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ABSTRACT
The Internet of Remote Things (IoRT) has emerged as a transformative paradigm, merging IoT
capabilities with remote technologies. IoRT environments, featuring interconnected sensors
and robots, face challenges like sensor noise and low-light conditions, compromising video
stream quality. This paper proposes a Hybrid Video Denoising and Blending Framework to
address IoRT video data shortcomings. Leveraging spatial and temporal domain denoising tech-
niques, the framework effectively removes noise while preserving crucial details. The inclusion
of advanced blending algorithms facilitates seamless fusion of data from multiple sources,
enhancing decision-making in real-world scenarios. The framework adopts a dynamic weighted
averaging approach and an optimal sensor selection mechanism to intelligently choose infor-
mative data sources, improving blended output quality. Extensive experiments with a diverse
IoRT dataset showcase the framework’s superiority over state-of-the-art techniques, offering sig-
nificant enhancements in video quality, noise reduction, and data fusion accuracy. Applications
like surveillance, autonomous remotes, and industrial automation can benefit from the frame-
work’s ability to provide clearer, more reliable visual information. In conclusion, this research
introduces apioneering approach tomitigate videonoise andenhancedata fusion in IoRT, show-
casing promising results and paving the way for further research in the integration of Remotes
and IoT.
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1. Introduction

In an era where interconnected devices are reshaping
industries and our daily lives, the Internet of Things
(IoT) has emerged as a transformative force. IoT tech-
nologies have extended their influence beyond urban
landscapes, finding applications in themost remote and
challenging environments. This expansion has given
rise to the concept of the Internet of Remote Things
(IoRT), a subset of IoT tailored to environments where
direct human interaction is limited, dangerous, or even
impossible. IoRT brings with it a new set of possibil-
ities and complexities, particularly when it comes to
processing video data a cornerstone of modern infor-
mation exchange.

1.1. The unveiling of IoRT and its expansive
implications

The term “Internet of Remote Things (IoRT)” refers to
the integration of remote or distant devices, sensors,
and systems into the broader framework of the Inter-
net of Things (IoT). While the traditional IoT focuses
on connecting devices within a localized environment,
IoRT extends this concept to include objects and tech-
nologies that operate in remote or distant locations. The

key distinguishing factor is the geographical separation
of the devices, which can be situated in areas that are
challenging to access or are not part of the immediate
physical vicinity.

The concept of the Internet of Remote Things
(IoRT) gains significance as our technological land-
scape evolves, pushing the boundaries of what is achiev-
able with connectivity. In the realm of healthcare, IoRT
can be envisioned through the deployment of medi-
cal sensors and devices in remote patient monitoring.
Patients residing in distant locations or those with lim-
ited access to healthcare facilities can benefit from con-
tinuous monitoring of vital signs, enabling healthcare
professionals to remotely assess and respond to their
health conditions in real time. This not only enhances
patient care but also contributes to the early detection
of health issues.

IoRT is not limited to terrestrial applications; it
extends into the exploration of space. In spacemissions,
where human presence is limited or non-existent, IoRT
can be instrumental in gathering data and controlling
devices on distant planets or celestial bodies. Robotic
explorers equipped with IoRT capabilities can navi-
gate and perform tasks in extraterrestrial environments,
relaying crucial information back to Earth for analy-
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sis and decision-making. The energy sector is another
domain where IoRT can revolutionize operations. In
remote areas with energy infrastructure, such as off-
shore wind farms or isolated power stations, IoRT
enables efficientmonitoring andmanagement of equip-
ment. Sensors and smart devices can detect anoma-
lies, optimize energy production, and enhance main-
tenance procedures, ultimately ensuring the reliabil-
ity and sustainability of energy sources in challenging
environments. One notable aspect of IoRT is its abil-
ity to bridge geographical gaps and overcome logistical
challenges. By incorporating remote devices into the
IoT ecosystem, industries can enhance efficiency, opti-
mize resource utilization, and gather valuable insights
from previously inaccessible locations. For instance, in
agriculture, IoRT might involve deploying sensors in
remote fields to monitor soil conditions, weather pat-
terns, and crop health, enabling farmers to make data-
driven decisions even in distant agricultural landscapes.

In essence, the Internet of Remote Things extends
the reach and impact of the IoT paradigm, bring-
ing connectivity and intelligence to remote environ-
ments where traditional connectivity solutions might
be impractical or unfeasible. As technology continues
to advance, IoRT holds the promise of unlocking new
possibilities for remote monitoring, automation, and
control across a diverse range of industries and appli-
cations. As IoRT continues to evolve, it brings forth a
paradigm shift in how we perceive and interact with
technology across vast distances. The ability to connect
and control devices in remote locations not only opens
new avenues for exploration and industry but also fos-
ters a more interconnected and intelligent world, where
the benefits of technology can reach even the most
distant corners of our planet and beyond.

1.2. Navigating challenges in video data quality
within IoRT

In the Internet of Robotic Things (IoRT) environments,
several challenges pose significant hurdles to the seam-
less operation and advancement of robotic technolo-
gies. One such challenge is the constraint on band-
width. The interconnected nature of robotic devices
requires a substantial amount of data exchange for
real-time communication and coordination. Limited
bandwidth can lead to delays in data transmission,
impacting the responsiveness of robotic systems. This
constraint is particularly critical in scenarios where
split-second decisions are vital, such as in autonomous
vehicles or emergency response robots. The implica-
tion is a potential compromise in the efficiency and
reliability of IoRT applications, potentially hindering
their widespread adoption in time-sensitive domains.

In the realm of the Internet of Robotic Things
(IoRT), challenges abound,with noisy data posing a sig-
nificant hurdle due to environmental factors such as

interference and sensor malfunctions that can distort
crucial sensor information. Overcoming these chal-
lenges is essential to ensure the reliability and safety of
robotic technologies. Furthermore, security concerns
escalate with the increased integration of robots across
various industries, where cyber-attacks and unautho-
rized access could compromise robotic systems, espe-
cially in critical applications like healthcare. Interoper-
ability issues also emerge as a hurdle in IoRT, as the lack
of standardized communication protocols may lead to
fragmentation, limiting the scalability and adaptability
of robotic technologies across diverse applications. In
parallel, real-time responsiveness is critical in IoRT sce-
narios, where any latency or video quality degradation
risks delays and system efficiency.Managing data trans-
mission and bandwidth becomes challenging in inter-
connected environments, necessitating efficient com-
pression algorithms and networking solutions. High-
quality video streams demand substantial bandwidth,
a key factor for secure transmission and storage, par-
ticularly in human-robot interaction applications. The
clarity of visuals in Human-Robot Interaction (HRI)
becomes pivotal for effective communication, under-
scoring the significance of video quality in seamlessly
integrating robotic technologies. Addressing thesemul-
tifaceted challenges is imperative for unlocking the full
potential of IoRT devices and fostering enhanced safety,
efficiency, and user acceptance.

1.3. Paving theway for advanced video
processing in IoRT

Denoising techniques play a crucial role in enhancing
the quality of images by reducing unwanted noise, and
several algorithms have been developed to address this
challenge.

• Non-local Means (NLMeans) is a widely used
denoising algorithm that excels in preserving image
details by averaging similar patches from different
regions. A

• Another powerful denoising algorithm is Block-
Matching 3D (BM3D), which employs collaborative
filtering to reduce noise in 3D groups of similar
blocks. BM3D has proven successful in scenarios
where noise occurs in complex patterns, such as low-
light conditions or images affected by compression
artifacts.

• Wavelet denoising leverages wavelet transforms to
decompose images into different frequency compo-
nents, offering a versatile approach to noise removal
across various scales. This technique is particularly
useful in applications where noise manifests at dif-
ferent frequencies or when a multi-scale analysis is
essential.

• Total Variation Denoising minimizes the total varia-
tion of an image, making it well-suited for situations
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where preservation of fine details is paramount.
Medical imaging applications, for instance, ben-
efit from this technique as it effectively reduces
noise while maintaining the integrity of intricate
structures.

On the blending front, techniques such as Alpha
Blending provide a fundamental approach to combin-
ing images, assigning weights to pixels to control the
intensity of each image’s contribution. Widely used in
image overlays and compositing, Alpha Blending is effi-
cient and straightforward. While its simplicity is an
advantage, performance evaluations highlight potential
challenges in achieving seamless transitions, particu-
larly in scenarios where image characteristics signifi-
cantly differ.

Poisson Blending focuses on achieving seamless
transitions between images through solving a Poisson
equation, essential for image stitching and panorama
creation.Multi-resolution Blending, blending images at
different resolutions, is valuable in virtual reality and
HDR imaging, ensuring efficient and visually appealing
results. Exposure Fusion excels in HDR photography,
blending multiple exposures for an extended dynamic
range. Gradient Domain Blending minimizes gradient
differences for seamless transitions in image stitching
and compositing. Traditional video processing meth-
ods fall short in IoRT, prompting the proposal of a
hybrid framework designed to tackle challenges like
noise and quality degradation. The forthcoming sec-
tions will delve into themethodology, experiments, and
results showcasing the potential of this hybrid frame-
work to revolutionize IoRT video data processing.

2. Related works

This survey’s primary aim is to explore the domain of
video processing within IoRT environments, underlin-
ing the necessity to enhance video quality for better
functionality and performance of remote systems. As
IoRT continues to burgeon, comprehending and ame-
liorating video processing techniques become essen-
tial. Several key research questions will steer this study,
including inquiries into the optimization of video
denoising and blending techniques for IoRT, challenges
and solutions in video processing in remote IoRT set-
tings, and the impact of different video processing tech-
niques on bandwidth and storage in IoRT applications.

2.1. Background and concepts

IoRT is a sophisticated framework that extends the con-
nectivity capabilities of the Internet of Things (IoT)
to devices and systems in remote, often isolated loca-
tions, enabling them to transmit and receive data for
monitoring, control, and automation purposes [1]. This

technology is particularly crucial in areas where tradi-
tional network infrastructure is either non-existent or
impractical to deploy.

The architecture of IoRT is a complex, multi-layered
system comprising several key components:

(1) Sensors/Actuators: At the foundation of the IoRT
are remote sensors and actuators. Sensors collect
various types of data from the environment, such
as temperature, pressure, or images, while actua-
tors perform actions based on the processed data,
like adjusting a thermostat or activating a pump.

(2) Connectivity: This layer involves the communica-
tion networks that connect these remote devices to
the internet.

(3) Data Processing: Data transmitted by sensors is
processed either at the edge (near or on the device)
or in the cloud.

(4) User Interface: The top layer is where humans
interact with the IoRT system, often through dash-
boards, mobile apps, or web applications, allowing
users to monitor data, receive alerts, and perform
manual overrides [2–6].

In the realm of video processing, techniques like
video denoising and blending are essential in IoRT.
Video denoising [7] is the process of removing noise or
graininess fromvideo footage, which is common in data
transmitted over long distances or through suboptimal
networks. This process helps in enhancing the clarity
and overall quality of the video [8–10]. Video blending
involves combining video data frommultiple sources or
frames to produce a single, high-quality output [11,12].

However, video processing in IoRT presents signifi-
cant challenges. Limited bandwidth means that trans-
mitting high-quality video is difficult, often necessi-
tating local processing and smart compression tech-
niques. High latency and intermittent connectivity
can delay the transmission of crucial real-time video
data [13], making quick decision-making challeng-
ing. Furthermore, the need for real-time processing in
potentially unstable environments requires robust [14],
fault-tolerant systems and advanced algorithms that
can make intelligent decisions locally [15]. Address-
ing these challenges necessitates innovative solutions
in video processing technology, network infrastructure,
and data analytics, making this an exciting and rapidly
evolving field of research and development

2.2. Video denoising techniques

Traditional video denoising techniques primarily revolve
around temporal and spatial filtering.

(1) Temporal Filtering: This technique leverages
the information from successive frames in a
video sequence. By analyzing the differences and
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similarities across these frames, temporal filtering
aims to reduce noise that varies between frames
while preserving the actual motion and details
within the scene [16]. However, in the context of
IoRT, the effectiveness of temporal filtering can be
limited due to high latency in data transmission,
which disrupts the sequence of real-time video
frames [17].

(2) Spatial Filtering: Spatial filtering, on the other
hand, focuses on reducing noise within a sin-
gle frame rather than across a sequence [18].
It involves techniques like Gaussian blurring or
median filtering, which work by analyzing the pix-
els around a target pixel and recalculating the
target pixel’s value based on its neighbours [19].
While this can be effective for static noise, it often
results in a loss of detail, leading to blurred images.
In IoRT, the challenge intensifies due to the vari-
able quality of transmitted images and the need
for real-time processing, often leading to either
over-smoothed or still noisy results [20].

Deep learning models, especially Convolutional
Neural Networks (CNNs) [21] and autoencoders, have
shown significant promise in distinguishing between
true image content and noise [22], providing supe-
rior denoising results with better detail preservation.
ML and DL offer substantial improvements in video
denoising quality, their practical application in IoRT
is contingent on the availability of suitable computa-
tional resources and the specific requirements of the
IoRT application in question. As technology advances,
we anticipate more efficient models and edge comput-
ing solutions that could make these advanced denois-
ing techniques more accessible and suitable for IoRT
environments [23–26].

2.3. Video blending techniques

To seamlessly merge video streams in the Internet of
Remote Things (IoRT), essential blending techniques
include alpha blending, which combines videos using
transparency factors for smooth transitions but may
lead to ghosting or double exposures with diverse
or fast-moving scenes. Pyramid blending, a more
advanced method, breaks down images into frequency
layers and blends them sequentially, offering a sophis-
ticated approach to creating cohesive video streams
[27]. These methods play a crucial role in ensuring
fluid and artifact-free transitions for IoRT applications.
Maintaining consistency across video streams is com-
plex, given the potential for varying environmental
conditions and camera settings [28]. Moreover, ensur-
ing quality is a significant hurdle, as network issues
like limited bandwidth and high latency are common
in IoRT scenarios, potentially disrupting the real-time
transmission and processing of video data [29]. In

IoRT, addressing constraints involves innovative solu-
tions such as utilizing edge computing to process video
data near the source, reducing latency and bandwidth
usage. Additionally, advanced algorithms can dynami-
cally adjust blending parameters in response to network
conditions and video content in real-time. Leveraging
machine learningmodels to predict and compensate for
network delays offers the potential for smoother video
streams in IoRT applications, enhancing the efficiency
of remote operations [29,30].

2.4. Hybrid frameworks for video processing

In the context of the Internet of Robotic Things
(IoRT), a progressive approach involves combining
video denoising and blending to enhance the qual-
ity of video data, especially in remote environments
with unstable networks. Emerging frameworks inte-
grate both processes, offering sequential, parallel, or
integrated processing approaches, with sequential pro-
cessing being simpler but potentially challenging in
real-time applications due to latency [31–35]. Simul-
taneously, the integration of AI, particularly deep
learning, is revolutionizing video processing frame-
works by training models to identify and remove noise
while seamlessly blending video streams in a unified
approach [36]. When coupled with edge computing
in IoRT, these AI models enable more efficient video
processing near the data source, effectively reducing
latency. This synergy of AI and edge computing holds
significant promise for enhancing video quality, thereby
making remote monitoring and automation systems in
IoRT more reliable, efficient, and high-quality.

2.5. Challenges and solutions in IoRT video
processing

The Internet of Remote Things (IoRT) brings forth a
unique set of challenges, primarily due to the remote
environments in which it operates, often characterized
by connectivity issues, limited power, scarce computa-
tional resources, and heightened concerns around data
security and privacy [37–39].

(1) Connectivity Fluctuations: Remote areas often
suffer from unstable internet connections or, in
some cases, rely on satellite communication, which
can be both slow and expensive.

(2) Limited Power and Computational Resources:
Devices in remote locations often have restricted
access to power, relying on batteries or renewable
sources. Additionally, the computational capacity
of these devices is often limited, making it chal-
lenging to process complex algorithms locally.

(3) Data Security: The transmission of data over long
distances, potentially over unsecured or public net-
works, increases the risk of interception or unau-
thorized access.



514 B. A. DEVI ANDM. D. CHOUDHRY

(4) Privacy Concerns: Many IoRT applications col-
lect sensitive information. Ensuring this data is
handled and stored securely is paramount tomain-
taining user trust and compliance with privacy
laws.

Existing solutions have sought to address these chal-
lenges with varying degrees of success:

• Edge Computing: By processing data closer to
where it is generated, edge computing addresses sev-
eral of these issues. It reduces the need for constant
connectivity and the amount of data that needs to be
transmitted, conserving bandwidth.

• Data Encryption and Secure Protocols: The use of
end-to-end encryption and secure communication
protocols like TLS/SSL can significantly enhance
data security. However, these methods can also
increase the computational load and require a sta-
ble connection to maintain a continuous security
handshake between devices.

• Privacy-Preserving Algorithms: Techniques like
federated learning and differential privacy enable
analysis without requiring access to raw data, help-
ing mitigate privacy concerns. However, they can be
complex to implement and may not be suitable for
all types of analysis.

• Energy-Efficient Hardware and Algorithms: The
development of low-power hardware and energy-
efficient algorithms has been crucial for power-
constrained IoRT devices. However, there’s often a
trade-off between power efficiency and computa-
tional capacity.

Recent advances in video denoising, blending, and
the Internet of Robotic Things (IoRT) are driven
by breakthroughs in artificial intelligence, computer
vision, and robotics. Deep learning, utilizing convolu-
tional and recurrent neural networks, enhances video
denoising, preserving fine details while eliminating
noise effectively. In blending technologies, applications
from augmented reality to video editing benefit from
deep learning approaches, such as generative adversar-
ial networks, improving the quality of blended content
across various industries like entertainment and virtual
collaboration. In IoRT, the integration of robotics and
the internet facilitates seamless collaboration among
robots, enhancing efficiency across industries. Real-
time data exchange allows robotic systems to adapt to
dynamic environments, fostering the development of
smart factories and autonomous vehicles. The conver-
gence of video processing and IoRT is promising, as
integrating denoising and blending into robotic vision
enhances perception, enabling informed decision-
making and improved interaction. Considering scala-
bility, solutions must be tailored to the specific require-
ments of each IoRT application and environment.

3. Proposed scheme

The framework combines adaptive thresholding and
Fourier Transform-based filtering for denoising and
employs a weighted average approach for blending,
optimizing the visual quality, energy consumption, and
latency in various IoRT settings. In IoRT environments,
the transmission of high-quality video is crucial for var-
ious applications, including surveillance, remote moni-
toring, and telemedicine. The challenges posed by noisy
environments, limited bandwidth, and resource con-
straints necessitate the development of sophisticated
video processing techniques. The proposed framework
addresses these challenges by integrating advanced
denoising and blendingmethodologies, ensuring seam-
less video transmission with minimal resource utiliza-
tion and latency.

In manufacturing and Industry 4.0, a hybrid frame-
work seamlessly integrates traditional and collaborative
robots, utilizing AI algorithms for predictive mainte-
nance and quality control with real-time sensor data.
For autonomous vehicles, the hybrid system combines
edge computing for immediate decision-making by
onboard AI with cloud-based analytics for long-term
traffic pattern identification and route optimization.
In healthcare, the hybrid approach integrates robotic
assistants using local processing for immediate patient
interaction and cloud-based AI for complex diagnos-
tics, enhancing patient care. In smart agriculture, the
hybrid framework optimizes precision farming through
real-time data processing on drones and ground-based
robots, coupled with cloud-based analysis for sustain-
able practices. Warehouse operations benefit from the
hybrid framework, combining AGVs and robotic arms
with on-board AI for immediate navigation and cloud-
based analytics for long-term efficiency improvements
in inventory management and order fulfilment.

3.1. Algorithm

Input:

• Video Frames: V_in(x, y, t)
• Blending Factor: α
• Weights for each frame: w_i.
• Gaussian Filter Standard Deviation: σ
• Noise Standard Deviation: σ_n.
• Window Size for Adaptive Thresholding: N.
• Constants: β , γ
• Number of Hops in Network: M.
• Propagation Time for each Hop: T_p_i.
• Amount of Data Transmitted in each Hop: D_i.
• Data Rate for each Hop: R_i.
• Constants for Latency Calculation: δ, ε
• Transmission Power: P_tx.
• Gains of Transmitting and Receiving Antennas:

G_tx, G_rx.
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• Wavelength: λ
• Distance between Transmitter and Receiver: d.
• System Loss: L.
• Weights for QoE: ω_1, ω_2, ω_3.
• Threshold Values for PSNR and SSIM: θ_1, θ_2.
• Standard Deviations for PSNR and SSIM: σ_1, σ_2.

Output:

• Denoised and Blended Video Frame: V_out(x, y, t)
• Total Latency: L_total.
• Total Energy Consumption: E_total.
• Quality of Experience: Q.

Algorithm Steps:

(1) For each video frame V in(x, y, t) do
(a) Compute Adaptive Threshold T(x, y, t) using

T(x, y, t)

= β ∗ (1/N ∗ �(�V_in(x + i, y + j, t)))

+ γ ∗ sqrt(1/N2 ∗ �(�(V_in(x

+ i, y + j, t))2))

(b) Apply Fourier Transform-based filtering and
compute V_out(x, y, t) using

V_out(x, y, t)

= α ∗ (�wi ∗ F(−1)[(F[V_in(x, y, t)]

∗ e(−((x−μx)
2+(y−μy)

2)/(2σ 2)))/

(1 + (σn/F[V_in(x, y, t)])2)])

+ (1 − α) ∗ V_blend(x, y, t)

(2) Compute V_blend(x, y, t) using

V_blend(x, y, t) = �wk ∗ Vk(x, y, t)/�wk

(3) Compute Total Latency L_total using

L_total = �(Tpi + Di/Ri)

+ δ ∗ log2(1 + Ptx ∗ Gtx ∗ Grx ∗ λ2/

(4π)2 ∗ d2 ∗ L) + ε ∗ H(X)

(4) ComputeTotal EnergyConsumptionE_total using

E_total =
∫

P_active(t)dt + P_idle(T − t_active)

(5) Compute Quality of Experience Q using

Q = ω1 ∗ (1 − e(−(PSNR−θ1)/σ1))

+ ω2 ∗ (1 − e(−(SSIM−θ2)/σ2))

− ω3 ∗ L_total

(6) Return V_out(x, y, t), L_total,E_total, and Q

3.1.1. Effective hybrid video denoising and blending
framework
The framework employs a hybrid denoising approach
that combines adaptive thresholding and Fourier
Transform-based filtering. The denoising process is
mathematically represented by a comprehensive equation,
considering various parameters like blending factor,
frame weights, and standard deviation of the Gaussian
filter. Adaptive thresholding is meticulously calculated
to optimize the denoising process, considering the local
characteristics of each video frame. The methodology
amalgamates advanced denoising and blending tech-
niques, aiming to elevate the quality of experience, opti-
mize energy consumption, and minimizes data trans-
mission latency in diverse IoRT settings as shown in
Figure 1.

(i) Median Filter for Denoising
The median filter algorithm is a non-linear digital

filtering technique used primarily for noise reduction
in images and videos. This process involves iterating
over each pixel in an image or a frame of a video,
then, for each pixel, examining a surrounding window
of neighbouring pixels – the size of which is defined
by a predefined windowSize (e.g. 3× 3, 5× 5). The
pixel values in this window are sorted numerically, and
the median value (the middle pixel in the sorted list)
is computed. The original pixel is then replaced with
this median value in the output image or frame, effec-
tively reducing noise while preserving edges within
the image.

(ii) Cuckoo Search for Optimization
The Cuckoo Search Optimization algorithm for

video tailors a nature-inspiredmethod based on cuckoo
bird behaviour to optimize video parameters. Ini-
tially, a population of “nests” representing potential
video processing parameters is generated. As iterations
progress, each “nest” undergoes adjustments based on
Levy flights to find better parameter combinations. A
random nest can be replaced if a new combination
proves superior. To introduce randomness and escape
local optima, with a certain probability, the worst-
performing nests are abandoned and replaced with new
random parameter sets. The algorithm evaluates each
nest’s quality by applying its parameters to the video
and measuring specific metrics, like clarity or com-
pression efficiency. The process iterates until predefined
conditions (like a maximum number of generations)
are met, ultimately returning the best video parameters
discovered.

(iii) Proposed Hybrid Maximum likelihood estima-
tion (MLE) – Maximum dynamic range (MDR) for
blending

The Hybrid MLE-MDR Blending algorithm com-
bines the statistical robustness of Maximum Like-
lihood Estimation (MLE) with the dynamic range



516 B. A. DEVI ANDM. D. CHOUDHRY

Figure 1. Architecture Diagram.

enhancement of Maximum Dynamic Range (MDR) to
blend multiple images. For each pixel location across
the input images, the algorithm calculates a weighted
mean based on a specified weighting function and the
noise level (sigma). Thismean is then adjusted using the
MDR method, which factors in the difference between

the highest and lowest pixel values from the input
images, ensuring the final blended image retains good
contrast and brightness. The blended pixel value is a
mix of these MLE and MDR calculations, resulting in a
harmonized image that incorporates the best attributes
from the input images.
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3.2. MLE andMDR based video frame blending
and cuckoo for optimization

The framework is rigorously evaluated in a simu-
lated IoRT environment, comparing the Quality of
Experience (QoE), energy consumption, and latency
with existing methodologies. The optimization pro-
cess involves fine-tuning various parameters to achieve
the optimal trade-off between video quality, energy
consumption, and latency, aligning with the specific
requirements and constraints of IoRT environments.
This approach is meticulously represented by the
equation:

Vout(x, y, t)

= α

⎛
⎜⎝

N∑
i=1

wiF−1

⎡
⎢⎣F[Vin(x, y, t)] · e−

(x−μx)2+(y−μy)2

2σ2

1 +
(

σn
F[Vin(x,y,t)]

)2
⎤
⎥⎦
⎞
⎟⎠

+ (1 − α)Vblend(x, y, t) (1)

This equation is instrumental in reducing noise in video
frames, considering various parameters like the blend-
ing factor, α, the number of frames being averaged,
N, the weights for each frame, wi, and the standard
deviation of the Gaussian filter, σ , among others. Addi-
tionally, the adaptive thresholding is calculated using
the equation:

T(x, y, t)

= β

⎛
⎝ 1
N

N/2∑
i=−N/2

N/2∑
j=−N/2

Vin(x + i, y + j, t)

⎞
⎠

+ γ

√√√√√ 1
N2

N/2∑
i=−N/2

N/2∑
j=−N/2

(Vin(x + i, y + j, t))2

(2)

This equation optimizes the denoising process by con-
sidering the local characteristics of each video frame,
utilizing parameters like the window size, N, and con-
stants, β and γ . For blending video frames, a weighted
average methodology is adopted, represented by the
equation:

Vblend(x, y, t) =
∑K

k=1 wkVk(x, y, t)∑K
k=1 wk

(3)

This equation ensures a seamless and effective combi-
nation of different video frames, optimizing the visual
quality of the resultant video by considering the num-
ber of video frames being blended, K, the weights,
wk, and the input video frames, Vk. In the realm of
IoRT environments, addressing data transmission and
latency is crucial. The total latency and energy con-
sumption in the IoRT network are calculated using the

equations:

Ltotal =
M∑
i=1

(
Tpi +

Di

Ri

)
+ δlog2

(
1 + PtxGtxGrxλ

2

(4π)2d2L

)

+ εH(X) (4)

Etotal =
T∫

0

Pactive(t)dt + Pidle(T − tactive) (5)

These equations provide a comprehensive assessment
of the performance and user experience, considering
various parameters like the number of hops in the net-
work, M, the propagation time for each hop, Tpi , the
amount of data transmitted in each hop, Di, and the
entropy of the transmitted data, H(X), among others.
TheQuality of Experience (QoE) is a paramountmetric
in this research, assessed using a composite metric that
amalgamates the Peak Signal-to-Noise Ratio (PSNR),
the Structural Similarity Index (SSIM), and the total
latency, represented by the equation:

Q = ω1

(
1 − e−

PSNR−θ1
σ1

)
+ ω2

(
1 − e−

SSIM−θ2
σ2

)

− ω3Ltotal (6)

The equation precisely assesses user experience, con-
sidering video quality and transmission efficiency
through a comprehensive integration of weights and
parameters. The hybrid video denoising and blending
framework’s effectiveness is rigorously evaluated in a
simulated IoRT environment, comparing QoE, energy
consumption, and latency with existing methodologies
across diverse scenarios to validate its robustness and
adaptability.

3.3. Enhanced frame interpolation

Finterp(x, y, t) = λ(Fprev(x, y, t))

+ (1 − λ)(Fnext(x, y, t))

+ ζ(∇2Favg(x, y, t)) (7)

This equation represents an enhanced frame interpo-
lation method. Here, interpFinterp is the interpolated
frame at a given position (x,y) and time t. It is calcu-
lated based on the previous frame, prevFprev, and the
next frame, nextFnext, weighted by a factor λ. where
∇2∇2 is the Laplacian operator applied to the average
frame, avgFavg, and ζ is a constant.

3.4. Dynamic resource allocation

Ralloc(t) = η(Utotal(t)) + ξ(Bavail(t))
θ + ρ(Dpending(t))

(8)

This equationmodels dynamic resource allocation over
time. Ralloc (t) is the allocated resource at time t, calcu-
lated based on the total utility, Utotal (t), and available
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bandwidth, Bavail (t), weighted by constants η and ξ

respectively. The denominator includes a constant θ

and the pending data, Dpending (t), weighted by ρ.

3.5. Optimized data compression

Copt(t) = αlog2

(
1 + Sin(t)

Nnoise(t) + ε

)

+ β(Qlevel(t)) (9)

This equation is for optimized data compression. Copt
(t) is the optimized compression level at time t, calcu-
lated using the input signal, Sin(t), and the noise level,
Nnoise(t), with α and β as weighting constants. ε is
a small constant to avoid division by zero. Qlevel(t)
represents the quality level at time t.

3.6. Network latency estimation

Lnet(t) = ω(RTT(t)) + μ(Ploss(t)) + ν(Jitter(t)) (10)

This equation estimates network latency. Lnet(t) is the
network latency at time t, calculated based on the
round-trip time,RTT(t), packet loss, Ploss(t), and jitter,
Jitter(t), with ω, μ, and ν as weighting constants.

4. Performance evaluation

The proposedwork explores video processing and anal-
ysis, emphasizing the importance of video quality and
classification accuracy. It provides a thorough evalu-
ation of denoising filters and classification methods,
presenting a comprehensive comparison in Table 1.
The assessment considers processing times per frame
for different video sequences, including sports activ-
ities like football, cycling, golf, and tennis, using the
ucf101 action recognition dataset. With 13,000 anno-
tated video clips covering diverse human actions, this
dataset proves suitable for training models to under-
stand and classify temporal patterns in various real-
world applications.

A bar graph showcasing the denoising times for each
video sequence across different filters. The x-axis rep-
resents the video sequences, while the y-axis indicates
the time in seconds. The proposedmethod consistently
shows the lowest processing time, highlighting its effi-
ciency as shown in Figure 2. Visual representation aids
in understanding data. A bar graph can quickly show
whichmethod is themost time-efficient. From the data,
it’s evident that the proposed method is significantly
faster than traditional methods.

Table 2 delves into the performance metrics of dif-
ferent denoising filters. Metrics such as Peak Signal-to-
Noise Ratio (PSNR),Mean Squared Error (MSE),Mean
Absolute Error (MAE), and Structural Similarity Index
(SSIM) are used to evaluate the quality of denoised

Figure 2. PSNR, MSE, MAE, SSIM for Various denoising filters.

Figure 3. Proposed Metrics and score.

videos. A line graph as shown in Figure 3 illustrating
the PSNR values for each denoising filter. Higher PSNR
values indicate better quality, and the proposedmethod
outperforms other filters in this metric.

In image denoising, metrics such as PSNR, SSIM,
MAE, and MSE play a crucial role in evaluating the
performance of denoising filters. PSNR quantifies the
fidelity of denoised images by comparing them to
noise-free originals, with higher values indicating bet-
ter performance. SSIM assesses structural resemblance,
offering a comprehensive measure of perceptual qual-
ity from −1 to 1. MAE calculates the average abso-
lute difference between pixel values, while lower val-
ues indicate more accurate denoising. MSE, despite its
popularity, may not always align with human percep-
tion. Together, these metrics provide a comprehensive
framework for evaluating denoising filters in terms of
noise reduction, structural fidelity, and overall pixel-
wise accuracy.

Table 3 presents a comparative analysis of various
video classification methods in terms of accuracy, F1
score, precision, and recall. Methods like LSTM, LRCN,
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Table 1. Process Time for noisy video sequence.

Denoising Time/Frame (s)

Video Sequence Mean Filter
Tri-state Median

Filter Weiner Filter Gaussian Filter Curvelet Filter
Discrete Wavelet
Transform Filter

Proposed Median
Filter

Football 16.86 13.31 43.50 6.70 14.50 9.80 4.25
Cycling 18.30 15.11 42.40 8.10 14.10 18.01 5.22
Golf 8.38 6.61 13.88 7.97 9.35 3.81 1.006
Tennis 17.05 13.73 28.89 17.02 5.79 3.10 0.84

Table 2. PSNR,MSE,MAE, andSSIMAnalysis for VariousDenois-
ing Filters.

Accuracies

Denoise Filters PSNR SSIM MSE MAE

Tri-state Median Filter 33.68 0.89 132.485 6.847
Weiner Filter 26.37 0.81 108.512 7.796
Gaussian Filter 31.96 0.88 95.256 8.863
Curvelet Filter 23.29 0.82 78.625 3.324
Discrete Wavelet Transform Filter 24.56 0.78 125.478 5.678
Proposed Median Filter 35.72 0.9 42.84 4.72

Table 3. F1, Precision and Recall Comparison for video classifi-
cation.

Classification Methods Accuracy F1 Precision Recall

LSTM 88.4 0.87 0.84 0.81
LRCN 82.3 0.74 0.78 0.83
RNN-FV 88.4 0.76 0.71 0.73
TDD 89.3 0.64 0.79 0.72
Multi-Stream 91.6 0.81 0.83 0.70
C3D 89.3 0.76 0.72 0.68
Kernel Logistic Regression 85.37 0.72 0.63 0.73
Proposed Hybrid Video

Denoising & Blending
93.48 0.9375 0.931 0.934

Table 4. Sensitivity and Specificity of Classification compari-
son.

Classification Methods Sensitivity Specificity

LSTM 73.24 86.39
LRCN 82.61 88.91
RNN-FV 75.36 81.28
TDD 84.37 88.87
Multi-Stream 76.28 86.22
C3D 77.11 81.35
Kernel Logistic Regression 89.97 91.56
Proposed 93.7 93.5

and the proposed technique are evaluated, with the
proposed method achieving the highest scores across
all metrics. A bar chart displaying the accuracy per-
centages of different video classification methods. The
proposedmethod occupies the largest segment, empha-
sizing its superior performance as shown in Figure 4.

Table 4 offers insights into the sensitivity and speci-
ficity metrics for various video classification methods.
These metrics are crucial in understanding the true
positive rate (sensitivity) and true negative rate (speci-
ficity) of each method. A scatter plot where each point
represents a classification method plotted based on its
sensitivity and specificity values. The proposedmethod
is positioned closest to the top-right corner, indicating
optimal performance as shown in Figure 5.

The denoising method proposed in this study con-
sistently surpasses other filters in processing time across
diverse video sequences, as evident in Figure 2. It excels
in enhancing quality by attaining superior Peak Signal-
to-Noise Ratio (PSNR) values compared to alternative
denoising filters, as depicted in Figure 3. The proposed
video classification approach outperforms its counter-
parts, achieving the highest accuracy, F1 score, pre-
cision, and recall scores, as detailed in Table 3. The
proposed IoRT framework has transformative poten-
tial in smart manufacturing, optimizing production
lines for increased efficiency, reduced downtime, and
enhanced quality control. In autonomous vehicles, inte-
grating the framework could revolutionize traffic man-
agement, reducing congestion, and improving safety
through real-time communication. In healthcare, the
framework enables real-time monitoring and diag-
nostics, enhancing patient care and contributing to a
more proactive medical intervention approach. Over-
all, the framework holds promise for revolutioniz-
ing industries, fostering intelligent decision-making,
and improving system efficiency across various real-
world scenarios. In smart cities, it optimizes urban
services, improves energy usage, and enhances pub-
lic safety. Precision agriculture benefits from real-time
monitoring, optimizing resource usage, and promot-
ing sustainable farming practices. The logistics sec-
tor leverages the framework for seamless collaboration
among autonomous drones, robotic warehouses, and
IoT-enabled systems, resulting in faster order fulfil-
ment and improved supply chain efficiency. Environ-
mental monitoring and disaster response are enhanced
by the framework’s integration into robotic systems,
providing early detection and more effective response
strategies. In smart homes, the framework leads to
enhanced automation, security, and personalized user
experiences, contributing to a more comfortable and
efficient living environment.

5. Conclusion and future work

The proposed Hybrid MLE-MDR framework signifies
significant progress in addressing video data integrity
challenges in remote environments. The framework
exhibits notable improvements in video quality, noise
reduction, and fusion precision compared to existing
methods, with statistical data reinforcing its impact
on decision-making processes. The video classification
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Figure 4. Classification Accuracy.

Figure 5. Sensitivity vs Specificity.

method demonstrates superiority in accuracy (93.47),
F1 score (0.937), precision (0.931), and recall (0.934).
While the study suggests focusing on real-time pro-
cessing and latency reduction, statistical assessment is
recommended to quantify these improvements. Future
IoRT research may explore advanced algorithms for
real-time processing, adaptive video enhancement, and
addressing challenges in extreme conditions, prioritiz-
ing scalability, resource efficiency, and security consid-
erations.
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