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ABSTRACT
This articlemethodically develops an improved self-regulating fuzzy-adaptive SlidingModeCon-
troller (SMC) that strengthens the disturbance compensation capacity of the nonlinear rotary
pendulum systems while effectively attenuating the chattering content and curbing the con-
trol energy consumption. The article contributes to augmenting the SMCwith online adaptation
tools to achieve the said objectives. It employs the conventional Gao’s power-rate reaching law
as the baseline. The scaling gain and the power rate of the said reaching law are adaptivelymod-
ulated via a pre-calibrated two-input state-error-driven fuzzy nonlinear function. Additionally,
the sign function in the law is also replaced with an odd-symmetric nonlinear fuzzy function to
address the hard limits imposed by the former. Finally, the membership functions of the fuzzy
function are self-regulated using the Extended-Kalman-Filter to improve the compensator’s
adaptability in handling the system’s rapidly changing control requirements under exogenous
disturbances. The aforementioned propositions are verified by performing customized and
reliable hardware-in-loop experiments on the Quanser single-link rotary pendulum platform.
As compared to baseline SMC law, the proposed control procedure contributes a ∼ 45.2%,
∼ 48.5%, and ∼ 34.8% reduction in position-regulation errors, control energy consumption,
and peak overshoots, respectively. The experimental assessment validates the proposed control
system’s enhanced robustness and chattering-suppression capability.
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1. Introduction

Single-link Rotary-Inverted-Pendulum (RIP) is an
under-actuated mechatronic platform that is widely
favored in the domain of experimental physics and
control systems engineering due to its complex geom-
etry, multiple degrees of freedom, nonlinear dynamics,
kinematic instability, and under-actuated configuration
[1,2]. These properties make it a perfect experimental
setup to test the agility and resilience of the nonlinear
control law [3,4]. The stabilization control problem of
the RIP becomes quite difficult to tackle under bounded
exogenous disturbances and parametric uncertainties
[5]. This challenging problem is evident in various
practical scenarios, such as the stabilization of Segway
platforms, the satellites in orbit, the attitude of under-
water vessels, the gait of legged robots, the vertical take-
off of helicopters and rotorcrafts, the building under
structural vibrations (tremors or earthquakes), and the
launching of rockets and missiles, etc [6,7].

1.1. Literature review

Several robust stabilization control strategies have
been scientifically investigated for standard RIP sys-
tems [8–10]. Fixed-gain PID controllers are considered
reliable in self-balancing robotic applications [11,12].
However, the simplicity of their structure prevents them
from fully realizing and efficiently addressing nonlin-
ear disturbances [13,14]. The fuzzy-logic controllers
require a pre-calibrated set of fuzzy rules that are
defined by the control expert [1,15]. Their membership
functions (MFs) can be calibrated offline to eliminate
any discrepancies in the heuristically established logi-
cal rules to formulate a robust fuzzy control law [16,17].
The neural controllers, despite their flexibility, require
extensive training to deliver a reliable control effort,
which inevitably affects their computational economy
[18]. The dependence of the optimal state-feedback lin-
ear quadratic regulator (LQR) on the dynamic system’s
mathematical model affects the optimality of its control
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yield when the system encounters model uncertainties
and identification errors in real time [19,20]. Extensive
research has been done to improve the LQR’s capa-
bility by augmenting it with auxiliary self-adaptation
tools to effectively compensate for bounded exogenous
disturbances [21–23].

The Sliding Mode Controller (SMC) is a widely
favored nonlinear feedback compensator [21]. It deliv-
ers robust control effort and efficiently compensates for
exogenous disturbances and parametric uncertainties
that cannot be practically handled via the aforemen-
tioned control schemes otherwise [24,25]. It belongs
to the class of variable structure control, wherein the
control law commutes between the sliding manifolds
using a pre-calibrated switching function to address
the rapid state variations [26,27]. The SMC scheme
and its variants have been extensively proposed in the
available literature to develop an agile self-balancing
control strategy for RIPs [28]. The sliding-mode con-
trol schemes offer robust disturbance rejection while
guaranteeing finite-time convergence [29,30]. How-
ever, the SMC’s redundant switching phenomenon gen-
erates highly disruptive control input, which inevitably
injects chattering and ripples in the state response.
This behavior leads to high oscillations of the RIP’s
mechanical parts as well as dynamic power losses in
the reactive electrical devices [31,32]. Furthermore, it is
required to effectively manipulate the control stiffness
as per the state error variations to amplify the damp-
ing against disturbances and to increase the transient
response speed while economizing the control energy
and preserving stability.

The chattering effect is generally caused by any of the
following three reasons: (1) the un-modeled intrinsic
nonlinearities; (2) the ill-calibrated switching gain; and
(3) the discontinuous switching function [33]. Some of
the notable techniques devised to effectively minimize
chattering are the adaptive SMC, DSMC, and Fuzzy
SMC [34]. Filtering out the high-frequency noise com-
ponents from the SMC’s control signals has gained a
lot of traction [35]. Replacing the conventional signum
function with a fuzzy-logic inference mechanism to
avoid the signum function’s hard nonlinearity tends
to improve the chattering suppression behavior [36].
However, to achieve the desired chattering suppres-
sion, these schemes tend to compromise the SMC’s
robustness and affect its adaptability against external
perturbations [37]. Furthermore, the poor calibration
of the fuzzy membership functions or the inaccuracies
(caused by the expert’s lack of knowledge) in the fuzzy
logic rules incapacitate the fuzzy inference mechanism
to yield robust and agile control effort under rapidly
changing error conditions.

The disturbance-observer-based adaptive sliding
mode controller designs have also been proposed in
the scientific literature to counteract unknown dis-
turbances actively [38,39]. The memory-based fuzzy

systems and reinforcement learning-based adaptation
strategies used in these works enhance the controller’s
robustness at the cost of higher computational com-
plexity and, thus, higher computational burden on the
embedded processing unit.

1.2. Main contributions

To address the aforementioned problems, this arti-
cle presents the systematic formulation and perfor-
mance validation of an innovative self-regulating fuzzy-
adaptive SMC design for the RIP systems to minimize
chattering while maintaining the agility of the SMC
against under bounded disturbances. Gao’s power-rate
SMC procedure is used as the baseline reaching law, as
expressed below [34].

u = −k|s(t)|β f (s, ṡ) (1)

where, k represents the preset positive scaling gain, s(t)
is the sliding surface that is computed as the weighted
sum of all state errors, β is the preset power rate of
the magnitude of s(t), and f (s, ṡ) is an odd-symmetric
fuzzy nonlinear function that is bounded between −1
and 1 as the state error conditions vary. This lim-
iter function f (s, ṡ) avoids the hard nonlinearity of
the sign(s) function, and thus suppresses the chatter-
ing content in the state response(s). In this article, the
aforementioned FSMC law is methodically evolved by
augmenting it with a customized self-regulation block
that improves its disturbance-rejection ability, econo-
mizes control expenditure, and attenuates the chatter-
ing in the response. The salient features of the proposed
self-regulating SMC law are as follows:

(1) The power rate, β , and scaling gain, k, of the reach-
ing law are adaptively modulated online via the
pre-calibrated nonlinear fuzzy functionf (s, ṡ) by
using well-postulated meta-rules.

(2) The fuzzy MFs of the function f (s, ṡ) are self-
regulated online via ExtendedKalman Filter (EKF)
to efficiently adapt to the abrupt changes in the
state errors.

(3) The efficacy of the proposed scheme is investi-
gated against the conventional SMC laws, in the
physical environment, by conducting reliable and
customizedHardware-In-Loop (HIL) experiments
on the Quanser RIP.

The proposed FSMC law variant reinforces the com-
pensator’s dexterity to automatically regulate control
stiffness as per the state error variations while (con-
currently) attenuating the chattering content. The self-
organizing fuzzy MFs aid in removing any shortcom-
ings or residual inaccuracies in the heuristically defined
rule base due to the imprecise knowledge of the expert.
Furthermore, it reconfigures the waveform of the fuzzy
function in real time to accurately alter the relevant
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controller gains to address the system’s requirements.
Consequently, the proposed SMC law increases the
response speed, strengthens the system’s immunity
against disturbances, improves chattering suppression
behavior, and preserves the control economy by avoid-
ing peak servo requirements.

The idea of employing an EKF-based self-regulating
nonlinear fuzzy function to adaptively modulate the
odd limiter function, power rate, and scaling gain of
the SMC reaching law to simultaneously enhance the
disturbance-rejection and chattering attenuation capa-
bility has not been investigated in the open litera-
ture. Hence, this novel idea is the main focus of this
article.

The article is structured as follows: The dynamic
model and the baseline SMC law for the RIP system
are presented in Section 2. The FSMC law augmented
with online adaptive parameters is derived in Section
3. The proposed EKF-based self-regulation fuzzy adap-
tive SMC law is formulated in Section 4. Section 5
presents the comparative experimental analysis of the
designed SMC variants. Finally, Section 6 concludes the
article.

2. System description

The proposed SMC law is validated by benchmark-
ing its performance using the standard single-link RIP
system. The single-link RIP system is diagrammati-
cally illustrated in Figure 1. It has a stable and unstable
equilibrium state. The rod is vertically downright in
the stable state, whereas the rod is balanced vertically
upright in the unstable state. Thus, an active balanc-
ing control effort is required to maintain the rod in the
equilibrium state. The arm of the RIP system is rotated
by mounting it on the DC servo motor’s shaft. The
motor’s shaft is equipped with a rotary encoder that
records the arm’s position α in real-time. The pendu-
lum’s rod is attached to the other end of the arm via a
hinge that is instrumented with another rotary encoder
that records the apparatus’s rod position θ . The data
acquired from each encoder is transmitted to the con-
trol software application over a serial link. The software
application processes the data to compute the control
command. The resulting motor control torque rotates
the pendulum arm, which continuously provides the
necessary swinging energy to the rod to invert it and
eventually balance it.

2.1. Mathematical model derivation

The single-linkRIP system ismodeled in terms ofα and
θ via the Euler–Lagrange method [40]. The computa-
tion of RIP’s Lagrangian, L, is presented in Eq. 2.

L = EK − EP (2)

Figure 1. Schematic diagram of a single-link RIP system.

where EP = Mplpg(cos θ), and EK = 1
2 Je(α̇)2 + 1

2Mp
(rα̇ − lpθ̇ (cos θ))2 + 1

2Mp(−lpθ̇ (sin θ))2 + 1
2 Jp(θ̇)2

where EK and EP represent the RIP’s total kinetic
and total potential energy, respectively. The parame-
ters mentioned in the above expressions are quantified
in Table 1. The computed Lagrangian is expressed as
follows [36].

L = 1
2
(Je + Mpr2)(α̇)2 +

(
2
3
Mplp2 + 1

2
Jp
)

(θ̇ )2

− Mplpr(cos θ)α̇θ̇ − Mplpg(cos θ) (3)

The nonlinear equations of motion are derived by eval-
uating the following partial derivatives [40].

δ

δt

(
δL
δα̇

)
− δL

δα
= τ ,

δ

δt

(
δL
δθ̇

)
− δL

δθ
= 0 (4)

where τ represents the torque applied by DC motor.
It is a function of the motor’s terminal voltage, Vm, as
shown below.

τ = Kt(Vm − Kmα̇)

Rm
(5)

After linearization, the following state equations are
obtained.

α̈(t) = 1
H

(
rM2

pl
2
pgθ(t) − (Jp + Mpl2p)KtKm

Rm
α̇(t)

+ (Jp + Mpl2p)Kt

Rm
Vm(t)

)
(6)

θ̈ (t) = 1
H

(
Mplpg(Je + Mpr2)θ(t) − rMplpKtKm

Rm
α̇(t)

+ rMplpKt

Rm
Vm(t)

)
(7)

such that, H = JeJp + Mpr2Jp + Mpl2pJe
The generalized state-space representation of a lin-

ear dynamical system is shown in Eq. 7.

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (8)
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Table 1. Identification of the Quanser RIP Model Parameters
[41].

Parameter Designation Value Units

Mp Pendulum’s mass 0.027 kg
lp Pendulum’s center of mass 0.153 m
Lp Pendulum rod’s length 0.191 m
r Horizontal arm’s length 0.083 m
Marm Arm’s mass 0.028 kg
g Gravitational acceleration 9.81 m/s2

Je Motor shaft’s moment 1.23× 10−4 kgm2

Jp Pendulum rod’s moment 1.10× 10−4 kgm2

Rm Motor resistance 3.30 �

Lm Motor inductance 47.0 mH
Kt Motor torque constant 0.028 Nm/A
Km Back emf constant 0.028 V/(rad/s)
Tm Maximum torque 0.14 Nm

where A is the system matrix, B is the input matrix,
C is the output matrix, D is the feed-forward matrix,
and y(t) is the output vector. The state vector x(t) and
the control input vector u(t) of the proposed system are
presented in Eq. 8.

x(t) = [
α(t) θ(t) α̇(t) θ̇(t)

]T ,
u(t) = Vm(t) (9)

The RIP system’s model is represented in state-space
form as shown below [36].

A =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0
0

a1
a3

a2 0
a4 0

⎤
⎥⎥⎦ ,B =

⎡
⎢⎢⎣
0
0
b1
b2

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

⎤
⎥⎥⎦ ,D =

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ (10)

where,

a1 = rM2
pl2pg

JpJe + Jel2pMp + JpMpr2
,

a2 = −KtKm(Jp + Mpl2p)

(JpJe + Jel2pMp + JpMpr2)Rm
,

a3 = Mplpg(Je + Mpr2)
JpJe + Jel2pMp + JpMpr2

,

a4 = −rMplpKtKm

(JpJe + Jel2pMp + JpMpr2)Rm
,

b1 = Kt(Jp + Mpl2p)

(JpJe + Jel2pMp + JpMpr2)Rm
,

b2 = rMplpKt

(JpJe + Jel2pMp + JpMpr2)Rm

As mentioned earlier, the model parameters associated
with Quanser RIP are quantified in Table 1 [41].

2.2. Baseline SMC law

The SMC law functions by driving the state trajecto-
ries of the RIP system toward a sliding surface, s(t). The
sliding surface utilized in this article is shown in Eq. 11.

s(t) = GTε(t) (11)

where, ε(t) = x(t) − xref
where GT is a 1× 4 vector containing the state error

weights and xref represents the RIP system’s reference
state vector of the form xref = [

αref π 0 0
]T . The

arm’s initial position is set as its reference position, αref ,
before the beginning of every experiment. Owing to its
rapid convergence, Gao’s reaching law is used in this
article [42]. The said reaching law is expressed in Eq.
12.

ṡ(t) = −k|s(t)|βsign(s) (12)

where k is the preset positive scaling gain, βis the preset
power rate of the absolute value of s(t) that is restricted
between 0 and 1, and sign(.) is a “sign” (or signum)
function that is expressed in Eq. 13.

sign(s) =

⎧⎪⎨
⎪⎩
1, if s(t) > 0
0, if s(t) = 0
−1, if s(t) < 0

(13)

The reaching law guarantees the convergence of the
sliding surface s(t) in finite time, as proven later in
this section. The proposed finite-time SMC law is not
required to address the variable time delays, as observed
in bilateral teleoperators and similar nonlinear systems
[30]. Hence, the said control law is formulated via a sin-
gle term of exponential and limiter function to tackle
the single sliding variable associated with the RIP sys-
tem. This arrangement significantly simplifies the com-
putational realization of the control structure. The first
derivative of Eq. 11 is expressed in Eq. 14.

ṡ(t) = GT ε̇(t) (14)

where, ε̇(t) = ẋ(t) − ẋref
The expressions ẋref = [

0 0 0 0
]T and ẋ(t) =

Ax(t) + Bu(t), when substituted in Eq. 14, yield,

ṡ(t) = GTAx(t) + GTBu(t) (15)

The comparison of Eq. 12 and Eq. 15 delivers the
expression in Eq. 16.

−k|s(t)|βsign(s) = GTAx(t) + GTBu(t) (16)

By making u(t) as the subject, the state-space-driven
SMC law is derived as shown below.

u(t) = −(GTB)−1(GTAx(t) + k|s(t)|βsign(s)) (17)
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The stability of the SMC law is verified by using the
positive-definite Lyapunov function in Eq. 18.

V(t) = 0.5(s(t))2 (18)

The first derivative of V(t) is derived in Eq. 19.

V̇(t) = s(t)ṡ(t) (19)

Substituting the ṡ(t) expression from Eq. 15, the deriva-
tive V̇(t) is expressed as shown in Eq. 20.

V̇(t) = s(t)(GTAx(t) + GTBu(t)) (20)

Substituting theu(t) expression fromEq. 17, the deriva-
tive V̇(t) is simplified as shown below.

V̇(t) = s(t)(GTAx(t) + (GTB)(−(GTB)
−1

(GTAx(t) + k|s(t)|βsign(s))))
= s(t)(GTAx(t) − (GTAx(t) + k|s(t)|βsign(s)))
= s(t)(GTAx(t) − GTAx(t) − k|s(t)|βsign(s))
= s(t)(−k|s(t)|βsign(s)) (21)

The derivative function V̇(t) is simplified as shown in
Eq. 22.

V̇(t) = −k|s(t)|β+1 (22)

Hence the expression of V̇(t) < 0 if k > 0. This speci-
fication satisfies the stability requirements of the SMC
law. The SMC law’s finite-time convergence is analyzed
as per Lemma 1 discussed below.

Lemma 2.1 ([29]): Consider a positive-definite (contin-
uous) function z(t) that satisfies the differential inequal-
ity in Eq. 23, for t > 0.

ż(t) ≤ −δ(z(t))μ (23)

where δ andμ are predetermined constants such that δ >

0 and 0 < μ < 1. The function z(t) takes a finite time ts
to converge to zero. The time ts is given in Eq. 24.

ts ≤ (z(0))1−μ

δ(1 − μ)
(24)

Using the expression in Eq. 22, the derivative V̇(t)
can be rewritten as shown in Eq. 25.

V̇(t) = −
(
k(2)

β+1
2

)
(V(t))

β+1
2 (25)

Then, according to Lemma 1, the function V(t) and
the sliding variable s(t) converge in a finite time that
is given by Eq. 26, as long as k > 0 and 0 < β < 1.

ts ≤ (V(0))
1−β
2(

k(2)
β+1
2

) (
1−β
2

) (26)

To ensure accurate position-regulation behavior, the
SMC parameters are optimized by iteratively minimiz-
ing the following objective function Jc.

Jc =
∫ ∞

0
[|eα(t)|2 + |eθ (t)|2 + |u(t)|2]dt (27)

In this cost function, an equal (unity)weight is allocated
to the state error and the control criteria. This is done
to apply equal impact on minimization of the posi-
tion regulation errors and the control input to prevent
wind-up. The selection range of each coefficient ofGT is
bounded within [−100, 100]. The parameter optimiza-
tion is initializedwithGT = [

1 1 1 1
]
. The tuning

algorithm explores the range space for the best-fit solu-
tion in the direction of the objective function’s decreas-
ing gradient. In every trial, the RIP apparatus rod is
inverted and balanced for 10.0 s. The corresponding
cost is computed at the trial’s conclusion. The optimiza-
tion process is concluded when the global minimum
is acquired for a given parameter. The parameters β

and k are also tuned offline by using the aforemen-
tioned technique. The power rate β is bounded within
[0, 1] and the scaling gain k is chosen from the range
[0, 10] as discussed in Eq. 10. The tuning algorithm is
initialized with β = 1 and k = 1. The parameter val-
ues thus selected are k = 4.07, β = 0.45, and GT =[−3.16 73.48 −3.02 9.25

]
, (See [40]).

The utilization of linear models for control design
is preferred over nonlinear models primarily due to
their simplicity and tractability. The linear differential
equations are computationally simpler to solve, which
leads to easier analysis, design, and realization of the
control laws. Furthermore, it is also much simpler to
assess the stability and robustness of a control design
without having to simulate the entire nonlinear system.
The computational efficiency of linear systems is espe-
cially important in real-time applications that require
quick response speeds. The control designers can focus
on the behavior of the system near specific operating
points by linearizing the nonlinear systems to create
linear models. This streamlines the design process and
is adequate for a variety of applications. Hence, owing
to the aforementioned benefits, the SMC law expressed
in Eq. 17 uses the system’s linear state space model.
This arrangement also increases the scalability of the
SMC. The intrinsic nonlinear properties of the under-
actuated systems are difficult to model and identify
owing to their complex geometry.

The SMC discussed in this work is formulated using
a linear state space model. Despite working with a lin-
ear systemmodel, the proposed SMC law is augmented
with auxiliary online adaptation tools that are real-
ized using model-free nonlinear fuzzy functions. These
functions autonomously self-tune the critical parame-
ters as the error conditions vary, which aids in amplify-
ing the controller’s resilience against exogenous pertur-
bations. This arrangement allows the designer to easily
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modify and extend the SMC law to other mechatronic
systems, as long as the linearized state space model is
known a priori.

2.3. Baseline linear control law

The conventional LQR is a state space compensator
that minimizes the QCF provided in Eq. 28 to provide
optimal control decisions [19,20].

Jlq = 1
2

∫ ∞

0
[u(t)TRu(t) + x(t)TQx(t)]dt (28)

where R ∈ R ≥ 0 is the control input weighting factor
andQ ∈ R

4×4 > 0 is the state weighting matrix linked
with the single-link RIP system. The R and Qmatrices
are expressed in Eq. 29.

R = ρ,Q = diag
(
qϕ qθ qα̇ qθ̇

)
(29)

where ρ and qx are the preset positive coefficients of
the respectivematrices. These coefficients are calibrated
offline by minimizing the objective function in Eq. 27
using the procedure discussed in 2.2. The Algebraic-
Riccati-Equation (ARE) uses the pre-calibrated R and
Qmatrices to evaluate Pmatrix as expressed in Eq. 30.

ATP + PA − PBR−1BTP + Q = 0 (30)

where P ∈ R
4× 4 > 0. The corresponding LQR gain

vector K is computed as expressed in Eq. 31.

K = R−1BTP (31)

where K = [
kϕ kθ kα̇ kθ̇

]
. The fixed-gain LQR

law is formulated in Eq. 32.

u(t) = −Kx(t) (32)

The closed-loop asymptotic stability of LQR is verified
via the following Lyapunov function [21,22].

M(t) = x(t)TPx(t) > 0, for x(t) �= 0 (33)

The first derivative ofM(t) is derived in Eq. 34.

Ṁ(t) = 2x(t)TPẋ(t)

= 2x(t)TP(A − BK)x(t)

= 2x(t)TP(A − BR−1BTP)x(t)

= x(t)T(PA + ATP)x(t)

− 2x(t)T(PBR−1BTP)x(t) (34)

By making necessary substitutions from Eq. 25, V̇(t)
simplified as expressed in Eq. 35.

Ṁ(t) = −x(t)TQx(t) − x(t)T(PBR−1BTP)x(t) (35)

The function Ṁ(t) < 0 if R = RT > 0 and Q = QT ≥
0. These conditions sufficiently prove the asymptotic

stability of LQR. Based on the aforementioned stabil-
ity specifications and the tuning technique discussed
in Section 2.2, the weighting matrices of QCF are cho-
sen by minimizing Eq. 27. The selected matrices are
R = 1 andQ = diag

(
38.2 52.6 5.3 2.1

)
. The LQR

gains thus evaluated are K = [−6.21 130.56 −4.22
17.83

]
.

3. Fuzzy-Adaptive SMCmethodology

The utilization of sign(s) in Eq. 17 imposes a hard non-
linearity that induces abrupt switching in the generated
control signals as the state errors vary. The repetitive
switching causes highly disrupted control behavior that
unavoidably contributes to chattering in the response.
To minimize the chattering, the sign(s) in Eq. 17 is
replaced with a smooth fuzzy nonlinear function [43].
The function f (s, ṡ) smoothly commutes between the
sliding surfaces as an odd-symmetric function of s and
ṡ. It is designed such that it is bounded between−1 and
1 so that it complies with the control law requirements.
It uses s and ṡ as its inputs, which improves the agility
of the controller design to better address nonlinear dis-
turbances. To further enhance agility and resilience, the
SMC law is also retrofitted with online gain modulators
that self-tune the controller’s scaling gain and the power
rate. By retrofitting the SMC control law with the afore-
mentioned tools, the resulting Fuzzy Adaptive SMC law
(or FA-SMC) takes the following form.

uf (t) = −(GTB)−1(GTAx(t) + k(s, ṡ)|s(t)|β(s,ṡ)f (s, ṡ))
(36)

where β(s, ṡ) and k(s, ṡ) represent the time-varying
power rate and scaling gain of the control law that is
realized by using the aforesaid fuzzy function f (s, ṡ).
These modifications enhance the SMC’s adaptability to
efficiently compensate for the disturbance while atten-
uating the chattering phenomenon and maintaining
smooth control activity. This scheme is computation-
ally economical because it uses the prescribed f (s, ṡ)
to online adapt k(.) and β(.) instead of formulating a
new gain-adaptation function. This control procedure
is referred to as FA-SMC in this article. Its methodical
construction is discussed below.

3.1. Fuzzy function formulation

The fuzzy-logic inference system is a computational
intelligence paradigm that uses predefined qualitative
rules to make logical decisions for solving problems
in engineering cybernetics [44]. It utilizes heuristi-
cally fabricated logical rules to yield an agile control
effort that undertakes to reject bounded external dis-
turbances. The rules of f (s, ṡ) are empirically designed
to ensure the state trajectories always converge to the
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Table 2. Rule base of the fuzzy function.

f (s, ṡ) ṡ

s NB NM NS Z PS PM PB

NB NB NB NB NM NS Z Z
NM NB NB NB NS Z Z PS
NS NB NB NM Z Z PS PM
Z NB NM NS Z PS PM PB
PS NM NS Z Z PM PB PB
PM NS Z Z PS PB PB PB
PB Z Z PS PM PB PB PB

switching surface. The input and output states are lin-
guistically defined via seven variables: namely, Nega-
tive Big (NB), Negative Medium (NM), Negative Small
(NS), Zero (Z), Positive Small (PS), Positive Medium
(PM), and Positive Big (PB). While defining the MFs,
the variation in the inputs s and ṡ are normalized within
[−1, 1]. The fuzzy rules are synthesized as per the
rationale discussed below:

(1) When both s(t) and ṡ(t) have the same polarities,
the response is considered to be in the perturbed
state. The fuzzy system applies a tight control effort
to reject the disturbances during this phase.

(2) When s(t) and ṡ(t) have opposite polarities, the
response is considered to be in the equilibrium or
quasi-equilibrium state. The fuzzy system applies
a soft control effort during this phase to minimize
the state fluctuations as the response settles to the
reference position.

These rules preserve the robustness of the conven-
tional SMC law while suppressing the chattering con-
tent. The rule base synthesized to constitute f (s, ṡ) is
presented in Table 2. The Mamdani inference method
is used to implement the fuzzy implication, as shown
below.

μij = min(hi1(s), hj2(ṡ)) (37)

where μ represents the MF degree, n represents the
rule number, and hij(.) represents the triangular-shaped
input MF as formulated in Eq. 38.

hij(g) =

⎧⎪⎪⎨
⎪⎪⎩
1 + g−cij

bi,j−
, −bij− ≤ g − cij ≤ 0

1 − g−cij
bij+

, 0 ≤ g − cij ≤ bij+

0, otherwise

(38)

where g represents the normalized value of inputs (s or
ṡ), and bij−, cij, and bij+ are the left-half width, centroid,
and right-half width of the jth input MF of the ith input
respectively.

The decisions are defuzzified using the center of
gravity approach, and the associated crisp output f (s, ṡ)
is computed as shown in Eq. 39.

f (s, ṡ) =
∑7

i=1
∑7

j=1(μij × wij)∑7
i=1
∑7

j=1 μij
(39)

where w is the output MF’s centroid. Asymmetri-
cal waveforms of the MFs are utilized in this work
to strengthen the fuzzy-augmented SMC’s robustness
against exogenous perturbations. The fuzzy MFs are
empirically optimized by utilizing the tuning proce-
dure discussed in Section 2.2. The resulting triangular-
shaped MFs linked with input and output variables
are depicted in Figure 2. The execution of the fuzzy
inference scheme does not involve any recursive com-
putations, and thus, it can be easily programmed with
modern embedded microprocessors.

3.2. Power rate adaptation

The power rate β of the reaching law influences the
stiffness of control activity. A fixed β cannot address
the ever-changing control requirements of the sys-
tem. On the one hand, it yields insufficient control
resources under disturbance conditions. Conversely, it
applies surplus control energy during the equilibrium
state. This arrangement renders the SMC law wasteful.
Hence, in this article, β is dynamically reconfigured as
a nonlinear scaling function of s and ṡ that uses the
following meta-rules.

(1) The power rate is decreased under large state-error
conditions (disturbances). This helps in amplifying
the influence of |s(t)|β(s,ṡ) in the control law, thus
applying an aggressive damping control force to
attenuate the overshoots resulting from exogenous
disturbances.

(2) The power rate is enlarged under small state-error
conditions (equilibrium). This helps in reducing
the influence of |s(t)|β(s,ṡ) in the control law, thus
applying a gentle control force to allow for smooth
stabilization behavior around the equilibrium.

This rationale improves the disturbance attenuation
of the system while preventing large servo require-
ments, thus maintaining a low chattering content in
the response. The following nonlinear function is thus
formulated in this work as per the aforementioned
rationale.

β(s, ṡ) = 1 − (f (s, ṡ))2 (40)

where β(s, ṡ) represents the time-varying power rate.
The power rate is self-adjusted between 0 and 1.

3.3. Scaling gain adaptation

Similar to the power rate, the scaling gain also directly
manipulates themagnitude of the applied control force.
A fixed scaling gain lacks the flexibility to address the
abruptly varying control requirements as the operating
conditions change. To robustify the system, the scaling
gain is also adaptivelymodulated by using the following
meta-rules.
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Figure 2. MFs linked with (a) input variables, and (b) output variables.

(1) The scaling gain is enlarged under large state errors
to amplify the damping control force.

(2) The scaling gain is decreased under small state
errors to soften the applied control force.

As per the aforementioned rules, the following
smooth adaptation function is formulated.

k(s, ṡ) = ko(f (s, ṡ))2 (41)

where k(s, ṡ) represents the time-varying scaling gain,
and ko is the nominal value of the scaling gain that is cal-
ibrated offline and set at ko = 6.84 by using the tuning
procedure prescribed in Section 2.2.

4. Self-Regulating fuzzy-adaptive SMC
methodology

TheEKF is awell-established state estimation and filter-
ing technique that adapts to real-time changes in system
dynamics [15]. If the system undergoes variations or
if the model parameters change, the EKF will update
the state estimate and covariance accordingly, leading
to “self-regulating” behavior [46]. Hence, its adaptabil-
ity to changing dynamics to yield real-time updates in
the target parameters makes it well-suited for the pro-
posed application. In this article, the EKF is used to
adapt the outputMFs of the function f (s, ṡ) [15]. Hence,
the weights (w) and centers of the MF are probabilisti-
cally modified. The proposed fuzzy function uses the
updated estimates of the said weights (w) and centers
of the MF to reconfigure the shape of MF waveforms
online. The updated MFs are used to re-compute the
controller parameters of the SMC law after every sam-
pling interval [45]. Consider the nonlinear system in
Eq. 42.

qn+1 = m(qn) + gn, dn = p(qn) + vn (42)

where, qn represents the state vector of the system at
nth instance, gn represents process noise, dn represents
observation vector, p(.) is a nonlinear state function,
and vn represents observation noise. To reform the
shape of output MFs online, the system’s state vector

is comprised of the left-half width, centroid, and right-
half width of jth input MF of ith input, respectively
[15].

qn = [b11−c11b11+ . . . b12−c12b12+ . . .

b72−c72b72+w11 . . .w77] (43)

The EKF is realized with the aid of the following set
of equations.

Fn = I (44)

Hn = ∂h(qn)
∂qn

= ∂m
∂qn

=
[

∂m
∂b11−

∂m
∂c11

∂m
∂b11+ . . .

∂m
∂w77

]
(45)

Pn+1 = Pn − KnHnPn + Mn (46)

Kn = PnHn
T(Rn + HnPnHn

T)−1 (47)

q̂n+1 = q̂n−1 + Kn(dn−1 − Hnq̂n−1) (48)

where, q̂n represent the updated estimate of the
state, Hn represents the estimated state’s measurement
model, Kn represents the Kalman gain vector, Pn refers
to the prediction error’s covariance,Rn is the covariance
matrix of vn, and Mn represent the covariance matri-
ces of vn. The system’s partial derivative as per theMF’s
weight is evaluated as shown below [15].

∂s
∂wij

= ∂s
∂ufa

× ∂ufa
∂f

× ∂f
∂wij

(49)

where,

∂s
∂ufa

= s(t) − s(t − 1)
ufa(t) − ufa(t − 1)

,

∂ufa
∂f

= −(GTB)−1ko|s(t)|β(s,ṡ)

(3 − 4(f (s, ṡ))2)(f (s, ṡ))2,

∂f
∂wij

= μij∑7
i=1
∑7

j=1 μij
.

The partial derivative of the system output for fuzzy
MF centers is computed by using the following chain
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Figure 3. Block diagram of the proposed SFA-SMC.

rule [15].

∂s
∂cij

= ∂s
∂ufa

× ∂ufa
∂f

× ∂f
∂μi,j

× ∂μi,j

∂cij
(50)

where,

∂f
∂μi,j

=
∑7

m=1
∑7

n=1 μmn(wij − wmn)(∑7
m=1

∑7
m=1 μmn

)2 ,

∂μi,j

∂cij
=

⎧⎪⎪⎨
⎪⎪⎩

− 1
bij−

, −bij− ≤ x − cij ≤ 0
1

bij+
, 0 ≤ x − cij ≤ bij+

0, otherwise

.

The partial derivative of the MF’s right and left half-
widths is computed, as shown below [15].

∂s

∂b−/+
ij

= ∂s
∂u

× ∂u
∂f

× ∂f
∂μi,j

× ∂μi,j

∂b−/+
ij

(51)

where,

∂μi,j

∂b−/+
ij

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− x−cij
(b−

ij )
2 , −b−

ij ≤ x − cij ≤ 0
x−cij
(b+

ij )
2 , 0 ≤ x − cij ≤ b+

ij

0, otherwise

The augmentation of the FA-SMC law with EKF
yields the Self-Regulating FA-SMC (or SFA-SMC) law
presented in Eq. 52.

us(t) = −(GTB)−1(GTAx(t) + k̂(s, ṡ)|s(t)|β̂(s,ṡ) f̂ (s, ṡ))
(52)

The asymptotic stability proof and the finite-time con-
vergence analysis prescribed for the SMC law in Section
2.2 are also valid for the proposed SFA-SMC law.
The proposed augmentation further increases the con-
troller’s agility to flexibly reconfigure the applied con-
trol force. The SFA-SMC is shown in Figure 3.

5. Results and discussions

This section discusses the specifics of the hardware
configuration and the experiments used to assess the
efficacy of the aforementioned controllers.

5.1. Hardware platform

In this research, the Quanser single-link RIP setup is
used as the benchmark platform to carry out the HIL
experiments. The Quanser RIP setup used to conduct
experiments is shown in Figure 4. The state measure-
ments related to θ and α are acquired via their respec-
tive rotary encoders. These NI-ELVIS II data acqui-
sition board is used to acquire samples of raw state
measurements at a rate of 1.0 kHz. Upon digitization,
themeasurement data is transmitted serially at 9600 bps
to a customized control application in LABVIEW.

The software’s “Block Diagram” tool and functions
palette are used to create the control application. A
2.0GHz laptop with 8.0 GB of RAM is used to run
the said control program. Apart from using the built-in
functions, libraries, and blocks, the algebraic equations
are realized by programming them using C-language
code. The control program re-calibrates the function
f̂ (s, ṡ) online as per the updated statemeasurements and
makes the necessary parameter adjustments to produce
the new control signal. The onboard motor driver cir-
cuit receives the control signals serially that are ampli-
fied to activate the DC servo motor. The graphical user
interface of this control application serves to display
and record (download) the real-time variations in the
states and control requirements of the RIP system.

5.2. Experimental evaluation

The RIP system’s balance control performance under
the control of the LQR, SMC, FA-SMC, and SFA-SMC
schemes is individually investigated via five specific test
cases that emulate practical disturbance conditions. In
each test case, the time-domain profiles of θ(t), θ̇ (t),
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Figure 4. The QNET Rotary Inverted Pendulum setup.

α(t), α̇(t), Vm(t), and f (s, ṡ) are visualized for analysis.
The testing procedures and the corresponding results
are presented below:

(A) Reference-tracking:This experiment examines the
pendulum rod’s position regulation and arm’s
station-keeping behavior under no-disturbance
conditions. The state responses, control input
response, and the variations in f (.) are illustrated
in Figure 5.

(B) Impulse disturbance compensation: This experi-
ment analyzes the controller’s sturdiness against
the exogenous impulsive disturbances by applying
a simulated signal, having a peak of −5.0V and
a span of 100.0ms, to the Vm(t) signal. The dis-
turbances are injected whenever the arm displaces
to its local maximum position. The variations in
the states, control input, and f (.) are depicted in
Figure 6.

(C) Step perturbation compensation: This test exam-
ines the resistance of the control laws against
abrupt and constant load or exogenous torque vari-
ations. The disturbance scenario is simulated by
administering a step signal of−5.0V in Vm(t) sig-
nal at t ≈ 7.0 smark. The consequent variations in
the states, control input, and f (.) are demonstrated
in Figure 7.

(D) Sinusoidal perturbation attenuation: This test
case examines each controller’s agility against the

disturbances contributed by mechanical pertur-
bations or air resistance. The experiment is per-
formed by applying a simulated sinusoidal sig-
nal, d(t) = 1.5 sin(20π t), in the Vm(t) signal. The
changes in the states, control input, and f (.) are
depicted in Figure 8.

(E) Model error compensation: This experiment
investigates the flexibility of each control law
to effectively suppress the perturbations caused
by parametric variations, identification errors, or
model changes in the RIP system. The experiment
is carried out by suspending a 0.10 kg mass under-
neath the horizontal link of the arm at t ≈ 7.0 s as
shown in Figure 4. This attachment permanently
modifies the constituents of the matrix A and,
hence, the system’s model. The contradiction in
the system’s updated and reference mathematical
model perturbs the pendulum’s state and control
responses. The resulting variations in the states,
control input, and f (.) are illustrated in Figure 9.

(F) Gaussian noise attenuation: This test case exam-
ines each controller’s agility against the measure-
ment noise contributed by the sensors. The exper-
iment is conducted by applying a simulated white
Gaussian noise signal having a mean of zero and
variance of 0.2 in the Vm(t) signal. The changes in
the states, control input, and f (.) are depicted in
Figure 10.

5.3. Results and discussions

The following key performance metrics (KPMs) are
used to analyze the experimental outcomes:

• Ex,rms: State error’s root mean squared (RMS)
value.

• Ts,θ : Recovery duration for the apparatus rod fol-
lowing an impulse disturbance.

• |OSθ |: Absolute value of post-disturbance over-
shoot (or undershoot) observed in the rod.

• Eoffset: Offset in the arm position following a step
disturbance.

• αpp: Peak-to-peak oscillation amplitude observed
in the arm after step disturbance.

• Vms: Motor voltage’s mean-squared value.
• Vp: Peak motor voltage generated following an

external disturbance.
• Sθ : RMS value of sensitivity that is evaluated as

the ratio of 
θ to 
Vm.

The performance metrics described above are used in
this article to analyze the RIP’s disturbance attenuation
ability, position regulation accuracy, and control effi-
ciency in the physical environment [47]. The results of
the HIL experiments are quantified in Table 3.

In Experiment A, the LQR exhibits poor posi-
tion regulation accuracy and economic control activity.
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Figure 5. RIP’s response under normal conditions.

The SMC-regulated system demonstrates deficient
reference-tracking activity with large state fluctua-
tions, high chattering content, and highly disrupted
control activity. The FA-SMC demonstrates mod-
erately improved position-regulation behavior with
relatively less chattering and fluctuations. However, it

imposes large control requirements on the actuator.
The SFA-SMCsurpasses the other controller variants by
robustly minimizing position-regulation errors while
economizing the overall control input requirements,
which significantly suppresses the chattering content
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Figure 6. RIP’s response under impulsive disturbances.

as well. In Experiment B, the LQR demonstrates defi-
cient disturbance-rejection behavior. The SMCdemon-
strates a mediocre improvement as compared to LQR.
However, it still exhibits slow transits with fragile
control effort against the simulated disturbance signals,

significant chattering content in the responses, and the
imposition of peak servo demands upon the actua-
tor. The FA-SMC exhibits reasonably improved damp-
ing against disturbances and chattering but displays
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Figure 7. RIP’s response under step disturbances.

mediocre control performance. The SFA-SMC sig-
nificantly enhances the disturbance-rejection capabil-
ity by exhibiting a relatively faster response speed
with a robust control effort to mitigate the over-
shootswhile effectively cutting down the control energy

requirements and, thus, the chattering content. In
Experiment C, the LQR exhibits the poorest distur-
bance compensation behavior. The SMC continues
to display poor disturbance-compensation activity by
recording the largest magnitude in offset and αpp in the
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Figure 8. RIP’s response under sinusoidal disturbances.

pendulum’s observed states and highly disrupted con-
trol activity. The FA-SMC shows considerable enhance-
ment in the closed-loop system’s control input activity
and disturbance attenuation ability. The SFA-SMC con-
tributes the strongest disturbance-rejection behavior

by exhibiting minimal offset and αpp in the arm.
It also ensures a smooth and economical control
activity with minimal peaks recorded. In Experiment
D, the LQR yields insufficient control effort. The
SMC yields an exceedingly disrupted control behavior,
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Figure 9. RIP’s response under model variation.

which unavoidably introduces high chattering con-
tent in the states. The FA-SMC shows considerable
improvement in the lumped disturbance attenuation
behavior while moderately economizing the control
energy demands. The SFA-SMC efficiently attenuates

the impact of the simulated sinusoidal disturbance by
minimizing steady-state fluctuations and curbing the
input requirements. In Experiment E, the SMC and
FA-SMC contribute relatively weak damping control
efforts against themodeling error, which results in large
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Figure 10. RIP’s response under Gaussian white noise.

state fluctuations. The SFA-SMC strongly rejects the
impact of the modeling error by effectively attenuating
the ensuing state fluctuations, suppressing the chat-
ter, and ensuring an inexpensive energy expenditure.
The comparative performance study attests to the SFA-
SMC’s better position regulation accuracy, stronger

disturbance attenuation ability, quicker response time,
and improved control effectiveness in all of the HIL
experiments.

In Experiment F, the LQR underperforms as com-
pared to the rest of the designed controllers. The
SMC yields a discontinuous control effort, which
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Table 3. Quantitative summary of experimental findings.

KPM Control Scheme

Experiment Symbol Unit LQR SMC FA-SMC SFA-SMC

A Erms,θ degrees 0.58 0.56 0.47 0.28
Erms,α degrees 16.95 12.22 8.03 6.62
Vms V2 7.04 15.81 13.20 8.14
Sθ degrees/V 0.87 1.31 1.09 0.48

B Erms,θ degrees 0.84 0.87 0.49 0.30
|OSθ | degrees 3.48 2.61 2.28 1.70
Ts,θ sec. 0.80 0.76 0.39 0.21
Erms,α degrees 12.56 10.83 9.01 6.81
Vms V2 7.79 17.88 13.54 7.66
Vp V −9.19 −15.62 −12.82 −11.09
Sθ degrees/V 0.88 2.78 0.79 0.45

C Erms,θ degrees 1.19 1.11 0.90 0.71
Erms,α degrees 31.47 27.93 19.95 14.65
Eoffset degrees −38.65 −36.62 −24.28 −19.98
αpp degrees 25.20 23.77 20.41 15.08
Vms V2 26.27 21.88 17.88 14.22
Vp V −12.05 −19.30 −15.41 −15.35
Sθ degrees/V 2.55 5.14 1.51 0.76

D Erms,θ degrees 1.19 0.61 0.42 0.21
Erms,α degrees 18.07 12.15 8.09 5.18
Vms V2 11.41 17.30 14.39 8.81
Sθ degrees/V 2.26 0.67 0.54 0.51

E Erms,θ degrees 0.51 1.47 0.98 0.61
Erms,α degrees 9.94 13.42 10.81 8.01
Vms V2 12.27 16.54 13.81 10.03
Sθ degrees/V 2.42 3.69 1.52 1.28

F Erms,θ degrees 0.82 0.43 0.39 0.28
Erms,α degrees 9.94 7.30 5.91 4.42
Vms V2 12.27 11.34 10.66 9.18
Sθ degrees/V 2.21 0.62 0.51 0.49

Figure 11. Phase portrait between θ̇ (t) and θ(t) for each control law.

inevitably introduces large ripples in state responses.
The FA-SMC shows considerable improvement in
white noise suppression behavior while expending a
reasonable amount of control energy. The SFA-SMC
robustly attenuates the white noise by minimizing the

oscillations in the state responses as well as the control
energy requirements.

The benefits afforded by SFA-SMC are attributed to
the dynamic reconfiguration of the shape and form of
f (s, ṡ). In every test case, the variations in f (s, ṡ) under
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Figure 12. Phase portrait between α̇(t) and α(t) for each control law.

Table 4. Comparison of SFA-SMC with state-of-the-art controllers.

KPM Control Scheme

Experiment Symbol Unit CFO-LQIR [21] IVS-LQIC [22] IDoS-LQR [23] SFA-SMC (Proposed)

A Erms,θ degrees 0.36 0.35 0.29 0.28
Erms,α degrees 10.08 8.52 9.28 6.62
Vms V2 7.18 7.06 7.08 8.14

B Erms,θ degrees 0.47 0.35 0.37 0.30
|OSθ | degrees 2.23 1.68 1.47 1.70
Ts,θ sec. 0.51 0.46 0.46 0.21
Erms,α degrees 9.68 8.74 8.92 6.81
Vms V2 6.39 7.74 6.31 7.66
Vp V −8.47 −9.55 −8.13 −11.09

C Erms,θ degrees 0.42 0.59 0.45 0.71
Erms,α degrees 22.06 16.62 17.43 14.65
Eoffset degrees −23.72 −19.08 −23.00 −19.98
αpp degrees 21.61 20.70 18.65 15.08
Vms V2 25.35 22.76 18.10 14.22
Vp V −10.34 −11.22 −12.28 −15.35

D Erms,θ degrees 0.29 0.27 0.29 0.21
Erms,α degrees 9.53 5.58 6.85 5.18
Vms V2 10.50 9.59 9.07 8.81

E Erms,θ degrees 0.78 0.63 0.75 0.61
Erms,α degrees 11.78 9.56 9.94 8.01
Vms V2 9.48 11.04 8.49 10.03

Note: Bold values indicate the optimum value of a given performance metric yielded by the designed controllers.

FA-SMC are relatively more disrupted. The function is
redundantly and abruptly switching between +1 and
−1, which inevitably results in a very sporadic control
action and the consequent chattering phenomenon. On
the contrary, the variations in the EKF-regulated f̂ (s, ṡ)
under SFA-SMC are smooth. The functional variations
are abrupt, but they only commute to+1 and−1 under
large error conditions. The variations are mostly con-
densed around the intermediate values of the function
under normal conditions. This behavior economizes
the system’s control input requirements, which leads

to smooth control activity and reduces chattering. The
SFA-SMC avoids the inherent shortcomings of the con-
ventional fuzzy system by employing EKF to dynami-
cally reconfigure the MFs, which in turn supplements
the controller’s self-tuning capability in real time. The
sensitivity analysis quantified in Table 3 also validates
the superior robustness of SFA-SMC to disturbances
and noise.

The phase diagrams for test case A, plotted between
the angular velocity and angular displacement associ-
ated with the arm and the pendulum rod, are depicted
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visually in Figure 11 and Figure 12, respectively. The
phase portraits linked with θ show that the state vari-
ations in SFA-SMC are restricted within −179.0 and
181.0 degrees while exhibiting relatively high response
speed. The phase portraits linked with α show that the
state variations in SFA-SMC are restricted within−14.0
and 14.0 degrees while exhibiting reasonable response
speed. The phase diagrams validate the agility of the
proposed SFA-SMC law.

5.4. Comparative analysis usingmodern
controllers

The proposed SFA-SMC is also benchmarked against
state-of-the-art controllers to verify its robustness in
addressing the RIP’s balancing control problem. The
state-of-the-art control schemes considered for the
sake of comparison are the Complex-Fractional-Order
Linear-Quadratic-Integral-Regulator (CFO-LQIR)
[21], Improved Variable-Structure Linear-Quadratic-
Integral-Controller (IVS-LQIC) [22], and Immune-
Adaptive Degree-of-Stability LQR (IDoS-LQR) [23].
The aforementioned controllers were experimentally
analyzed on the same RIP system, as modeled in Table
1, via test cases (A to E) under the same operating con-
ditions. This arrangement ensures a fair comparison.

The graphical visualization of the experimental
results associated with the aforementioned (selected)
control schemes is clearly illustrated in the articles
[21–23] respectively. The comparative performance
analysis is presented in Table 4, which justifies that the
disturbance compensation, position regulation behav-
ior, time optimality, and chattering suppression of
the proposed SFA-SMC are on par with modern
controllers. Most of the KPMs associated with the SFA-
SMC surpass the respective KPMs of other controllers,
as quantified (and highlighted) in Table 4.

6. Conclusion

This study discusses the methodical development and
experimental verification of a novel self-tuning SMC
procedure that undertakes to strengthen the distur-
bance attenuation ability of an RIP system while simul-
taneously minimizing the chattering in the response as
well as the control energy expenditure. For this pur-
pose, the SMC is methodically modified by retrofitting
it with auxiliary adaptation tools. The proposed aug-
mentations increase the controller’s durability against
external disturbances and suppress the chattering while
upholding the closed-loop stability of the RIP system.
The EKF-driven dynamic reconfiguration of the fuzzy
nonlinear function’s waveform to self-adjust the critical
controller parameters significantly improves the con-
troller’s agility to achieve the desired objectives. Con-
sequently, the system exhibits minimum transitional

times while effectively attenuating the disturbance-
induced overshoots (and oscillations) and economi-
cally managing the control input demands. The experi-
mental findings successfully validate the enhanced self-
balancing behavior of the SFA-SMC in the physical
environment. In the future, the SFA-SMC law can be
appropriately modified and extended to other electro-
mechanical and energy-conversion systems as well.
Furthermore, apart from exogenous disturbances, the
proposed augmentations can be retrofitted with other
variants of SMC laws to address hardware limits and
parametric uncertainties. Finally, a rigorous experi-
mental comparison must be done to benchmark the
efficacies of the SFA-SMC law against the ubiquitous
disturbance-observer-based SMC laws.
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