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ABSTRACT
The Coronavirus disease (COVID-19) has emerged as a global epidemic, posing a significant
threat to countries worldwide. COVID-19 is closely associated with pneumonia, leading to the
unfortunate loss ofmany lives due topulmonary conditions. Differentiatingbetweenpneumonia
and COVID-19 based on chest X-ray images has become a challenging task. This paper proposes
a Local Search Enhanced AHO-based Inception-ResNet-v2 Model to develop a robust and accu-
rate classification model for identifying and categorizing chronic lung diseases in patients who
have recovered from COVID-19. The proposed model utilizes the Inception-ResNet-v2 architec-
ture to extract features from CT scan images, which are then used to classify the lung diseases
present in the patients. A curated dataset of CT scan images from post-COVID-19 patients with
known lung disease classes is used to train themodel. Experimental results demonstrate that the
proposed method achieves an accuracy of 98.97%, precision of 98.95%, sensitivity of 98.91%, F-
score of 98.86%, and specificity of 98.89%. These performance metrics are comparable to those
achieved by methods based on manually delineated contaminated areas.
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1. Introduction

Lung diseases are a leading cause of global mortal-
ity, encompassing a wide range of conditions such
as interstitial lung diseases (ILDs), pulmonary edema,
pneumonia, and pulmonary fibrosis, among others [1].
Accurate diagnosis and monitoring of these lung dis-
eases pose significant challenges on a global scale. Com-
puted Tomography (CT) is the conventional imaging
technique that plays a crucial role in the diagnosis of
lung diseases [2]. The COVID-19 pandemic has raised
important research questions regarding the mecha-
nisms involved in pulmonary complications following
moderate to severe acute illnesses [3]. There is growing
concern about potential long-term pulmonary compli-
cations in patients with more severe disease outcomes.
In this context, we present the case characterization of
four COVID-19 patients who exhibited chronic inter-
stitial lung abnormalities on CT scans taken 90 days
after hospital discharge [4]. Patients with severe dys-
pnea and severe manifestations of the disease often
require mechanical ventilation, leading to increased
pulmonary sequelae and extensive pulmonary fibro-
sis. As COVID-19 survivors who develop chronic pul-
monary disease require long-term specialized care,mit-
igating the various risk factors associated with post-
COVID-19 complications becomes crucial.

The use of CT scans is crucial in diagnosing lung
conditions in patients exhibiting symptoms of COVID-
19. CT scanning provides high-resolution images, offer-
ing a detailed view of the affected areas and clearer
visualization of internal tissues and organs [5]. In indi-
viduals with COVID-19, CT scan images often reveal
white spots in the lungs, known as ground-glass opaci-
ties, which aid radiologists in early detection and diag-
nosis of the disease [6]. To further enhance the classifi-
cation of long-term lung diseases in patients who have
recovered from COVID-19, we propose the utilization
of the Local Search Enhanced AHO-based Inception-
ResNet-v2 Model. This model aims to develop a robust
and accurate classification system, improving the iden-
tification and categorization of various lung conditions
in post-COVID-19 patients.. The main contribution of
the paper is defined as follows:

• Development of an innovative classification model
specifically designed for post-COVID-19 patients,
effectively addressing the distinctive challenges asso-
ciated with their long-term lung diseases

• Integration of the Inception-ResNet-v2 architecture
as a powerful feature extractor to capturemulti-scale
features fromCT scan images, enabling accurate and
comprehensive disease classification.

CONTACT Anusha Sanampudi anushasanampudi.ai@gmail.com; mail2anushasanampudi@gmail.com Department of Artificial Intelligence and
Data Science, R.M.K. Engineering College, Kavaraipettai, Tamilnadu, India

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2023.2295142&domain=pdf&date_stamp=2024-01-11
mailto:anushasanampudi.ai@gmail.com
mailto:mail2anushasanampudi@gmail.com
http://creativecommons.org/licenses/by/4.0/


474 A. SANAMPUDI AND S. SRINIVASAN

• Evaluation of the model’s performance on a diverse
and annotated dataset, showcasing its potential in
supporting healthcare professionals in diagnosing
and monitoring post-COVID-19 lung diseases.

The rest of the paper is prepared as follows, Section 2
carries the literature review, the proposed technique is
defined in Section 3, the results and discussions are
offered in Section 4, and the paper is eventually con-
cluded with Section 5.

2. Literature review

Yadav et al. [7] introduced Generative Adversarial
Networks (GANs) for categorizing lung diseases. The
model utilized multilayer GAN architecture for learn-
ing representations of images of different lung diseases.
Also stacking classifiers such as linear Support Vector
Classification and Random Forest are used for classify-
ing lung diseases through the representations of disease
images. As a result, the model provided high sensitivity,
identified COVID-19 patients, and distinguished dif-
ferent lung diseases from COVID-19. Meanwhile, for
enhancing the classification performance of the model,
a new loss function was required to combine the stack-
ing classifier and GAN.

Hasan et al. [8] proposed a feature extractionmodel,
known as QDE-DF (Q-Deformed Entropy and Deep
Learning Features), to improve the classification pro-
cess of pneumonia, CT lung scans, and COVID-19.
This model includes pre-processing steps to mitigate
the impact of CT slice variations. The extracted fea-
tures are then classified using long short-term mem-
ory (LSTM). Experimental analysis demonstrates that
the proposed model outperforms existing methods,
although it is noted to be computationally expensive.

In a study by Zhang et al. [9], a relation-driven col-
laborative learning model was developed to enhance
the overall performance of COVID-19 infection clas-
sification, especially in scenarios with limited training
data. The results show that their approach achieves
superior segmentation performance compared to other
methods, even in the absence of sufficient COVID-19
data. However, it is important to note that the effec-
tiveness of transfer learning can be compromised when
datasets exhibit substantial differences in domain or
characteristics.

Xiao et al. [10] introduced a slice forecasting model
called PAM-DenseNet, which incorporates a dense
connectivity network with a parallel attention module.
The pre-trainedmodel is then applied to a dataset of CT
scans to obtain patient-wise predictions using a vote-
casting mechanism. Experimental results demonstrate
that the proposed approach achieves promising out-
comes in terms of accuracy, precision, sensitivity, and
specificity, comparable to methods based on manual
delineation of affected areas. Manual delineation is a

time-consuming and labor-intensive process, which is
further exacerbated by the excessive workload faced by
clinicians during the pandemic.

An et al. [11] proposed a multi-scale adversarial
domain adaptation network (MS-AdaNet) to enhance
the task of cross-sectional lung segmentation, leverag-
ing previous knowledge from the categorization net-
work. The challenges posed by domain shift prob-
lems, variations in imaging configurations, modalities,
and other factors hinder the overall performance and
progress of lung segmentation.

In another study, Fan et al. [12] introduced the
COVID-19 Lung Infection Segmentation Deep Net-
work (Inf-Net) for automatic detection of infected areas
in chest CT slices. Additionally, they constructed a
semi-supervised COVID-SemiSeg dataset. Extensive
experiments conducted on both the COVID-SemiSeg
dataset and real CT volumes demonstrate that Inf-
Net outperforms most state-of-the-art segmentation
models and improves upon existing performance. The
detection of variations in infection size and character-
istics in CT slices poses a significant challenge.

2.1. Research gaps

Limited Focus on Post-COVID-19 Lung Diseases:While
there is growing research on the acute phase of COVID-
19 and its impact on the lungs, there is a relative scarcity
of studies specifically addressing long-term lung dis-
eases that persist in post-COVID-19 patients. Investi-
gating and classifying these long-term lung diseases can
provide valuable insights into patient care and treat-
ment strategies.

Lack of Comprehensive Classification Models: Exist-
ing studies on lung disease classification often focus
on specific diseases or limited categories. There is a
need formore comprehensive classificationmodels that
encompass a wide range of long-term lung diseases
observed in post-COVID-19 patients. Developing a
robust and accurate classification model that covers
diverse lung conditions can aid in early detection,mon-
itoring, and personalized treatment.

Interpretability and Explainability of Classification
Models: Many Models often exhibit high performance
but lack interpretability.Developingmethods to explain
the model’s predictions and highlight relevant image
features can improve the acceptance and adoption of
classification models in clinical settings.

3. Proposed local search enhanced
AHO-based Inception-ResNet-v2model

This section offers step-by-step records of the pro-
posed technique for robust and effective categorization
of Covid-19 sickness from input chest CT scan images.
Figure 1 represents the proposed IRV2-LSEAH archi-
tecture. This includes the raw chest CT scan images,
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the ROI of the lung region, particular feature extrac-
tion, feature fusion, and normalization methods for
discovery and categorization. The result provides the
detection and classification of lung disease. The nor-
malized and fused features of the sample forecast the
lung diseases into viral pneumonia, bacterial pneumo-
nia, and normal varieties. The proposed system aims to
develop a robust and accurate classification model for
identifying and classifying long-term lung diseases in
patients who have recovered fromCOVID-19. This sys-
tem utilizes the Inception-ResNet-v2 model for extrac-
tion of feature from CT scan images. The features
extracted are then used to classify the lung diseases
present in the patients. The system begins with the
pre-processing of CT scan images, which involves resiz-
ing, normalization, and potentially applying adaptive
filtering techniques to enhance the quality of the lung
structures. The pre-processed images are then fed into
the Inception-ResNet-v2 model for extraction of fea-
tures. The Inception-ResNet-v2 model, with its combi-
nation of convolutional layers, Inception modules, and
residual connections, is capable of capturing intricate
patterns and relevant features from the CT scan images.
By removing the fully connected layers and employing
global average pooling, the model extracts high-level
features that represent the unique characteristics of the
lung diseases. A classification layer, consisting of fully
connected layers followed by a softmax activation func-
tion, is added on top of the global average pooling layer.
This layer maps the extracted features to the specific
lung disease classes and assigns probability scores to
each class. To train the model, a labelled dataset of CT
scan images frompost-COVID-19 patients with known
lung disease classes is utilized. After training, themodel
undergoes evaluation on a separate validation dataset
to assess its performance and generalization ability.
Fine-tuning is applied to optimize the model’s hyper-
parameters, ensuring optimal accuracy and robustness.
Once the model achieves satisfactory performance, it is
tested to evaluate its effectiveness in classifying long-
term lung diseases in post-COVID-19 patients. The
ultimate goal is to deploy the model in clinical settings,
where it can assist healthcare professionals in diagnos-
ing and monitoring lung diseases, leading to improved
patient care and outcomes.

3.1. Pre-processing stage

Pre-processing the CT scan images is an essential step
before using them for classification with the Inception-
ResNet-v2 model. This step involves several operations
to prepare the images for analysis.

Image Resizing:CT scan images can have varying res-
olutions, and it is important to ensure consistency in the
image sizes. Resizing involves adjusting the dimensions
of the images to a predetermined size. This step ensures
that all images have the samewidth and height, which is

important for feeding them into the Inception-ResNet-
v2 model.

Intensity Normalization: CT scan images often have
varying pixel intensities due to differences in acquisi-
tion protocols or equipment. Intensity normalization
is performed to standardize the pixel values across the
images. This step brings the pixel intensities to a com-
mon range, such as scaling them between 0 and 1, to
ensure that the model can effectively learn from the
data.

Image Enhancement: Adaptive filtering techniques
aim to enhance image quality by reducing noise while
preserving important structures.

3.2. Adaptivemedian filtering

The median filter eliminates the noise in the image and
from this, it maintains the image’s sharpness [13]. The
median value of nearer pixels changes every pixel and
3 × 3 window is employed. This filter eliminates the
speckle noise and is the finest filter in conventional fil-
ters. The adaptive median filter retains the edges and
structure of the image. According to every pixel, the
window size differs in the adaptive median filter. if
the adaptive median filter increased, structural met-
rics would be slightly reduced, by this an image will be
somewhat blurred. The below equation represents the
probability density function:

P(y)

⎧⎨
⎩
pu, y = u
pv, y = v
0, other

(1)

From the above equation, pu and pv are specified as
probability related to u and v, and the u = 0 and v =
255 are the black-and-white noise points. The following
equation indicates the median filter expression:

L(j, i) = Median(m(s)) (2)

where, m represented as the sort of gray value
sequences, s specified as the number of pixels, i denoted
as the pixel vertical coordinate, and j represented as
the pixel horizontal coordinates. If the noise probabil-
ity p(y) > 20, the filtering effect would decrease in the
traditional median filter. The noise point replaces the
median point if the window incorrect noise point is
higher than 50%, this generates the importance of filter
loss. The adaptive median filter determines the con-
dition for differentiating whether the replaced median
filter is a noise point or not and this will be beneficial
for avoiding the issue of median filter.

3.3. Feature extraction with Inception-ResNet-v2

Feature extractionwith the Inception-ResNet-v2model
involves utilizing its convolutional layers for extract-
ing high-level features from the preprocessed CT scan
images.
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Figure 1. Overall architecture.

Convolutional Layers:The Inception-ResNet-v2model
consists of multiple convolutional layers arranged in a
deep network architecture. These layers are designed to
learn and capture meaningful visual features at differ-
ent scales and levels of abstraction. Each convolutional
layer applies a set of filters or kernels to the input image,
performing local feature detection. From the prior layer
mapping and determining the local connections of fea-
tures is the primary objective of the convolutional layer.
The below equation shows the convolutional operation
of the input, which is denoted as J for the filter F ∈
R2x1+2y2 .

(J ∗ F)m,n =
x1∑

g=−x1

y2∑
i=−x2

Fg,iJm−g,n−1 (3)

filter F is

⎡
⎢⎣
F−x1−,x2 . . . F−x1,x2

... F0,0
...

Fx1−x2 . . . Fx1,x2

⎤
⎥⎦ (4)

Relu is the activation function, which is employed in the
feature map.
Hierarchical Feature Representation: As the prepro-
cessed CT scan images are fed through the
Inception-ResNet-v2 model, they pass through the
convolutional layers sequentially. Each layer extracts
increasingly complex and abstract features from the
input images. Lower layers capture low-level features
like edges, corners, and textures, while higher layers
capturemore sophisticated structures and patterns spe-
cific to lung diseases.
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Inception-ResNet-v2 Architecture: The Inception-
ResNet-v2 model incorporates inception modules,
which are key components that allow for multi-scale
feature extraction. These modules consist of paral-
lel convolutional branches with different filter sizes,
enabling themodel to capture features at various recep-
tive fields. The residual connections in the Inception-
ResNet-v2 architecture helpmitigate the vanishing gra-
dient problem, allowing for effective training of deep
networks. The Inception network structure assumes
that taking out a number of features from the various
scales and different convolution kernels of sizes in vari-
ous are able to enhance network adaptability [13]. This
network is able to decrease certain convolution kernels,
which can diminish the model’s complexity. Transmit-
ting the signals of several units for each layer backward
or forward, this process expedites parameter optimiza-
tion and training of the network. There is a need to
utilize 1 × 1 convolution for decreasing or enhancing
the dimension because the feature map yh might be a
variant in the residual convolution network. The below
equation specifies the residual operation:

F(yh) = e ∗ yh + β (5)

xh = Rl(F) + s(yh) (6)

yh+! = Rl(xh) (7)

where β represented as the offset, yh denoted as the
input, the sum of the two branches is represented as the
xh, e denoted as the weight, Rl denoted as the relu func-
tion, the convolutional operation is indicated as F(yh),
yh+1 denoted as the final output of the residual module,
and s(yh) is specified as the simple transformation for
the input.

Rl(y) = max i(0, y) (8)

use y value and threshold of 0 as input in the calculation
of forward and can acquire the output. Avoiding the
issue regarding the gradient disappearing in the process
of the Inception networkmodel training phase, and this
is the primary aimof the residual network learning unit.
If the network model has achieved a specific saturation,
this layer could be mapped similarly, and this will help
to train the network rapidly and simply.

αYm
αYj

= αYj + F(Yj, τ j,βj)
αYj

= 1 + αF(Ym, τm.βm)

αYm
(9)

The above equation Yj indicates the input of the jth
residual unit, the input of themth unit is denoted as the
Ym residual function specified as the F(.).
Feature Map Extraction: At each convolutional layer,
the model generates a set of feature maps or activation
maps. Every feature map signifies the response of a par-
ticular filter to the input image. These maps highlight
areas in the image where certain features or patterns

are present. The deeper the layer, the higher the level
of abstraction captured in the feature maps.
Dimensionality Reduction: To reduce the computa-
tional complexity and facilitate efficient feature repre-
sentation, the Inception-ResNet-v2model incorporates
dimensionality reduction technique. This is typically
achieved through techniques such as 1×1 pooling oper-
ations. Dimensionality reduction minimizes the spatial
dimensions of the feature maps while preserving the
important features.

3.4. Global average pooling

After the feature extraction layers, a global average
pooling operation is applied. This operation mini-
mizes the spatial dimensions of the feature maps to a
fixed size, generating a fixed-length feature vector for
each CT scan image. Global average pooling calculates
the average value within each feature map, preserving
important information about the distribution of fea-
tures while reducing spatial redundancy. TheGAPfilter
computes the value of the global average from every
output feature map [14]. 1 × 1 is the size of the output
feature map.

Gi
avg−pooling = 1

3

∑e

j=1
Yi
1:g,1:p,j (10)

In this, j represented as the index of the output feature
maps, Gavg−pooling denoted as the output feature map’s
global average pooling, e denoted as the total number
of element values, Y1:g,1:p,j specifies the element value
associated with the global average pooling filter.

3.5. Classification layer

After the global average pooling layer, a classification
layer is added to perform the final classification. This
layer is responsible for mapping the extracted features
to the specific lung disease classes present in the dataset.
It consists of fully connected layers, which are densely
connected neural network layers. The fully connected
layers learn to capture the relationships and patterns in
the extracted features and map them to the appropriate
lung disease classes. Each neuron in the fully connected
layers represents a learnedweight associated with a spe-
cific feature. The output of these neurons is determined
by applying a nonlinear activation function, such as
the rectified linear unit (ReLU), to the weighted sum
of inputs. The final layer of the classification layer is
typically a softmax activation function. The softmax
function assigns probability scores to each lung disease
class based on the learned features. These probability
scores indicate the model’s confidence in the presence
of each disease class for a given input CT scan image.
The class with the highest probability score is consid-
ered as the predicted class label. The below equation
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represents the Fully connected operators:

f (y) := Eky + ak (11)

In this, ak denoted as the bias vector, Ek represented
as the weight in the layer k, y represented as the input
layer from the prior layer. In every input, the activation
operator uses an activation function.

3.6. Artificial hummingbird algorithm (AHA)

This section describes the artificial hummingbird
algorithm (AHA), which is based on the clever char-
acteristics of hummingbirds [15]. The hummingbird
analyzes multiple numbers of food sources to choose
a suitable food source. Every hummingbird always
remembers the particular source of food allocated to it.
The food collection data of multiple hummingbirds are
saved in the visit table.

3.6.1. Initialization
The process is initiated by placingm humming birds on
m sources of food.

cr = Low + i.(Up − Low)r = 1, . . . , (12)

Here, the d-dimensional issue’s upper and lower limits
are mentioned by Up and Low. A random vector in the
range [0, 1] is indicated by i, and the provided issue’s
solution rth food source’s location is denoted by cr.

• Guided foraging

Hummingbirds naturally possess the talent of find-
ing the source of food which contains a maximum
amount of nectar. In the AHA algorithm axial, omnidi-
rectional, and diagonal are the three flight skills utilized
at the time of foraging and using a direction switch
vector they are designed.

The axial flight in the w − W space is given below:

W(r) =
{
1 if r = randi([1,w])
0 else r = 1, . . . ,w (13)

The diagonal flight is described below:

W(r) =

⎧⎪⎪⎨
⎪⎪⎩

1 if r = k(q), q ∈ [1, p],
k = randperm(p),
p ∈ [2, �i1.(w − 2)� + 1]

0 else

i = 1, . . . ,w

(14)

The description of the omnidirectional flight is given
below:

W(r) = 1 r = 1, . . . ,w (15)

Here, from 1 to w a random number is created by
randi([1,w]), from 1 to p an uneven permutation of

integers is generated by randperm(p), and a random
number in the interval (0, 1] is i1. The derivation of a
candidate food source and the mathematical equation
used in the simulation of the characteristics of foraging
which is guided is given below:

Er = (g + 1) = cr,tar(g) + z.W.(cr(g) − cr,tar(g))
(16)

z∼ M(0,1) (17)

Here, at time g the location of the rth food source is
cr(g), the location of the food source the rth humming-
bird thinks to visit is cr,tar(g), and the guided factor
that undergoes normal distributionM(0, 1) is a. The rth
food source’s location update is given below:

cr(g + 1) =
{

cr(g)
er(g + 1)

u(cr(g)) ≤ u(er(g + 1))
u(cr(g)) > u(er(g + 1)) (18)

Here, the value of function fitness is indicated by u(·).

• Territorial foraging

When, the targeted food source is eaten completely,
the hummingbird searches for a new source of food
inside its region. The hummingbird’s local search is
mathematically expressed as:

er(g + 1) = cr(g) + y.W.cr(g) (19)

y∼ M(0,1) (20)

Here, the territorial factor that undergoes normal dis-
tributionM(0, 1) is y. The migration from a humming-
bird to a randomly produced new one with the worst
nectar-refilling charge may be given as:

Cworst(g + 1) = LOW + i . (UP − LOW) (21)

where Cworst is the food supply with the worst nectar
replenishment rate in the populace. Assuming a 50%
opportunity between both guided foraging and regional
foraging, guided foraging has an equal likelihood of
visiting each of the different sources. Thus, a humming-
bird after performing 2m repetitions in the worst case,
may move to an equivalent food supply as its target
source. At this stage, the migration approach should be
completed to increase the stagnation and discover the
hunting ground.

N = 2m (22)

The computational complexity is associated with ini-
tialization, the health evaluation (xeval), the humming-
bird population size (Nsize), themost range of iterations
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(Tmax), and the measurement of variables (dvar). Then,

O(AHO) = O(problemdefinition) + O(initialization)

+O(g(evaluationfunction))

+O(g(guidedforaging)) + O(g(teritorialforaging))

+O(g(migrationforaging))

= O(1 + mw + Gxm + 1
2
Gmw + 1

2
Gmw G

2mmx)

∼= O(Gxm + Gmw + Gw
2

)

(23)

• Searching characteristics

Two test functions are used to prove the searching
characteristics of AHA. Rosenbrock, a unimodal func-
tion is the first function. c = (1, 1) with u(c) = 0 is the
optimal solution for this function. Rastrigin function is
the second function and c = (0, 0) with u(c) = 0 is its
optimal solution.

3.7. Hyperparameter tuning using local search
enhanced artificial hummingbird optimization
(LSAH)

The evaluation and fine-tuning steps are iterative pro-
cesses that help refine the model and ensure its robust-
ness in classifying long-term lung diseases in post-
COVID-19 patients. By incorporating local search steps
in AHO can provide a more refined exploration of the
hyperparameter space. Hence we applied Local Search
Enhanced Artificial Hummingbird Optimization to
tune the hyperparameters of the Inception-ResNet-v2
model for classifying long-term lung diseases from
COVID-19 CT scan images. By utilizing the power of
AHO and local search, we can efficiently navigate the
hyperparameter landscape and achieve improved per-
formance for accurate diagnosis and prognosis of lung
diseases associated with COVID-19. The mathematical
expression in determining the local search capability is
obtained as follows.

NS = C + α∗�s (24)

From the above equation, the updated solution after
local search is denoted by,NS signifies the current solu-
tion selected from the population.α denotes the param-
eter that controls the step size or magnitude of the local
search. �s denotes the change in solution.

4. Results and discussions

This section discusses the results obtained from the
study highlighting the effectiveness of the proposed
IRV2-LSEAH method. The proposed IRV2-LSEAH
method is assessed with various metrics and these
results are compared with existing methods such as

Table 1. Parameter settings.

Parameters Values

Data Samples 2900
Normal 1340
Viral pneumonia 740
Bacterial pneumonia 600
COVID-19 220
Samples for training 80%
Samples for testing 20%

GAN [7], QDE-DF [8], PAM-DenseNet [10], MS-
AdaNet [11] and Inf-Net [12].

4.1. Experimental setup

In this study, we simulated the proposed IRV2-LSEAH
model using MATLAB with the aim of aiding health-
care professionals in the diagnosis and monitoring of
lung diseases. Themodel utilizes the Inception-ResNet-
v2 architecture for feature extraction, where the convo-
lutional layers are employed to extract high-level fea-
tures fromCT scan images that have been preprocessed.
Following the feature extraction process, a global aver-
age pooling operation is applied to retain essential
information regarding the distribution of features while
reducing spatial redundancy. Finally, a classification
layer is added to perform the ultimate classification
task.

4.2. Parameter settings

In this study, a dataset of CT scan images from post-
COVID-19 patients was collected for analysis. The
dataset consisted of a total of 2900 data samples,
which were categorized into four classes: normal, viral
pneumonia affected, bacterial pneumonia affected, and
COVID-19 affected. To evaluate the proposed IRV2-
LSEAH method, the dataset was split into training and
testing sets, with a ratio of 80:20, respectively. Table 1
provides the parameter settings used in the proposed
IRV2-LSEAH method.

4.3. Evaluationmeasures

For evaluating the proposed model in the classifica-
tion of long-term lung diseases, various performance
metrics are used. The presence and absence of long-
term lung disease in a patient are measured using
TruePositive and TrueNegative. The number of wrong
detection by the proposed IRV2-LSEAHmodel is mea-
sured using FalsePositive and FalseNegative.
Accuracy: The mathematical representation of the
accuracy is given below:

Accuracy = (TruePositive + TrueNegative)
(TruePositive + FalsePositive+
TrueNegative + FalseNegative)

(25)
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Precision:The equation for the calculation of precision
is given below:

Pr ecision = TruePositive
(TruePositive + FalsePositive)

(26)

Sensitivity: Recall is the ratio of true positive to the
summation of false negative and true positive. The
following equation is used to measure the recall:

Re call = TruePositive
(TruePositive + FalseNegative)

(27)

Specificity: It is the ratio of true negative to the sum
of true negative and false positive. It is mathematically
expressed as:

Specificity = TrueNegative
(TrueNegative + FalsePositive)

(28)

F-measure: F-measure is referred as the harmonic
mean of recall and precision. F-measure combines
recall and precision. The below given equation is used
to measure the F1-score.

F1 − score = 2 × (Pr ecision × Recall)
(Pr ecision + Recall)

(29)

4.4. Dataset description

In this work, the data is collected from a labeled dataset
of CT scan images from post-COVID-19 patients with
known lung disease classes. The dataset consists of 2900
samples in four different categories namely normal
class, viral pneumonia affected class, bacterial pneumo-
nia affected class and Covid-19 affected class. Before
using the CT scan images for classification with the
Inception-RESNET-V2 model, pre-processing them is
a crucial step. This step involves operations such as
resizing images, intensity normalization, and image
enhancement for preparing the images for analysis. CT
scan images can have varying resolutions and it is essen-
tial to ensure consistency in the image sizes. Resizing
involves adjusting the dimensions of the images to a
predetermined size. CT scan images have varying pixel
intensities due to differences in acquisition protocols.
Intensity normalization is implemented to standard-
ize the pixel values across the images. Adaptive filter-
ing techniques are used to improve image quality by
reducing noise.

4.5. Performance analysis

Performance analysis is conducted for predicting the
best performances of the proposed IRV2-LSEAH
method. The performance is evaluated by comparing
the proposed IRV2- LSEAH method with the exist-
ing methods such as GAN, QDE-DF, PAM-DenseNet,
MS-AdaNet, and Inf-Net. Figure 2 shows the accuracy

Figure 2. Accuracy analysis.

Figure 3. Precision analysis.

analysis of existing methods and the proposed IRV2-
LSEAH method. The proposed IRV2-LSEAH method
and Inf-Net achieved a higher and lower accuracy of
98.97% and 96.84%, respectively. From this accuracy
analysis, the proposed IRV2-LSEAH method attained
a better performance compared to other methods. The
accuracy of 98.16%, 97.95%, 97.86%, and 96.99% is
obtained from GAN, QDE-DF, PAM-DenseNet, and
MS-AdaNet, respectively.

Figure 3 represents the precision analysis of exist-
ing methods and the proposed IRV2-LSEAH method.
Among all these methods the proposed IRV2-LSEAH
method achieved a high precision of 98.95% which
denotes the best performance. The existing methods
such as GAN, QDE-DF, PAM-DenseNet, MS-AdaNet,
and Inf-Net obtain a precision of 97.89%, 96.85%,
95.92%, 96.71%, and 96.76%, respectively. From this
precision analysis, the proposed IRV2-LSEAH method
attained a better performance compared to othermeth-
ods.

Figure 4 portrays the sensitivity analysis of existing
methods and the proposed IRV2-LSEAH method. The
proposed IRV2-LSEAH method and PAM-DenseNet
method achieved a higher and lower sensitivity of
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Figure 4. Sensitivity analysis.

Figure 5. Specificity analysis.

98.91% and 95.43%, respectively. The sensitivity of
97.52%, 95.62%, 95.84%, and 96.17% is obtained from
the GAN, QDE-DF, MS-AdaNet, and Inf-Net, respec-
tively. Figure 5 demonstrates the specificity analysis
of existing methods and the proposed IRV2-LSEAH
method. The proposed IRV2-LSEAH method and
PAM-DenseNet method achieved a higher and lower
specificity of 98.89% and 94.78%, respectively. The
specificity of 96.91%, 95.20%, 95.43%, and 95.87% is
obtained from the GAN, QDE-DF, MS-AdaNet, and
Inf-Net, respectively. Figure 6 represents the F1-score
analysis of existing methods and the proposed IRV2-
LSEAH method. The proposed IRV2-LSEAH method
and PAM-DenseNet method achieved a higher and
lower F1-score of 98.86% and 94.67%, respectively. The
F1-score of 94.72%, 94.74%, 95.27%, and 95.54% is
obtained from the GAN, QDE-DF, MS-AdaNet, and
Inf-Net, respectively.

5. Conclusion

The COVID-19 pandemic has had a global impact
and accurate assessment of the disease is crucial.
Computed Tomography (CT) plays a significant role
in quantitatively assessing COVID-19, particularly in

Figure 6. F1-score analysis.

automated lung contamination segmentation. How-
ever, segmenting inflamed areas from CT images faces
several challenges, including variations in contami-
nant properties and limited differentiation between
infected and normal tissue. To address these chal-
lenges, this research proposes a novel method called
Inception-ResNet-v2-Local Search Enhanced Artificial
Hummingbird (IRV2-LSEAH). The proposed method
utilizes a dataset of CT scan images from post-COVID-
19 patients and employs various performance evalua-
tionmeasures. The performance of the proposed IRV2-
LSEAHmethod is evaluated by comparing it with exist-
ing methods such as GAN, QDE-DF, PAM-DenseNet,
MS-AdaNet, and Inf-Net. The results show that the
IRV2-LSEAH method achieves an accuracy of 98.97%,
precision of 98.95%, sensitivity of 98.91%, specificity of
98.89%, and F1-score of 98.86%. These performance
metrics indicate that the proposed method outper-
forms the existing methods. In the future, the proposed
IRV2-LSEAHmodel can be further enhanced to detect
the severity of the disease, providing valuable insights
for healthcare professionals in managing and treating
COVID-19 patients.
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