
���������������	�
��
���� �� ��� �� �������� ������ �� � ������ �������� �� �� ���� ���� �� �� � ������������ �������� � �	���������� �� �� �� �� ���	� ������ � ��
������������	�������	�����

�������������������	���� �����!����	���� ������������������"�������������������#�#�#�$���� � �� ���� � ���	� �� �$���� �� �%�&�� �� ��� �� �����%���� �� ���' �(

������ �� �)���� � �� �����*�� ���� �� ���	�� � ���� ������ �� ���� �� �� ���	������ �+ �� �� �� �	� �������� ��
����������	������,�������
�������������������	�������	�����

�-�� �&�	���-�� �� �� ����

�.�� �����	���� �����"�	������ �����	������ �������� ������������ ���	�� ���
��������������	�� �� �������� �� ������������ ���	���� �� ���� �������� �	�� �� ���	����
�����������������������������������	�������������������������������������������	��������� ���!���	�������	������� ���"�#�$�%� ���&�'�(�������� ���)�*�+�$
�%���,�%���'���-�������#�%�%���,��������,���&���%�'�'�'

�.�� �����	� �
������ �����"�	������ �����	������ �������. �	�	�� ���$�-�-�� �� ���,�� �����-�%���,�%���' ���-�������#�%�%���,��������,���&���%�' �' �'

�/ ������������0�. �����! �� �	�. �� ���
�����,���1�� �� �������. ���� ���� �����+�� ���� ���� ��
�2�3���4���� ���	���� � ���	������ ���� �����������0�������� �����5���6������ ������
�7���� �� �� �,

�8�����9������ �� �� ������ ���� �	���������� ���	������������

�1�����������.�������������������$�����:���;��������������,

�����������	�����������������	�����������	�����	�.����������������������

�! ���	�����������������9���$�����(�#

�8�����9�����������	���� �������	������������

�8�����9���<���� ������ ���������� ���	��

�6�� �������0������ �����5���<�� �� �� ���	���� �� ������ ���������������������� �� ���� ������������ ���� �������� �� �� �� �����	
�. �	�	�� ���$�-�-�9�9�9�,�	���� �� ���� �� ������ ���,���� �� �-�����	���� �� �-���� �� ���� �����+�� ���� ���� ���	���� �� �=���� �� ���� �����<�� �� ���>�	���� �	����

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2024.2301888
https://doi.org/10.1080/00051144.2024.2301888
https://www.tandfonline.com/doi/suppl/10.1080/00051144.2024.2301888
https://www.tandfonline.com/doi/suppl/10.1080/00051144.2024.2301888
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2301888?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2301888?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2301888&domain=pdf&date_stamp=09%20Jan%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2301888&domain=pdf&date_stamp=09%20Jan%202024
https://www.tandfonline.com/action/journalInformation?journalCode=taut20


AUTOMATIKA
2024, VOL. 65, NO. 1, 387…400
https://doi.org/10.1080/00051144.2024.2301888

RESEARCH ARTICLE

Study and evaluation of automatic offloading for function blocks of
applications

Yoji Yamato

Network Service Systems Laboratories, NTT Corporation, Tokyo, Japan

ABSTRACT
Systems using graphical processing units (GPUs) and field-programmable gate arrays (FPGAs)
have increased due to their advantages over central processing units (CPUs). However, such
systems require the understanding of hardware-specific technical specifications such as Hard-
ware Description Language (HDL) and compute unified device architecture (CUDA), which is a
high hurdle. Based on this background, we previously proposed environment-adaptive software
that enables automatic conversion, configuration and high-performance operation of existing
code according to the hardware to be placed. As an element of this concept, we also proposed a
method of automatically offloading loop statements of application source code for CPUs to GPUs
and FPGAs. In this paper, we propose a method for offloading a function block, which is a larger
unit, instead of individual loop statements in an application to achieve higher speed by auto-
matically offloading to GPUs and FPGAs. We implemented the proposed method and evaluated
it using current applications offloading to GPUs and FPGAs.

ARTICLE HISTORY
Received 13 August 2021
Accepted 29 December 2023

KEYWORDS
Environment adaptive
software; GPGPU; automatic
o�oading; performance;
function block

1. Introduction

It is mentioned in [1] that Moore•s law will be slow
down and a central processing unit•s (CPU•s) transis-
tor density cannot be expected to double in 1.5 years.
Based on this situation, systems with heterogeneous
hardware, such as graphics processing units (GPUs) and
�eld-programmable gate arrays (FPGAs), are increas-
ing. For example, Microsoft•s search engine Bing uses
FPGAs [2], and Amazon Web Services (AWS) provides
GPUs and FPGAs using cloud technologies [3…6].

However, to achieve high application performance
using heterogeneous hardware, developers need to
appropriately program and con�gure such hardware
and use high skill technologies such as compute uni�ed
device architecture (CUDA) [7] and open computing
language (OpenCL) [8]. This is a high barrier to using
GPUs or FPGAs for o�oading.

Along with the progress in Internet of Things (IoT)
technology (e.g. Industrie 4.0 [9] and so on [10…15]),
connected IoT devices are increasing rapidly. Gartner,
Inc. forecasts the number of IoT devices will reach sev-
eral tens of billions in 2020 and will be connected to
networks. There are various application �elds of IoT
such as manufacturing, distribution, medical, and agri-
culture, and many applications are developed. In IoT
applications, the knowledge of embedded software and
assembly is required for precise control of IoT devices.
In many applications, one gateway (GW) controls sev-
eral IoT devices, but design studies according to the
environments are necessary.

The expectation of applications using various het-
erogeneous hardware and many IoT devices is get-
ting higher; however, the hurdles are currently high
for using them. To surmount such hurdles, it will be
required that application programmers will only need
to write common logics to be processed, then soft-
ware will adapt to the environments with heteroge-
neous hardware to make it easy to use such hardware
and IoT devices. Java, which appeared in 1995, caused
a paradigm shift in environment adaptation that allows
software written once to run on another CPU machine.
However, no consideration was given to the application
performance at the migration porting destination.

Thus we previously proposed environment-adaptive
software that e�ectively runs once-written applications
by automatically executing code conversion and con-
�gurations so that GPUs, FPGAs, IoT devices and so
on can be appropriately used on deployment envi-
ronments [16]. To enable low-skilled users to take
advantage of heterogeneous hardware, environment-
adaptive software concept extracts appropriate o�oad-
able parts from existing applications and o�oads to
heterogeneous hardware automatically. The features are
•o�oading existing applicationsŽ, •automatic extrac-
tion of appropriate o�oadable partsŽ and •automatic
conversion suitable for hardware of deployment envi-
ronmentŽ.

Basically, there are manual, semi-automatic, and
automatic modi�cation methods when o�oading to
heterogeneous devices, however, there are few examples

CONTACTYoji Yamato yoji.yamato.wa@hco.ntt.co.jp Network Service Systems Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino-shi,
Tokyo 180-8585, Japan

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2301888&domain=pdf&date_stamp=2024-01-08
mailto:yoji.yamato.wa@hco.ntt.co.jp
http://creativecommons.org/licenses/by/4.0/


388 Y. YAMATO

of automatic modi�cation o�oading because of its dif-
�culty. Our research aims at full automation by search-
ing for an appropriate o�oad pattern through actual
performance measurement. As an element technology
of environment-adaptive software concept, we have
developed a method for fully automatically o�oading
loop statements of application source code to GPUs
or FPGAs [17…19]. These research can be automated
but the performance improvements are not su�cient.
Therefore, in this paper, the motivation and challenge
are proposing a method for o�oading function blocks,
which are larger units, rather than individual loop state-
ments in applications to achieve higher performance
by automatic o�oading to GPUs or FPGAs. We imple-
mented the proposed method and evaluated its e�ec-
tiveness of o�oading several applications to GPUs or
FPGAs. Of course, some applications which are not
suitable for o�oading to GPUs or FPGAs to improve
performances are out of scope.

The rest of this paper is organized as follows. In
Section2, we review technologies in the market and
our previous proposals. In Section3, we also describe
recent research. In Section4, we present the proposed
automatic o�oading method for function blocks to
GPUs and FPGAs. In Section5, we explain its imple-
mentation. In Section6, we discuss its performance
evaluation and the results. In Section7, we conclude
this paper.

2. Existing technologies

2.1. Technologies in the market

Java is one example of environment-adaptive software.
In Java, using a virtual execution environment called
Java Virtual Machine, written software makes it possi-
ble to run even on machines of di�erent OSes without
more compiling (Write Once, Run Anywhere). How-
ever, it was not considered whether the expected per-
formance could be attained at the porting destination,
and there was too much e�ort involved in performance
tuning and debugging at the porting destination (Write
Once, Debug Everywhere). If software uses heteroge-
neous hardware, such as GPUs or FPGAs, the tuning
e�ort increases.

CUDA is a major development environment for
general-purpose GPUs (GPGPUs) that use GPU com-
putational power for more than just for graphics
processing. To control heterogeneous hardware and
many core CPUs uniformly, OpenCL speci�cation and
its software development kit (SDK) are widely used.
CUDA and OpenCL require not only C language exten-
sion but also additional descriptions such as mem-
ory copy between GPU or FPGA devices and CPUs.
Because of these programming di�culties, there are few
CUDA and OpenCL programmers.

For easy heterogeneous hardware programming,
there are technologies that specify parallel processing

areas by speci�ed directives, and compilers transform
these directives into device-oriented codes basis on
speci�ed directives. Open accelerators (OpenACC) [20]
is one directive-based speci�cation, and the Portland
Group Inc.(PGI) compiler [21] is one directive-based
compiler. For example, users specify OpenACC direc-
tives on C/C++ codes to process them in parallel, and
the PGI compiler checks the possibility of parallel pro-
cessing and outputs and deploys execution binary �les
to run on GPUs and CPUs. IBM JDK supports GPU
o�oading based on Java lambda expression [22].

In this way, CUDA, OpenCL, OpenACC, and oth-
ers support GPU or FPGA o�oad processing. Although
processing on a GPU or FPGA can be done, su�-
cient application performance is di�cult to attain. For
example, when users use an automatic parallelization
technology, such as the Intel compiler [23] for multi-
core CPUs, possible areas of parallel processing such as
•forŽ loop statements are extracted. However, naive par-
allel execution performances with GPUs or FPGAs are
not high because of overheads of CPU and GPU/FPGA
memory data transfer. To achieve high application per-
formance with GPUs/FPGAs, CUDA/OpenCL needs to
be tuned by highly skilled programmers or an appropri-
ate o�oading area needs to be searched for by using the
PGI compiler or other technologies.

Therefore, it is di�cult to attain high application per-
formance for users without GPU or FPGA skills. More-
over, if users use automatic parallelization technologies
to obtain high performance, it takes many e�orts to
determine if each loop statement is parallelized, and
there are many applications that cannot be improved.

This paragraph shows a basic taxonomy. There are
manual, semi-automatic and automatic modi�cation
methods when o�oading to heterogeneous devices.
Manual modi�cation is a method of modifying using
detail languages such as CUDA and Hardware Descrip-
tion Language (HDL), and semi-automatic modi�ca-
tion is a method of specifying the o�oad part using
an instruction directive and the compiler generates an
o�oad binary, using simple languages such as OpenMP
and languages of High Level Synthesis (HLS) tools.
Automatic modi�cation is a method that analyses a
normal CPU program and the tool automatically deter-
mines the o�oad part and generates an o�oad binary.
However, basically, even if a machine can analyse
whether a loop statement can be processed in parallel, it
cannot determine whether it is suitable for parallel pro-
cessing, so there are few examples of automatic modi-
�cation o�oading. This research challenges automatic
modi�cation.

2.2. Previous our proposals

Based on the background, to adapt software to an
environment, we previously proposed environment-
adaptive software [16], the processing �ow of which is
shown in Figure1.



AUTOMATIKA 389

Figure 1.Processing ”ow of environment adaptive software.

Step 1: Code analysis
Step 2: O�oadable-part extraction
Step 3: Search for suitable o�oad parts
Step 4: Resource-amount adjustment
Step 5: Placement-location adjustment
Step 6: Execution-�le placement and operation veri�-

cation
Step 7: In-operation recon�guration

Then, we explain our previous automatic loop-
statement-o�oading method for GPUs. It regarded as
a elemental technology to achieve an environmental
adaptation concept. We proposed using the genetic
algorithms (GA) [24] to automatically �nd an appropri-
ate loop statement to be o�oaded to a GPU [16]. First,
a parallel loop statement is checked from a general-
purpose program that is not supposed to be paral-
lelized, and loop-statement o�oad patterns are mapped
to genes with a value of 1 for GPU execution and 0 for
CPU execution. Then the performance veri�cations are
repeated in the veri�cation environment to search for
an appropriate o�oading area.

For FPGAs, since it takes more than hours to imple-
ment codes to be processed on FPGAs unlike GPUs, we
carried out actual FPGA measurements after narrow-
ing down the o�oad candidate loop statements [19].
For detected loop statements, a loop statement having
a high arithmetic intensity is extracted using an arith-
metic intensity analysis tool. Then this method pre-
compiles the generated OpenCL codes and �nds a loop
statement with high resource e�ciency. For narrowed-
down loop statements, it generates OpenCL codes that
o�oad each loop statement or combination of those
loop statements, implements codes to be processed on
FPGAs, measures application performance, and selects
the highest-performance OpenCL code.

In the case of GPUs or FPGAs acceleration, however,
it is often the case that an algorithm for CPUs is changed

to one suitable for hardware processing. For this reason,
simple o�oading of loop statements is often insu�-
cient in application performance compared to manu-
ally changing algorithms. However, it is very di�cult
for machines to automatically extract the hardware-
oriented algorithms appropriate for each application.
Therefore, this paper targets automatic o�oading to
GPUs or FPGAs with su�cient performances com-
pared to previous our loop statement o�oading.

3. Recent research

Wuhib et al. studied resource management and e�ective
allocation [25] on the OpenStack cloud. e target appro-
priate o�oading on heterogeneous hardware servers
including the cloud. We previously proposed methods
for selecting appropriate servers from heterogeneous
hardware servers. The methods of this paper improve
previous methods with automatically function block
o�oading.

The papers of [26…32] study o�oading mobile
devices processing to edge computing or other servers.
Research are done to o�oad the processing of mobile
devices to edge computing to distribute the load. The
paper [33] also aims at comfortable application oper-
ation by performing processing o�oad from mobile
devices to edge servers and reducing the processing of
mobile devices with small resources based on Neuro-
Fuzzy approach. The issue is how to distribute the
load and it is assumed that the calculation will be pro-
cessed mainly by CPUs. On the other hand, the author•s
research aims to o�oad processing that takes a long
time in CPUs to heterogeneous devices such as GPUs
and FPGAs, and the main issue is code conversion in
di�erent devices.

Regarding o�oading to GPUs, Chen et al. [34]
used metaprogramming and just-in-time (JIT) com-
pilation for GPU o�oading of C++ expression tem-



390 Y. YAMATO

plates, Bertolli et al. [35] and Lee et al. [36] are working
on o�oading to GPU using OpenMP. There have been
few studies on automatically converting existing code
to the GPU without manually inserting new targeted
directives or a new development model.

We use an OpenACC PGI compiler for C/C++
application o�oading evaluations. In addition to
C/C++ language, Java is often used for OSS applica-
tions. From Java 8, parallel processing can be speci�ed
by lambda expression. IBM provides a JIT compiler
that o�oads processing with lambda expressions to a
GPU [22]. In the case of Java, we can extract an appro-
priate o�oading area by using this JIT compiler and the
proposed method checks whether function blocks and
loop statements require GPU processing with a lambda
expression.

Regarding FPGA o�oading, Liu et al. [37] proposed
a technology that o�oads nested loops to FPGAs. The
nested loops can be o�oaded with an additional 20
minutes of tools run time. Alias et al. [38] proposed
a technology in which an HLS con�gures an FPGA
by specifying C language code, loop tiling, and so on
using Altera HLS C2H. Sommer et al. [39] proposed a
technology that can interpret OpenMP code and exe-
cute FPGA o�oading. Putnum et al. [40] used a CPU-
FPGA hybrid machine to speed up a program with
a slightly modi�ed standard C language. For FPGA
o�oading, instructions needed to be manually added
such as which parts to parallelize using OpenMP or
other speci�cations. There have been few studies on
automatically o�oading existing codes to FPGAs.

Generally, CUDA and OpenCL control intra-node
parallel processing, and message passing interface
(MPI) controls inter-node or multi-node parallel pro-
cessing. However, MPI also requires high technical
skills of parallel processing. Thus MPI concealment
technology has been developed that virtualizes devices
of outer nodes as local devices and enables such devices
to be controlled by only OpenCL [41]. When we select
multi-nodes for o�oading destinations in the future,
we plan to use this MPI concealment technology.

Even if an extraction of an o�oading area is appro-
priate, application performance may not be high when
the resource balance of a CPU and devices is not appro-
priate. For example, a CPU takes 100 seconds and GPU

1 second when one task is processed, so a CPU slows
down processing. Shirahata et al . [42] attempted to
improve total application performance by distributing
map tasks with the same execution times of a CPU and
GPU in MapReduce processing. The study by Kaleem
et al. [43] is also related to task scheduling when the
CPU and GPU are integrated chips of the same die.
Referring to their papers, we also investigate how to
deploy functions on appropriate locations and resource
amounts to avoid bottlenecking CPUs or GPUs.

The papers of [44…46] are the recent papers such
as for time critical applications. The work of [44] con-
trols load balancing of CPU, GPU and FPGA devices
by EngineCL which is a high-level framework based
on OpenCL. The work of [45] studies a method for
accelerating Web search engines using FPGA. In the
search process, various pipeline processes are per-
formed. By implementing hardware processing based
on the clock timing, performance is improved by
2 orders of magnitude. The work of [46] proposes
SWITCH, a middleware service for infrastructure plan-
ning and provisioning for time critical applications.
According to the programming model described in
the abstract layer, the cloud infrastructure is coordi-
nated to satisfy the constraints. Although the [44]•s
target of controlling heterogeneous hardware is close to
our research, programming with EngineCL is needed
and automatic adaptation of existing applications like
this paper is not considered. As for [45], we will con-
sider using this idea for FPGA o�oading of function
blocks that require real-time processing such as Web
search processing. In consideration of [46], automatic
conversion for each hardware has not been su�ciently
studied.

Figure2 shows a comparison of related work of het-
erogeneous device o�oading. There are many reports
on using GPUs and FPGAs to achieve high perfor-
mance of applications manually with much e�ort such
as design space exploration (DSE). Our approach is
novel because our method achieves high performance
with GPUs and FPGAs automatically by detecting
o�oadable function blocks with name matching and
a similarity detection tool. Particularly, using a simi-
larity detection tool for o�oadable function detection
is a new approach because similarity detection tools

Figure 2.Comparison of related work of heterogeneous devices o�oading.



AUTOMATIKA 391

Figure 3.(a) Image of function-block o�oading and (b) sequence of function-block o�oading.

are basically used to detect code clones in software
maintenance.

4. Proposed automatic offloading method for
function blocks

We aimed to improve application performance by
replacing function blocks implemented with hardware-
oriented algorithms, with large units such as matrix
manipulation and FT in CPU codes. This is because it
is di�cult to automatically extract hardware-oriented
algorithms. In other words, we use the existing know-
how of developers. This function block o�oading is
regarded as another approach to achieve an envi-
ronmental adaptation concept from loop o�oading
because focus points of o�oading small loops and
o�oading large function blocks are opposite.

4.1. Outline of function-block o�oading and
considerations

Because designing hardware circuits requires a large
amount of time regarding FPGAs, it is often possible to

use circuit design in the form of an •IP coreŽ for func-
tions already designed. Typical examples of IP cores
are encryption/decryption processing, arithmetic cal-
culations such as FFT, image processing and voice pro-
cessing. Many IP cores have licensing fees, but some
are o�ered free of charge. Since an IP core can be
said to involve the existing know-how of developers,
we consider using IP cores for automatic o�oading to
FPGAs.

For GPUs, fast FT (FFT) and matrix calculation are
frequently used, and cuFFT and cuSOLVER are imple-
mented by CUDA and provided free as GPU libraries.
We considered using these libraries (not IP core) for
GPUs.

If existing source code created for CPU includes
function blocks that can be accelerated by o�oading to
GPUs or FPGAs, such as FFT processing, GPU libraries
or FPGA IP cores are replaced with the function blocks
to increase o�oading performance.

An overview of function-block o�oading is illus-
trated in Figure3(a,b). Figure3(a) shows an image
of o�oading behaviour and (b) shows a sequence
of o�oading behaviour. In Step 1, source codes are



392 Y. YAMATO

analysed using a parse tool, such as Clang, and outer
library calls and function processing are analysed with
the loop-statement structure. For the library calls and
function processing analysed in Step 1, function blocks
that can be o�oaded to GPUs or FPGAs are found by
checking with the code-pattern DB in step 2. In Step 3,
o�oadable function blocks are replaced with libraries
for GPUs or IP cores for FPGAs by creating interfaces
with CPU programs. At this time, since it is not known
whether function-block o�oading to GPUs or FPGAs
will lead to immediate increasing performance, per-
formance measurements are repeated in a veri�cation
environment to extract faster o�oading patterns with
or without o�oading of certain function blocks. With
function block o�oad, the devices that are o�oaded
are limited to those in the same node. This is because
o�oading to another node device needs network pro-
cessing time, so there is no merit in speeding up.

With regard to o�oading of loop statements, which
was done in previous studies, individual loop statement
detection is carried out with a parse tool, and loop state-
ments can be o�oaded to GPUs or FPGAs using Ope-
nACC•s #pragma or OpenCL. However, with regard
to function-block o�oading, we need to consider the
following three points; discovering function blocks in
source codes, checking whether the function blocks
have o�oadable GPU libraries or FPGA IP cores, and
matching interfaces between replaced libraries or IP
cores and the host CPU program.

4.2. Function-block-o�oading method

Based on the three points in the previous subsection, we
developed a function-block-o�oading method for this
study.

A. Discovering function blocks in source codes
A-1: In parsing, the proposed method detects that

external libraries are called from source codes. For pars-
ing, parsing tools such as Clang are used. A parsing
tool can detect method calls, then the proposed method
checks registered external libraries list with the code-
pattern DB. For example, FFT library calls are detected.
The code-pattern DB holds the external libraries list
beforehand.

A-2: To detect function processing other than reg-
istered library calls, classes and structures are detected
from source-code-de�nition description by using parse
tools.

B. Checking whether the function blocks have
o�oadable GPU libraries or FPGA IP cores

B-1: The code-pattern DB holds GPU libraries,
FPGA IP cores, and related information which improve
speci�c libraries or function-block processing. For
replacement source libraries and function blocks, codes
and executable �les with function names are registered.
For library calls detected in A-1, the proposed method

searches for GPU libraries or FPGA IP cores that can be
accelerated using the library name as a key.

B-2: The information registered in the code-pattern
DB in B-1 is used. A similarity-detection tool detects
whether there are libraries or IP cores that can be accel-
erated for the function processing of the classes and
structures detected in A-2. A similarity-detection tool,
such as Deckard [47], detects a copy code or a changed
code after copying. There are many types of similarity-
detection tools such as line-based detection, lexical
unit-based detection, abstract syntax tree-based detec-
tion, program-dependent graph-based detection, met-
ric and �ngerprint-based detection and so on. However,
detection accuracy is not 100% of all tools. Among
them, Deckard uses an abstract syntax tree for detec-
tion, and it is unlikely that multiple function blocks
will have the same abstract syntax tree characteristics.
Such a tool can detect some codes that have similar
descriptions when calculated by a CPU such as matrix
manipulation, and changed descriptions after copying
from other codes. It cannot detect newly created classes;
thus these classes are out of the scope of this study.
For functions with libraries or IP cores registered in
the code-pattern DB that accelerate speci�c function
blocks, a similarity detection tool determines whether
the similarity is high based on the tool threshold. Since
it is clear that the detection range with this tool is
not 100%, arti�cial intelligence (AI) pattern recognition
will also considered for detection in future. A support
vector machine (SVM), which is frequently used for
pattern recognition in supervised learning, deep learn-
ing and unsupervised learning, can be applied. How-
ever, even in the case of AI processing, it is di�cult to
make the machine understand the intention of codes, so
the newly created class and structure may be di�cult to
detect.

C. Matching interfaces between replaced libraries or
IP cores and host CPU program

C-1: Since the corresponding library or IP core is
searched in B-1 for the library call detected in A-1, the
replacement library or IP core is installed in the GPU
or FPGA, and a host (CPU) program is connected. A
library, such as CUDA, is assumed as a library for GPUs.
Since methods of using CUDA libraries from C lan-
guage codes are open with libraries, the code-pattern
DB holds such methods as well. When GPU libraries
are used, these libraries and the host program are con-
nected referring to these methods. In an FPGA IP core,
hardware description language (HDL) is assumed. The
code-pattern DB also holds OpenCL code as IP-core-
related information. From the OpenCL code, the con-
nection between a CPU and FPGA using the OpenCL
interface and implementation of an IP core on an FPGA
can be done using high-level synthesis tools of FPGA
vendors such as Xilinx and Intel (Xilinx Vivado, Intel
HLS Compiler, etc.).



AUTOMATIKA 393

C-2: For classes and structures detected in A-2, we
search for libraries and IP cores that can be accelerated
in B-2 and implement the corresponding libraries and
IP cores on the GPU and FPGA. In C-1, because it is
a library or IP core that speeds up speci�c library calls,
it is necessary to generate an interface, but the number
and type of arguments and return of library or IP core
and o�oadable functions are matched. However, since
B-2 is determined based on similarity, there is no guar-
antee that the basic items, such as the number and type
of arguments and return, match.

If they do not match, because libraries and IP cores
are existing know-how and cannot be changed fre-
quently, we will con�rm with a user on whether to
change them. After receiving con�rmation, we will pro-
ceed with performance tests. Regarding to di�erences
in variable types, if we only need to cast such as �oat and
double, we can proceed with performance tests without
user con�rmation. Also, when the numbers of argu-
ments and returns di�er between the source programs
and libraries or IP cores, but if there is no problem
even it is omitted, the proposed method does need not
to notify the user and proceeds with the performance
tests. For example, if arguments A and B are required
and C is optional in the source program and arguments
A and B are required in the library, we may treat to
omit the option argument automatically. Note that if
the numbers of arguments and returns are the same, we
proceed the same as in C-1.

Here, we assume that cloud operators or carrier
operators such as NTT who provide heterogeneous
hardware for the cloud or so on prepare code-pattern
DB with GPU libraries and FPGA IP cores that are use-
ful to many users. To help users• applications speed up
automatically by using the code pattern DB, the merit
of operator is that the use of services such as the cloud
will increase and pro�ts will increase.

Regarding to GPU libraries, NVIDIA provides many
CUDA libraries for free such as cuFFT [48] and
cuSOLVER [49], and it is assumed that the operator
will register them in the DB. Regarding to IP cores of
FPGA, many IP cores need license fee. Therefore, it is
assumed that IP cores implemented by the operator are
registered in the DB. For example, the signal processing
function implemented by the carrier operator is regis-
tered. Regarding to OpenCL for FPGA, there are some
open releases, and it is possible to register them.

5. Implementation

5.1. Tools used

In this section, we explain the implementation of the
proposed method. To con�rm the method•s e�ective-
ness in function-block o�oading, we used C/C++
language applications, NVIDIA Quadro P4000 as the
GPU, and Intel PAC with Intel Arria10 GX FPGA as the

FPGA. We also carried out compiling to the FPGA on
DELL EMC PowerEdge R740.

GPU processing uses PGI compiler 19.4. This PGI
compiler is an OpenACC compiler for C/C++ /Fortran
languages. The bytecode for the GPU can be extracted
by specifying parallel processable parts, such as loop
statements, by OpenACC directive #pragma acc ker-
nels, #pragma acc parallel loop and executed on the
GPU. This PGI compiler can also use CUDA libraries
such as cuFFT or cuRAND.

To control the FPGA, we used Intel Acceleration
Stack Version 1.2 (Intel FPGA SDK for OpenCL 17.1.1,
Quartus Prime Version 17.1.1). The Intel FPGA SDK
for OpenCL is a high-level synthesis tool (HLS) that
compiles #pragma directives in addition to the standard
OpenCL. It compiles OpenCL code that describes the
kernel program processed by the FPGA and the host
program processed by the CPU, outputs information
such as the amount of resources, performs FPGA wiring
and so on to operate the code using the FPGA. Time
of implementing codes to be processed on an FPGA
depends on many factors such as code size, resource
amount and so on. When we use Intel FPGA SDK, even
a small program of about 100 lines takes about 3 hours
to be able to operate on an actual FPGA, but an error
occurs early when the amount of used FPGA resources
is exceeded a limit of available resources. By includ-
ing the existing OpenCL codes of the FPGA into kernel
codes, they can be o�oaded to the FPGA after OpenCL
program compiling.

We used MySQL8.0 as the code-pattern DB. Since
the code-pattern DB searches for o�oadable GPU
library or FPGA IP core using the called library name
as a key, the source library name and the corresponding
destination GPU library and/or FPGA IP core names
are linked and managed. The names of the libraries
and IP cores that are registered are linked with the exe-
cutable �les of the libraries, IP cores and the codes
such as CUDA and OpenCL. Since the execution �le is
replaced and called automatically after being detected,
the usage procedure such as method name, calling
order, protocol to use is also registered. Next, when the
o�oadable function block is detected by the similarity
detection tool, the code that performs the function is
also linked to the source library name. The similarity
detection tool compares the registered code with the
code speci�ed by the user.

We used Deckard v2.0 [47] as the similarity-
detection tool. Deckard is used to expand function
blocks for o�oading. It determines the similarity
between the partial code to be veri�ed and the code
for comparison registered in the code-pattern DB to
detect functions. Deckard can detect function blocks
even if there are comments and little modi�cation.
We think Deckard is suitable for detecting o�oad-
able function blocks. Though detecting function blocks



394 Y. YAMATO

using abstract syntax tree similarity is a language inde-
pendent method, Deckard can analyse C and Java
applications.

We implemented the method with C language and
Python 2.7.

5.2. Implementation behaviour

When a C/C++ application is speci�ed, this imple-
mentation parses C/C++ code and detects loop state-
ments for loop o�oading of previous studies called
libraries (A-1) and de�ned classes and structures (A-2).
For parsing, the implementation uses parsing libraries
of Clang. When the implementation searches if there is
an external library call, it checks the external library list
in the code-pattern DB.

Next, the implementation detects GPU libraries and
FPGA IP cores that can speed up the called library (B-
1). Using the called library name as a key, it obtains an
executable �le or OpenCL code that can be accelerated
from the registered record in the code-pattern DB. If a
replacement function that can be accelerated is found,
the implementation then generates an executable �le.
In a GPU library, the implementation deletes the source
part and replaces it with the found GPU library call in
the C/C++ code so that the replaced CUDA library
is called. In an IP core of FPGA, the implementa-
tion deletes the source part and replaces the acquired
OpenCL code with the kernel code. After completing
the replacements, the PGI compiler compiles for GPU
and Intel Acceleration Stack for FPGA (C-1). Based on
the OpenCL code, the CPU and FPGA are connected
using Intel•s high-level synthesis tool.

The above description is the case of a library call,
and detection processing is carried out in parallel
when using a similarity detection tool. In this imple-
mentation, Deckard detects the similarity between the
detected partial codes such as classes and the compar-
ison code registered in the code-pattern DB, and the
comparison codes exceeding the threshold are detected
(B-2). Detected codes are associated with the corre-
sponding GPU library or FPGA IP cores. Then the
implementation acquires executable �les and OpenCL
codes, as the same way as in B-1. Next, it generates exe-
cutable �les, as the same way as in C-1. However, if
the interface of the source code and the replacement
library or IP core arguments di�er, the interface that
matches the replacement library or IP core is noti�ed
to the user who requested the o�oad, and the user can
con�rm whether it can be changed. If the user accepts,
the implementation generates executable �les.

At this point, execution �les are created that can
be used to measure application performance on GPUs
or FPGAs in a veri�cation environment. For function-
block o�oading, if there is only one functional block
to be replaced, it only considered whether that one is
o�oaded. However, if there are several function blocks,
the implementation generates a veri�cation pattern that

o�oads a certain function block to �nd a fast solu-
tion. This is because even if it is possible to increase
the performance based on existing know-how, it will
not be clear whether the speed will be increased under
the deployed environment condition until application
performance is actually measured. For example, if there
are �ve function blocks that can be o�oaded and the
measurement results show that the performances of
o�oading of #2 and #4 can be improved, the implemen-
tation measures this again with the pattern of o�oading
both #2 and #4. If it is faster than o�oading #2 and
#4 separately, it selects the o�oading of both as the
solution.

Therefore, focusing on the processing of A, B and
C as a whole, source codes are parsed, function blocks
are detected, replaceable functions are found, interfaces
with CPU sides are created, the performances of several
o�oad patterns are measured in a veri�cation environ-
ment, and high performance patterns are searched.

The degree of performance improvement by o�oad-
ing function blocks is veri�ed. The processing of A-1,
B-1 and C-1 is fundamental, but to increase the num-
ber of o�oadable targets, the processing of A-2, B-2 and
C-2 is also veri�ed. Using Deckard, the implementa-
tion detects codes which can be replaced to o�oadable
libraries or IP cores when the codes with comments and
modi�cation are similar to registered codes.

In the performance measurement, along with the
processing time, the implementation checks whether
the calculation result is valid or not. For example, the
PCAST function of the PGI compiler can check the dif-
ference in calculation results. If the di�erence is large
and not allowable, the implementation sets the o�oad
pattern invalid. If no function block can be o�oaded,
the implementation moves on to the trial of loop state-
ment o�oad which is reported in other papers [19].

6. Evaluation

6.1. Evaluation method

6.1.1. Evaluated applications
Based on the implementation, we evaluated the applica-
tion performance improvement of o�oading. We eval-
uated three applications for GPU o�oading, FT, matrix
calculation and random number generation, which are
used in many areas such as IoT. We evaluated one appli-
cation for FPGA o�oading, �nite-impulse response �l-
ter of signal processing. It is evaluated that not only
the processing time performance but also the electric
power usage can be reduced by o�oad. The evaluation
targets are Himeno benchmark for �uid calculation for
GPU o�oad and MRI-Q for MRI image processing for
FPGA o�oad.

FT processing is used in various types of monitoring,
such as vibration frequency analysis. When considering
an IoT application that transfers data from a device to
the network, it is assumed that the device side performs



AUTOMATIKA 395

primary analysis such as FFT processing to reduce
network cost. To speed up FFT processing, CUDA•s
existing library cuFFT [48] is automatically replaced to
original codes.

Matrix calculation is used in many types of analy-
sis such as machine-learning analysis. Because matrix
calculation is used not only on cloud sides but also
device sides due to the spread of IoT and AI, automatic
performance improvements for various applications are
needed. We used matrix calculation of lower…upper
(LU) decomposition. To speed up LU decomposition,
CUDA•s existing library cuSOLVER [49] is automati-
cally replaced to original codes.

Random number generation is used in many areas.
For example, option pricing simulation often uses ran-
dom number generation. To speed up random number
generation, CUDA•s existing library cuRAND [50] is
automatically replaced to original codes.

The time-domain �nite-impulse response �lter per-
forms processing in a �nite time on the output when
an impulse function is input to a system. We used
MIT Lincoln laboratory•s high-performance embedded
computing (HPEC) Challenge Benchmark Suite C code
and sample tests with it for o�oading performance
measurement, and Intel sample OpenCL [51] is auto-
matically replaced to original C codes. When consider-
ing applications that transfer signal data from devices
over the network, to reduce network costs, it is assumed
that signal processing such as �lters are conducted
on devices sides, thus signal processing o�oading to
FPGA is important, we think.

The original codes of calculation applications for
GPU are from Numerical Recipes in C [52].

Himeno benchmark [53] is a performance mea-
surement benchmark software for incompressible �uid
analysis and solves Poisson•s equation by the Jacobi
iterative method. Himeno benchmark has C language
and Fortran, but this time we decided to use Python
for power measurement and described the processing
logic in Python. The data is calculated in a large size
of 512� 256� 256 grid. CPU processing is processed by
Python•s Numpy, and GPU processing is processed via
the Cupy library [54] that o�oads the Numpy Interface
to the GPU.

MRI-Q [55] computes the matrix Q representing
the scanner con�guration used in the 3D MRI recon-
struction algorithm in non-Cartesian space. MRI-Q is
written in C language, and 3D MRI image processing
is performed during performance measurement, and
the processing time is measured with Large data of
64� 64� 64 size. CPU processing is in C language, and
FPGA processing is processed based on OpenCL.

6.1.2. Experiment conditions
Function-block o�oading to GPUs and FPGAs is
combined with loop-statement o�oading for actual
production use. However, since loop-statement

o�oading has been evaluated previously [17], we only
evaluate o�oading of function blocks for this paper.
For the target applications, we prepared function blocks
that can be o�oaded in the code-pattern DB before-
hand and measured application performance when
original codes are automatically replaced.

The experimental conditions are as follows.
O�oad sources: FT, Matrix calculation, Random

number generation and Time-domain �nite-impulse
response �lter.

O�oad targets : cuFFT, cuSOLVER, cuRAND and
Intel OpenCL of Time-domain �nite-impulse response
�lter.

O�oad-source-discovery method: The code of the
o�oad source application calls the external library on
the code side and discovered by DB name matching.
To discover by Deckard, we prepared target applications
which include library codes with added comments and
slight modi�cations to the original codes. We prepared
both two patterns for this experiment.

Methods to be compared: All-CPU-processing
method, Proposed function-block-o�oading method
and Loop-statement-o�oading method.

Our previous loop-statement-o�oading method [17]
involves using the GA to search for appropriate loop-
o�oading patterns in a veri�cation environment.

Performance measurement: In FT, sample test pro-
cessing is carried out with a grid size of 2048× 2048,
and the processing time is measured. In matrix calcu-
lation, the processing time of the 2048× 2048 orthog-
onal matrix LU decomposition is measured. In random
number generation, 2048× 2048× 2 �oat-type ran-
dom numbers are generated. In time-domain �nite-
impulse response �lter, HPEC•s sample test process-
ing is carried out with 64 �lters and 4096 length of
input/output vectors.

In the power usage evaluation, the processing time
and power usage are measured when processing is exe-
cuted after o�oad. The time change of the power usage
is acquired and the power reduction compared to the
case where all processing is executed by only CPU is
con�rmed.

6.1.3. Experimental environment
We used physical machines with NVIDIA Quadro
P4000 for GPU o�oading evaluation. The CUDA core
number of NVIDIA Quadro P4000 is 1792. To con-
trol GPU, PGI compiler community edition v19.4 and
CUDA toolkit v10.1 were used. We also used physi-
cal machines with Intel Arria 10 GX FPGA for FPGA
o�oading evaluation. To control FPGA, Intel Acceler-
ation Stack v1.2 was used. Figure4 shows the experi-
mental environment and environment speci�cations. A
client note PC speci�es the C/C++ application codes,
which are converted and vivi�cated on veri�cation
machines, and the �nal codes are deployed in running
environments for users after veri�cation.



396 Y. YAMATO

Figure 4.Experimental environment.

For power usage measurement, LEVEL-F039-
LCRT2W-XYVI of BTO PC was used as GPU, and Dell
PowerEdge R740 of veri�cation machine was used as
FPGA. GPU power usage is measured by NVIDIA•s
nvidia-smi and CPU power usage is measured by s-
tui [56]. For the FPGA, Intelligent Platform Manage-
ment Interface (IPMI) tool of the Dell server measured
the power of the entire server and compares power
usage when using the FPGA and when using only the
CPU.

6.2. Performance results

We con�rmed the performance improvements of three
applications to GPU and one application to FPGA that
are expected to be used by many users.

Figure 5 shows an example of FT performance
improvement on our previous study using GA [17]. It
shows maximum performance change of FT in each
generation with GA generation transitions (the vertical
axis shows how many times faster GPU o�oading was
than using only a CPU). FT performance improved and
GPU o�oading was about 5.4 times faster. During GA
processing, it took more than several hours to search for
appropriate o�oading loop statements.

Based on these previous results, we present the
measurement results of how much these applications
improved with the proposed method. The o�oad-
source-discovery method can be replaced with the
DB name matching and similarity detection tool

Figure 5.Reference graph: performance change of FT with GA
generation transitions [17].

depending on whether the library is called or the
code is copied. Table1 shows how much the four
applications improved in performance with the pro-
posed function-block o�oading method compared
to the all-CPU-processing method. 1 means that the
applications performed the same with both meth-
ods. The performance improvements with the loop-
statement-o�oading method are also shown. FT
improved in performance 730 fold with the proposed
method, which was only 5.4 times that with the
loop-statement-o�oading method. Matrix calculation
improved 130,000 fold with the proposed method com-
pared to 38 fold with the loop-statement-o�oading
method. Random number generation, it was found that



AUTOMATIKA 397

Table 1.Comparisonofapplicationperformance improvement
between loop-statement-o�oading and proposed function-
block-o�oading methods.

Performance
improvement of loop
statement o�oading

Performance
improvement of
function block

o�oading

Fourier transform (to GPU) 5.4 730
Matrix calculation (to GPU) 38 130,000
Random number

generation (to GPU)
19 27

Time domain “nite impulse
response “lter (to FPGA)

4.0 21

the improved 27 fold with the proposed method com-
pared to 19 fold with the loop-statement-o�oading
method. Time-domain �nite-impulse response �lter
execution time was shortened from 0.298 to 0.0139
seconds, thus the processing performance improved
21 fold with the proposed method compared to 4.0
fold with the loop-statement-o�oading method. From
these four measurements, function block o�oad per-
formance is superior to loop statement o�oad perfor-
mance. Because CUDA libraries are implemented suit-
able algorithms for speci�c calculations, they are much
faster than simply o�oading loop statements when
function block o�oading can be conducted. In addi-
tion, GPU library and IP core are built in when using, so
there is no delay in external calls when function block
o�oading can be conducted.

For these four cases, the o�oading of function
blocks was completed in a few seconds because our
implementation only checked DB name matching and
similarity detection. When code size is larger, Deckard
may take more time, but it will complete in 1 minute.

Figure6(a) shows watt and time when the Himeno
benchmark was o�oaded to the GPU. Compared to all
CPU processing, the processing time is shortened from
153 to 19 seconds, but it can be seen that the power
usage is about 27…109 watts. As a result, watt� sec is
about 1/2 of 2070 watts� sec from 4080 watt� sec in
the case of all CPU processing.

Figure6(b) shows watt and time when MRI-Q was
o�oaded to the FPGA. Compared to all CPU process-
ing, the processing time has been shortened from 14
to 2 seconds, and it can be seen that the power usage
of the entire server is about 121…111 watts. As a result,
watt� sec has changed from 1690 watt� sec for all CPU
processing to 223 watt� sec, which is about 1/8.

We con�rmed power usage reduction in GPU and
FPGA o�oad applications. At the time of GPU o�oad
of Himeno benchmark, watt was increased, but the
power usage could be reduced as a whole due to the
e�ect of shortening the processing time. At the time of
FPGA o�oad of MRI-Q, watt was reduced, which was
combined with the shortening of time, and the power
usage could be greatly reduced. It is generally said that
FPGAs have good power e�ciency, and this time it was
con�rmed that the power usage of FPGAs is low in the

MRI-Q experiment. Therefore, if the GPU and FPGA
have similar performance when o�oaded in a mixed
environment, it is conceivable to select the FPGA by
looking at the power usage.

6.3. Discussion

In our previous study on loop-statement o�oading to
GPUs and FPGAs, we used a method of measuring the
performance of multiple o�oading patterns in a veri-
�cation environment and searching high-performance
patterns automatically. For example, even large appli-
cations with more than 100 loop statements, such as
Darknet, are automatically o�oaded to GPUs and triple
in performance. However, there have been many cases
in which the performance improved by more than
10 fold through manual program development using
CUDA for GPUs and HDL for FPGAs and in some
cases automatic performance improvement was insu�-
cient. Therefore, the proposed method can achieve high
performance with speci�c processing, such as FFT and
matrix calculation, by o�oading them to the CUDA
library or IP core.

Function-block o�oading can greatly contribute
to performance improvement, particularly for FPGAs
because FPGAs often require algorithms that are suit-
able for hardware processing compared to GPUs.

Regarding the o�oading e�ect with costs of hard-
ware, GPU boards, such as NVIDIA Quadro, cost about
2 000 USD and FPGA boards, such as Intel Arria, cost
about 3 000 USD. Therefore, hardware for GPUs or
FPGAs costs about twice to three times as much as
that for only CPUs. In data centres, hardware, devel-
opment, and veri�cation costs of systems, such as a
cloud systems, are about a 1/3 the total cost, electric-
ity and operation/maintenance cost is more than 1/3,
and other expenses, such as service orders, is the other
1/3. Regarding AWS, a GPU instance with one GPU
costs about 650 USD/month, which is the same as host-
ing a general dedicated server. Therefore, we believe
improving application performance more than 10 times
that take much time will have a su�ciently positive cost
e�ect even though the hardware cost is about twice to
three times. For example in this paper•s experiment, the
GPU server was 6 000 USD the FPGA server was 9 000
USD, and the CPU server was about 3 000 USD. All
applications o�oaded to GPU or FPGA has more than
three times the performance improvement, therefore,
all applications can be said cost-e�ective with automatic
o�oading.

Regarding the time to start production services, in
only function-block o�oading, it is assumed that pro-
cessing will be completed in a few minutes. When there
is no function block that can be o�oaded, applica-
tion performance improves using the loop-statement-
o�oading method, and the application performance
is increased from several hours to half day through



398 Y. YAMATO

Figure 6.(a) Power usage of Himeno benchmark after GPU o�oad and (b) power usage of MRI-Q after FPGA o�oad.

repeated veri�cation. When we provide production ser-
vices, we provide the �rst day for free and try to speed
up the veri�cation environment during the �rst day,
and from the second day we provide the production ser-
vice using GPUs and FPGAs. Therefore, we believe the
tuning time is acceptable.

To o�oad with the proposed method, it is necessary
to pre-register the library and IP core that are com-
monly used in multiple applications to the code-pattern
DB. In addition to the processing used in various appli-
cations, such as FFT and matrix manipulation, it is
assumed that registration will be focused on speci�c
�elds such as machine learning and signal processing.

In this evaluation, it was con�rmed that o�oadable
functions of copied codes with comments can be found
using a similarity detection tool Deckard. Similarity
detection tools are tools for discovering code clones
in software maintenance phase originally, therefore,
using a similarity detection tool for automatic o�oad-
ing is a new approach. In the software engineering �eld,
similarity detection is a hot topic and new methods
are proposed frequently. Therefore, we will study to
detect more function blocks that can be o�oaded using
recent studies such as applying Arti�cial Intelligence
(AI) methods of SVM and deep learning in the future.

Though it is di�cult to detect o�oadable func-
tion block rather than o�oadable individual loop,
expectable e�ect is high because function block o�oad-
ing can use hardware oriented algorithms. Therefore,
for actual service phase, providers need to provide both
approaches of function blocks and loop statements for
automatic o�oading to GPUs or FPGAs.

7. Conclusion

We proposed an automatic o�oading method for func-
tion blocks of applications as a new element of our
environment-adaptive software. Environment adaptive
software adapts applications to the environments to
use heterogeneous hardware such as GPUs and FPGAs
appropriately.

The proposed method starts with source code anal-
ysis. It analyses the source code, detects o�oadable
library calls by checking a DB, and replaces them with
replaceable GPU libraries or FPGA IP cores registered
in the DB. The performance is measured in a veri-
�cation environment, including the functions of the
replaced GPU and FPGA, and took the pattern with
the highest performance as the solution. To search for
more replaceable function blocks in source-code anal-
ysis, o�oadable function blocks are also searched for
using similarity detection technology. Replacement and
performance measurement are carried out as the same
way. However, even if it is determined that the func-
tion block can be replaced, if the interface is di�er-
ent, the user is asked whether it can be changed with
the interface of the replaceable function. We imple-
mented the proposed method, evaluated its automatic
o�oading of several applications to GPUs or FPGAs,
and con�rmed its e�ectiveness. Compared to the loop
statement o�oad of the previous research, the function
block o�oad of this research is 40% or more for the
GPU o�oad of random number generation, 100 times
or more for the GPU o�oad of Fourier transform, and
5 times or more for the FPGA o�oad of time-domain
�nite-impulse response �lter have been improved.



AUTOMATIKA 399

For future work, we will investigate a common
method for appropriately o�oading existing CPU
applications including o�oadable function blocks and
loop statements in an environment where GPUs,
FPGAs and many-core CPUs are mixed. We will also
study ways to improve cost-e�ectiveness by adjusting
the amount of processing resources of CPU, GPU and
FPGA when the migration destination environment is
mixed.

Disclosure statement

No potential con�ict of interest was reported by the author(s).

References

[1] Shahidi G. Slow-down in power scaling and the end
of Moore•s law? International Symposium on VLSI
Design, Automation and Test, 2019.

[2] Putnam A, Caul�eld AM, Chung ES, et al. A recon-
�gurable fabric for accelerating large-scale datacen-
ter services. In: Proceedings of the 41th Annual
International Symposium on Computer Architecture
(ISCA•14); 2014. p. 13…24.

[3] Yamato Y. Use case study of HDD…SSD hybrid stor-
age, distributed storage and HDD storage on openStack.
In: 19th International Database Engineering & Applica-
tions Symposium (IDEAS•15); 2015. p. 228…229.

[4] Yamato Y, Nishizawa Y, Nagao S. Fast restoration
method of virtual resources on OpenStack. In: IEEE
Consumer Communications and Networking Confer-
ence (CCNC2015); 2015. p. 607…608.

[5] Yamato Y, et al. Development of resource management
server for production IaaS services based on OpenStack.
J Inf Process.2015;23(1):58…66.

[6] Yamato Y. Proposal of optimum application deploy-
ment technology for heterogeneous IaaS cloud. In: 2016
6th International Workshop on Computer Science and
Engineering (WCSE 2016); 2016. p. 34…37.

[7] Sanders J, Kandrot E. CUDA by example: an introduc-
tion to general-purpose GPU programming. Boston:
Addison-Wesley;2011.

[8] Stone JE, Gohara D, Shi G. OpenCL: a parallel program-
ming standard for heterogeneous computing systems.
Comput Sci Eng.2010;12(3):66…73. doi:10.1109/MCSE.
2010.69

[9] Hermann M, Pentek T, Otto B. Design principles for
industrie 4.0 scenarios. Dortmund: Rechnische Univer-
sitat Dortmund;2015.

[10] Yamato Y, Fukumoto Y, Kumazaki H. Proposal of
shoplifting prevention service using image analysis
and ERP check. IEEJ Trans Electr Electron Eng.
2017;12(S1):141…145. doi:10.1002/tee.2017.12.issue-S1

[11] Yamato Y, Takemoto M, Shimamoto N. Method of
service template generation on a service coordination
framework. In: 2nd International Symposium on Ubiq-
uitous Computing Systems (UCS 2004); 2004.

[12] Noguchi H, Demizu T, Hoshikawa N, et al. Autonomous
device identi�cation architecture for internet of things.
In: 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT 2018); 2018. p. 407…411.

[13] Noguchi H, Kataoka M, Yamato Y. Device identi-
�cation based on communication analysis for the
internet of things. IEEE Access.2019;7:52903…52912.
doi:10.1109/Access.6287639

[14] Noguchi H, Demizu T, Kataoka M, et al. Distributed
search architecture for object tracking in the internet of
things. IEEE Access.2018;6:60152…60159. doi:10.1109/
ACCESS.2018.2875734

[15] Yamato Y, Fukumoto Y, Kumazaki H. Proposal of
real time predictive maintenance platform with 3D
printer for business vehicles. Int J Inf Electron Eng.
2016;6(5):289…293.

[16] Yamato Y. Study of parallel processing area extrac-
tion and data transfer number reduction for automatic
GPU o�oading of IoT applications. J Intell Inf Syst.
2019;54:567…584. doi:10.1007/s10844-019-00575-8

[17] Yamato Y. Study and evaluation of improved automatic
GPU o�oading method. Int J Parallel Emergent Distrib
Syst.2021;36(6):594…608. doi:10.1080/17445760.2021.
1941010

[18] Yamato Y. Study and evaluation of automatic GPU
o�oading method from various language applications.
Int J Parallel Emergent Distrib Syst.2021;37(1):22…39.
doi:10.1080/17445760.2021.1971666

[19] Yamato Y. Automatic o�oading method of loop state-
ments of software to FPGA. Int J Parallel Emergent Dis-
trib Syst. 2021;36(5):482…494. doi:10.1080/17445760.
2021.1916020

[20] Wienke S, Springer P, Terboven C, et al. OpenACC-�rst
experiences with real-world applications. In: Euro-Par
Parallel Processing; 2012.

[21] Wolfe M. Implementing the PGI accelerator model.
In: ACM the 3rd Workshop on General-purpose
Computation on Graphics Processing Units; 2010.
p. 43…50.

[22] Ishizaki K. Transparent GPU exploitation for Java. In:
The Fourth International Symposium on Computing
and Networking (CANDAR 2016); 2016.

[23] Su E, Tian X, Girkar M, et al. Compiler support of
the workqueuing execution model for Intel SMP archi-
tectures. In: Fourth European Workshop on OpenMP;
2002.

[24] Holland JH. Genetic algorithms. Sci Am.1992;267(1):
66…73. doi:10.1038/scienti�camerican0792-66

[25] Wuhib F, Stadler R, Lindgren H. Dynamic resource allo-
cation with management objectives … implementation
for an OpenStack cloud. In: Proceedings of network
and service management; 2012 8th International Con-
ference and 2012 Workshop on Systems Virtualization
Management; 2012. p. 309…315.

[26] Shakarami A, Shahidinejad A, Ghobaei-Arani M.
An autonomous computation o�oading strategy in
mobile edge computing: a deep learning-based hybrid
approach. J Netw Comput Appl.2021;178:Article ID
102974. doi:10.1016/j.jnca.2021.102974

[27] Jazayeri F, Shahidinejad A, Ghobaei-Arani M.
Autonomous computation o�oading and auto-scaling
the in the mobile fog computing: a deep reinforcement
learning-based approach. J Ambient Intell Humaniz
Comput.2021;12:8265…8284. doi:10.1007/s12652-020-
02561-3

[28] Shakarami A, Ghobaei-Arani M, Shahidinejad A. A
survey on the computation o�oading approaches in
mobile edge computing: A machine learning-based per-
spective. Comput Netw.2020;182:Article ID 107496.
doi:10.1016/j.comnet.2020.107496

[29] Shakarami A, Ghobaei-Arani M, Masdari M, et al. A
survey on the computation o�oading approaches in
mobile edge/cloud computing environment: a stochastic-
based perspective. J Grid Comput.2020;18:639…671.
doi:10.1007/s10723-020-09530-2



400 Y. YAMATO

[30] Shakarami A, Shahidinejad A, Ghobaei-Arani M. A
review on the computation o�oading approaches in
mobile edge computing: a game-theoretic perspective.
Softw Pract Exper.2020;50:1719…1759. doi:10.1002/
spe.v50.9

[31] Shahidinejad A, Ghobaei-Arani M, Masdari M.
Resource provisioning using workload clustering in
cloud computing environment: a hybrid approach.
Cluster Comput. 2021;24:319…342. doi:10.1007/s105
86-020-03107-0

[32] Aslanpour MS, Dashti SE, Ghobaei-Arani M, et al.
Resource provisioning for cloud applications: a 3-
D, provident and �exible approach. J Supercomput.
2018;74:6470…6501. doi:10.1007/s11227-017-2156-x.

[33] Anitha S, Padma T. A Neuro-Fuzzy hybrid frame-
work for augmenting resources of mobile device.
Int J Inf Technol Decis Mak.2021;20:1519…1555.
doi:10.1142/S0219622021500413

[34] Chen J, Joo B, Watson III W, et al. Automatic o�oad-
ing C++ expression templates to CUDA enabled GPUs.
In: 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD
Forum; 2012. p. 2359…2368.

[35] Bertolli C, Antao SF, Bercea GT, et al. Integrating GPU
support for OpenMP o�oading directives into Clang.
In: ACM Second Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM•15); 2015.

[36] Lee S, Min SJ, Eigenmann R. OpenMP to GPGPU:
a compiler framework for automatic translation and
optimization. In: 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming
(PPoPP•09); 2009.

[37] Liu C, Ng H-C, So HK-H. Automatic nested loop accel-
eration on fpgas using soft CGRA overlay. In: Second
International Workshop on FPGAs for Software Pro-
grammers (FSP 2015); 2015.

[38] Alias C, Darte A, Plesco A. Optimizing remote accesses
for o�oaded kernels: application to high-level synthe-
sis for FPGA. In: 2013 Design, automation and test in
Europe (DATE); 2013. p. 575…580.

[39] Sommer L, Korinth J, Koch A. OpenMP device o�oad-
ing to FPGA accelerators. In: 2017 IEEE 28th Inter-
national Conference on Application-speci�c Systems,
Architectures and Processors (ASAP 2017); 2017.
p. 201…205.

[40] Putnam A, Bennett D, Dellinger E, et al. CHiMPS: a
C-level compilation �ow for hybrid CPU-FPGA archi-
tectures. In: IEEE 2008 International Conference on
Field Programmable Logic and Applications; 2008.
p. 173…178.

[41] Shitara A, Nakahama T, Yamada M, et al. Vegeta:
an implementation and evaluation of development-
support middleware on multiple opencl platform. In:
IEEE Second International Conference on Networking
and Computing (ICNC 2011); 2011. p. 141…147.

[42] Shirahata K, Sato H, Matsuoka S. Hybrid map task
scheduling for GPU-based heterogeneous clusters. In:
IEEE Second International Conference on Cloud Com-
puting Technology and Science (CloudCom); 2010.
p. 733…740.

[43] Kaleem R, Barik R, Shpeisman T, et al. Adaptive het-
erogeneous scheduling for integrated GPUs. In: 2014
IEEE 23rd International Conference on Parallel Archi-
tecture and Compilation Techniques (PACT); 2014.
p. 151…162.

[44] Guzman MAD, Nozal R, Tejero RG, et al. FPGA het-
erogeneous execution with EngineCL. J Supercomput.
2019;75(3):1732…1746. doi:10.1007/s11227-019-027
68-y

[45] Owaida M, Alonso G, Fogliarini L, et al. Lower-
ing the latency of data processing pipelines through
FPGA based hardware acceleration. Proc VLDB Endow.
2019;13(1):71…85. doi:10.14778/3357377.3357383

[46] Stefanic P, Cigale M, Jones AC, et al. SWITCH
workbench: a novel approach for the development
and deployment of time-critical microservice-based
cloud-native applications. Future Gener Comput Syst.
2019;99:197…212. doi:10.1016/j.future.2019.04.008

[47] Deckard web site. Available from:http://github.com/
skyhover/Deckard

[48] cuFFT web site. Available from:https://docs.nvidia.
com/cuda/cu�t/index.html

[49] cuSOLVER web site. Available from:https://docs.nvidia.
com/cuda/cusolver/index.html

[50] cuRAND web site. Available from:https://docs.nvidia.
com/cuda/curand/index.html

[51] Time domain �nite impulse response �lter web site.
Available from: https://www.intel.com/content/www/
us/en/programmable/support/support-resources/desi
gn-examples/design-software/opencl/td-�r.html

[52] Numerical Recipes in C. Available from:https://www.
cec.uchile.cl/cinetica/pcordero/MC_libros/Numerical
RecipesinC.pdf

[53] Himeno benchmark website. Available from:http://
accc.riken.jp/en/supercom/

[54] Cupy website. Available from:https://cupy.dev/
[55] MRI-Q website. Available from:http://impact.crhc.

illinois.edu/parboil/
[56] s-tui website. Available from:https://github.com/

amanusk/s-tui


	1. Introduction
	2. Existing technologies

