAs. Therefore, we believe the
tuning time is acceptable.

To offload with the proposed method, it is necessary
to pre-register the library and IP core that are com-
monly used inmultiple applications to the code-pattern
DB. In addition to the processing used in various appli-
cations, such as FFT and matrix manipulation, it is
assumed that registration will be focused on specific
fields such as machine learning and signal processing.

In this evaluation, it was confirmed that offloadable
functions of copied codes with comments can be found
using a similarity detection tool Deckard. Similarity
detection tools are tools for discovering code clones
in software maintenance phase originally, therefore,
using a similarity detection tool for automatic offload-
ing is a new approach. In the software engineering field,
similarity detection is a hot topic and new methods
are proposed frequently. Therefore, we will study to
detect more function blocks that can be offloaded using
recent studies such as applying Artificial Intelligence
(AI) methods of SVM and deep learning in the future.

Though it is difficult to detect offloadable func-
tion block rather than offloadable individual loop,
expectable effect is high because function block offload-
ing can use hardware oriented algorithms. Therefore,
for actual service phase, providers need to provide both
approaches of function blocks and loop statements for
automatic offloading to GPUs or FPGAs.

7. Conclusion

We proposed an automatic offloadingmethod for func-
tion blocks of applications as a new element of our
environment-adaptive software. Environment adaptive
software adapts applications to the environments to
use heterogeneous hardware such as GPUs and FPGAs
appropriately.

The proposed method starts with source code anal-
ysis. It analyses the source code, detects offloadable
library calls by checking a DB, and replaces them with
replaceable GPU libraries or FPGA IP cores registered
in the DB. The performance is measured in a veri-
fication environment, including the functions of the
replaced GPU and FPGA, and took the pattern with
the highest performance as the solution. To search for
more replaceable function blocks in source-code anal-
ysis, offloadable function blocks are also searched for
using similarity detection technology. Replacement and
performance measurement are carried out as the same
way. However, even if it is determined that the func-
tion block can be replaced, if the interface is differ-
ent, the user is asked whether it can be changed with
the interface of the replaceable function. We imple-
mented the proposed method, evaluated its automatic
offloading of several applications to GPUs or FPGAs,
and confirmed its effectiveness. Compared to the loop
statement offload of the previous research, the function
block offload of this research is 40% or more for the
GPU offload of random number generation, 100 times
or more for the GPU offload of Fourier transform, and
5 times or more for the FPGA offload of time-domain
finite-impulse response filter have been improved.
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For future work, we will investigate a common
method for appropriately offloading existing CPU
applications including offloadable function blocks and
loop statements in an environment where GPUs,
FPGAs and many-core CPUs are mixed. We will also
study ways to improve cost-effectiveness by adjusting
the amount of processing resources of CPU, GPU and
FPGA when the migration destination environment is
mixed.
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