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ABSTRACT
Gastric cancer is a deadly disease which should be treated in time, in order to increase the life
span of the patient. Computer aided diagnosis will help the doctors to identify the gastric cancer
easily. In this paper, a CAD based approach is projected to discriminate and categorize gastric
cancers from various other intestinal disorders. The approach provided the Xception network,
with individual convolutions. The projected technique applied three procedures: Google’s Auto
Augment for augmentation purpose, BCGDU-Net for segmentation and Xception network for
lesion classification. The augmentation and segmentation facilitated theclassifying technique to
be enhanced because this methodology prohibited overfitting. The segmented region is clas-
sified as cancerous or non-cancerous based on the features extracted in the Xception network
training phase. This method is analyzed with the different combinations of augmentation, seg-
mentation with and without ROC. It is found that the area under ROC curve for augmentation
and segmentation is higher than the other two cases. Moreover, this technique provides a seg-
mentation accuracy of 98% when compared with existing methods like fuzzy C means, global
thresholding, BCD-Net, U Net. The classification accuracy of 98.9% is obtained, which is higher
than the existing techniques like Res Net, VGG net, Mobile Net.
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1. Introduction

Stomach mucosal malignant tumours are gastric can-
cers. A longer life expectancy and changes in dietary
habits that contribute to gastric cancer, which can
be fatal if not caught early. Recently, there have
been numerous cases of gastric cancer, including
those involving the normal gastric mucosa, chronic
non-atrophic gastritis, atrophic gastritis and intesti-
nal metaplasia. If they are not identified early enough,
atrophic gastritis and intestinal metaplasia are strongly
associated with premalignant lesions. Gastritis, ulcers
and bleeding are lesions that form gastric cancer. An
endoscope is sent into the nose and the digestive tract
is observed to detect gastric cancer. If any abnormal-
ity is detected, then it must be treated with the cor-
rect medications by the physician [1,2]. As the images
used by the endoscopy increase and the contrast of the
image also varies, it will lead to misdiagnosis by the
doctor. But computer-aided diagnosis will help in accu-
rate diagnosis [3,4]. Recently, there have been many
techniques to help detect gastric cancer. They are endo-
scopic diagnosis, histopathological diagnosis, imaging
diagnosis and tumour marker diagnosis. The endo-
scopic diagnosis technique is easier to miss due to its

subjective nature. Histopathological diagnosis neces-
sitates aggressive examination and takes more time.
Analytical measures need expert understanding and
training. The imaging diagnosis technique cannot iden-
tify initial lesions. Tumour markers help to analyse
the therapeutic consequence of gastric cancer. But in
the medical field, radiography and endoscopy are used
widely to detect gastric cancer [5].

A deep convolutional neural network will help
reduce the overfitting problem and the accuracy is 93%
but performance will be degraded if any one layer is
taken off [6]. Image analysis framework will help differ-
entiate between the normal and adenocarcinoma cells
but it is not accurate [7]. HLAC, wavelet and Delau-
nay features can provide less calculation cost than SIFT,
but detailed diagnoses are not possible [8]. A Visual
Saliency Algorithm will provide higher accuracy but
individual samples must be labelled manually, which
takes more time [9]. Residual learning framework will
overcome the degradation problem but training error
occurs [10]. Novel computer-assisted pathology sys-
tems help in histological diagnosis, which is a much
difficult task [11]. Increased smart connectivity is the
result of lesion diagnosis and cancer screening using
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a multi-column convolution neural network built on
the AdaBoost platform [12]. The works in [13] demon-
strate that adding data augmentation produces superior
results. Two strategies areused: the SLIC superpixel and
FRFCMalgorithm for segmentation andAutoAugment
for data preprocessing. However, the results could be
skewed or lack objectivity. The main contributions of
this work are as follows.

• Proposed a CAD scheme, which can differentiate
and categorize gastric cancers from intestinal disor-
ders.

• Projected a novel technique that forms a combina-
tion of segmentation and augmentation procedures

• This approach is automatic without manual effort in
the region of interest for testing and selecting images
for training randomly

• Outputs prove that the efficiency and effectiveness of
the projected assignment are higher than those of the
basic mode.

The rest of this paper is structured as follows. Section
2 summarizes several existing methods. Section 3
describes the proposed systemwith the necessary stages
in detail. The tested results of the segmentation and
classification methods are discussed in Section 4. The
conclusion is enumerated in Section 5.

2. Literature survey

Due to certain drawbacks in machine learning meth-
ods such as the impossibility of learning the fea-
tures from higher dimension data, hierarchical fea-
tures can be extracted more easily from deep learn-
ing than from manual extractions. A support vector
machine is applied in CAD to detect gastric cancer
in endoscopy images [14]. This provides a classifica-
tion accuracy of 96.3% in the case of cancer and non-
cancer. Gastroscopy images are separated into normal
mucosa, non-cancerous pathologies and malignancy
using a convolutional neural network [15] applied to
a multiple-box detector with a single shot. Gastric
tumours and non-cancerous images can be distin-
guished using the v3 network [16]. In this case, CNN
offers greater accuracy, but its specificity and positive
predictive value are less than average. White light pic-
tures of the stomach are used to classify the lesions as
advanced or early-stage gastric cancer, high- or low-
grade dysplasia or non-neoplasm [17]. The models
employed are trained CNN models. The white light
endoscopic image is a crucial endoscopic model.

Data augmentation enhances performance by find-
ing a solution to deep-learning overfitting [18,19]. To
augment, data are changed into coloyrs and shapes. Two
segmentation methods are applied for the gastric infor-
mative data and trained using a deep learning-based
v3 network [20,21]. Intuitionistic fuzzy c-mean is used

in the dissection of gastric lesions [22], which are a
fusion of intuitive and possible fuzzy c-mean methods.
A random value is chosen for augmentation between
0.9 and 1.1 for brightness and colour image [23]. Every
image is rotated to expand data to eight-fold [24]. Cer-
tain augmentation methods, such as rotating, width,
height shifting, shearing and zooming, are used ran-
domly with certain parameters [25]. In adapted deep
CNN the samples are stretched randomly both in hor-
izontal and vertical directions [26]. By training spatial
and appearance transform methods and the optimiza-
tion of the smoothing termand similarity loss, a smooth
displacement vector field will help in the registration of
an image with one another [27].

Deep convolutional neural network (DCNN)-based
artificial intelligence (AI) systems have recently expe-
rienced extraordinary success [6,7]. AI systems are
advantageous in the medical arena in identifying skin
malignancies, diabetic retinopathy and raising the stan-
dard of Oesophago-Gastro-Duodenoscopy (OGD) [8].
AI has been used to detect GC in several preliminary
studies, but the clinical value has been hampered by
issues such as low efficiency, dataset selection bias [9]
and applicability exclusively to static images [10].

A homeomorphic platformwith CNN is used for the
probabilistic nature of the datasets. All these methods
require the parameters to be set manually or randomly
so that the solution of the problem will not be satisfied.

3. Proposed approach

Themain objective of thiswork is to examine fully auto-
mated approaches for categorizing abnormalities into
cancerous and non-cancer lesions using a deep CNN
system. Two methods are mainly involved: a BCGDU-
NET andGoogle’s AutoAugment for segmentation and
augmentation. The Auto Augment technique devel-
ops parameters for the optimization of augmentation
through reinforcement learning through the CIFAR-
10 [28] dataset. Figure 1 grants a flow diagram of the
projected scheme. Initially, the training data need to
be augmented and segmented for classifying tasks. The
test data are then provided for segmentation to identify
whether cancerous or not.

A dataset of gastric endoscopic images having IRB
approval is taken from 69 patients in this work. The
dataset contains around 480 images of which 230
images are applied for training and 240 are used for test-
ing purposes. In the training set, there are 53 cancerous
and 180 non-cancerous images whereas a test set has 30
cancerous and 190 non-cancerous images.

3.1. Augmentation step

To overwhelm the overfitting of parameters in a neu-
ral network, the training data are not sufficient. So,
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Figure 1. Flow diagram of the proposed procedure.

augmenting the dataset inartificially using transforma-
tions that preserve the labels, a combination of image
translation, flipping in the horizontal and vertical direc-
tions, shearing, rotation and cropping [25] randomly
will reduce the overfitting problem. The AutoAugment
tool of the google brain team helps in better data aug-
mentation [28]. In this work, a variant of the CIFAR-10
policy is applied. To expand the dataset into 25 folds,
25 subpolicies are used. The techniques used in aug-
ment policy are given by Shear X/Y, Translate X/Y,
Rotate, Auto Contrast, Invert, Equalize, Solarize, Pos-
terize, Contrast, Colour, Brightness, Sharpness, Cut-out
and Sample Pairing. Two parameters will give the prob-
ability value whichwill denote the likelihood of regulat-
ing the augmentation policy.Here, the invert is followed
by contrast.

Invert operation has no magnitude data and the
probability of applying is 0.1. Then, a Contrast of 0.2
is applied so we get a magnitude of 6 out of 10. There
are 2.9× 12 augmentation sub-policies [28], which are
taken randomly and given to training data. To get the
best policy, learning and classification are repeated to
get improved performance.

Algorithm: CIFAR-10 policy
Step 1: The policy S is sampled by a recurrent neural
network (RNN).
Step 2: Different types of augment policies are provided
using a child network.
Step 3: The performance accuracy R is estimated and
the controller RNN is updated to discover the finest
augment policy.

Step 4: By the application of optimized data augmen-
tation policies, high accuracy has been attained with
public data.

3.2. Segmentation

At first, CNN identifications and operations are pro-
vided. A detailed demonstration of the proposed
BCGDU and its hyper-parameters are changed to
advance the training task

CNN operations
(1) CNN

In general, the human brain identifies the data to dis-
tinguish and classify the objects everywhere surround-
ing the human. Similarly, CNN (convolutional neural
network) performs as a brain. It will not classify the
objects without distinguishing the detailed data. CNN
comprises convolution, activation, pooling, flattening
and full connection. It is a feed-forward network with
multiple layers. The connection among its neurons is
stimulated by visual cortex association. Every neuron is
ordered to answer to the interconnecting regions. The
chief feature of CNNs is they involve grasping algo-
rithms to grasp the image contents. They provide an
enhanced representation of unstructured, information
and provide a good ML classification which provides a
correlation among labels. CNNwill remove spatial cor-
relation to develop new hidden data from the evident
data. The CNN has convolutional and sub-sampling
layers. Every layer has kernels to perform numerous
alteration processes [29–42].



562 C. JASPHIN AND J. MERRY GEISA

(2) CNN components

A CNN architecture comprises CONV, pooling and FC
layers. Every part has only one layer. FC layer has a
global average pooling layer. This will reduce overfit-
ting since parameters are not optimized and signify
individual maps for every group. Various units for reg-
ulation given as BN and dropout are also implanted in
the system to enhance CNN and remove overfitting. It
is very essential to focus on organizing the components
of CNN. This association improves performance.
CONV [43]: This layer has a group of kernelswhile help
to divide the image into receptive fields. The kernel is
provided to the input as numbers. The product opera-
tion of each and every kernel element with input tensor
is done at all positions. The product is added to get the
featuremap. Zero paddings are applied for retaining in-
plane dimensions, else each succeeding featuremapwill
become smaller following this process.
Hyperparameters and down-sampling: The distance
beteeen two kernel positions is called stride, which is
greater than one to perform down-sampling. A pooling
uses the size of kernels, number and padding, to per-
form down-sampling. At last, the output of the CONV
layer is sent to activation functions such as Hyperbolic
tangent, sigmoid,and ReLU which are not linear.

Pooling (PO) [44]: Pooling reduces the number of
parameters, reduces the size of the feature map, pre-
serves the complexity of the CNN, reduces overfitting
and increases generalization. There are several meth-
ods, including MP, average pooling, global pooling,
global average pooling, L2, overlapping and spatial
pyramid pooling.

FC [45]: This layer flattens and transforms the out-
put of the CONV and PO layers into a 1D array. The
weight lies halfway between the input and the output.
The final FC layer’s output for the classification phase
indicates the network’s overall outcome, which repre-
sents the likely price of all classes. Output often has the
same classes as input.

Gated recurrent unit (GRU)
Recurrent neural networks use gated recurrent units
(GRUs) as their restrictions are imposed. The GRU has
fewer parameters than an LSTM because it does not
have an input gate, but it is similar to an LSTM with
an output gate. The LSTMmodel’s gated signals will be
reduced by this GRU to just two. Update and reset gates
are denoted by zt and rt, respectively.

zt = (wxXt + uzHt−1 + Bz)
rt = (wrxt + urHt−1 + Br)

This GRU has a three times increase in its parameters
compared with recurrent neural networks. The total
number of parameters is given by 3(N2+NM+N).
This GRU outperforms the LSTM. The weights of gates

are updated using back propagation through time, to
minimize the cost function. There is a redundancy in
driving these gate signals which are the internal state of
the network.

The parameter will update the internal state of the
system. There are some variants of GRU. In one variant,
each gate is calculated by the previous hidden state and
the bias. In the second variant, each gate is calculated
only by the previous hidden state. In the third variant,
the gate is calculated by bias. The total number of biases
is reduced to 2(mn+ n2).

BCGDU-Net
Inspired by U-Net [46], BConvL STM [47] and dense
convolutions [48], we propose the BCGDU-Net, as
shown in Figure 2. This network uses the combined
effect of both the bi-directional ConvGRU and con-
nected convolutions. The encoding path has four steps
and every step has 3× 3 filters followed by 2× 2 max
pooling functions and ReLU. At every step the feature
map will be made twice. In this step, the representa-
tion of an image is extracted and the dimension of
each layer is increased. The last layer will form higher
dimensional image representations with high informa-
tion. The U-Net has a set of convolutional layers to
learn many features. The network did not learn the
redundant features, it may learn in some other steps.
To overcome this problem, dense convolution layers are
used. By collective knowledge, i.e. reusing the feature
maps such as concatenation of the feature maps from
the preceding layer with the present layer and given to
the next layer. The advantage of dense convolution is it
can learn different features than redundant ones. This
improves the system by reusing parameters. This pre-
vents them from disappearing off the gradients. Here
two convolutions are considered as one block. There is
an arrangement of N blocks in the final layer. xi is the
output of the layer whereas the input of the ith layer will
be the concatenated value of feature maps.

xi ∈ RF1∗W1∗H1

In the decoding step, every layer output is up-sampled.
In U-Net the feature map of the encoding is taken to
the decoding step. The concatenation of feature maps is
done along with the result of up-sampling. In BCGDU-
Net the following process occurs.

1. Let xie ∈ RFl∗Wl∗Hl be the set of feature maps taken
from the encoding section, and xid ∈
RFl+1∗Wl+1∗Hl+1 be the set of feature maps from the
preceding convolutional layer, where F1,W1 ∗H1
is the number, and the size of each feature map at
layer l, respectively.

Fl+1 = 2∗Fl

Wl+1 = 1
2

∗
Wl
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Figure 2. BCDGU-Net.

Hl+1 = 1
2

∗
Hl

The set of feature maps from the preceding layer is
up-sampling followed by 2∗2 convolution. In this, the
size is made twice and the number of feature chan-
nels is made half. The features obtained are given by
xu ∈ RFl+1∗Wl+1∗Hl+1 . The encoding path will increase
the dimensions of the feature map so that it reaches
actual size at the end of the final layer.

After the up-sampling process, the batch normaliza-
tion function is done resulting in xu1 ∈ RFl+1∗Wl+1∗Hl+1 .
During the training phase in intermediate layers, a
problem arises in distributing the activation function,
as a result, the process becomes slow as it needs to adapt
to every new activation function. The stability of the
system will standardize the system by decreasing the
mean from the standard deviation. This process will
increase the speed of the system.

The output of the batch normalization stage is given
to a BConvGRU layer. The standard GRU only consid-
ers the connections in input-to-state and state-to-state
transitions but does not consider the spatial correla-
tion. To avoid this difficult situation, ConvGRU [10]
was projected. ConvGRU will exploit convolution into
input-to-state and state-to-state transitions. It has it ,
ot , ft and ct as the input gate, output gate, forget gate
and memory cell, respectively. These gates are the con-
trolling gates which help in accessing, updating and
clearing memory cells. ConvGRU is given by

it = σ(Wxi
∗xt +WHi

∗ht−1 +Wci
∗ct−1 + Bi)

ft = σ(Wxf
∗xt +WHf

∗ht−1 +Wcf
∗ct−1 + Bf)

ct = ft◦ct−1 + ittanh(Wxc
∗xt +WHc

∗ht−1 + Bc)

ot = σ(Wxo
∗xt +WHo

∗ht−1 +Wco◦ct + B0)

ht = ot ∈ tanh(ct),

where ∗, ◦̧, xt, ht, ct, Wx∗ , WH∗ represent the convolu-
tion andHadamard function, input tensor, hidden state
tensor, memory cell tensor, 2-dimensional convolution
kernel for input state, 2-dimensional convolution ker-
nel for hidden state, respectively. Bi, Bf , Bc and B0 are
the bias terms.

BConvGRU helps to encode the input tensors.
BConvGRU uses one ConvGRU to execute the data in
a forward path others help to execute backward paths.
But in the case of standard ConvGRU, data are pro-
cessed in a forward path only. The entire data are con-
sidered so that the backward path will provide the best
result. Both the forward and backward paths must be
included in one ConvGRU. The output of the BCon-
vGRU is planned as

yt = tanh
(
w�hy ∗
−→
ht + w

←
h
y
←−
ht + b

)
,

where
−→
ht and

←−
ht indicate the forward and backward

states of the hidden state tensors, respectively, b is the
bias term. The output will take into account the bidi-
rectional special information. Moreover, tan h is the
hyperbolic tangent form combination of forward and
backward states. BCGDU-Net is used to train the net-
work.

3.3. Classification Xception networkmodel

The Xceptionmodel’s architecture is depicted in Figure
3. A CNN model called Xception, or “extreme incep-
tion”, uses the Inception module to weaken node con-
nections and independently identify links between each
channel by looking at local data. Inception module
is displayed in Figure 4. The initialization module is
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Figure 3. Xception architecture.

Figure 4. An extreme version of inception module.

responsible for separately turning on 1× 1 and 3× 3
convolution processes for every channel of the final
feature map. The feature map for each channel will,
therefore, be computed by the module. This module
uses separable convolution to modify this procedure.
To put on the 1× 1 convolution is a point-wise con-
volution to the result, the depth-wise unique version
will implement a combination process on all chan-
nels. Convolutions will produce separate feature maps
for each channel when given the information from all
channels and local data, and they will use a 1× 1 con-
volution procedure to control the number of feature
maps produced. The order of processes and the pres-
ence or lack thereof of intermediary activities, which
are not linear by nature, are the key differences between

the convolution layer. Figure 5 illustrates how explicit
Xception is.

The classification of stomach medical images using
Xception yields the greatest results compared to other
deep learning models such as Inception-V3, Resnet-
101 and Inception-Resnet-V2. In addition, compared to
ImageNet, SVHN andCIFAR-10, CIFAR-10’s enhance-
ment policy is the most successful one for the grouping
task.

4. Result and discussion

The Kvasir dataset includes classes that represent
anatomical and pathological findings and contains pho-
tos that have been reviewed by endoscopists. Z-line,
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Figure 5. Concept of the Xception architecture.

Figure 6. Types of images.

Table 1. The details of the Kvasir dataset.

Type of image Number of images

Gastric cancer 65
Non-cancer SMT 91

Ulcer 73
Bleeding 184
Gastritis 10
Others 21

Total 444

pylorus, cecum and other anatomical landmarks are
employed although oesophagitis, polyps, ulcerative col-
itis and other pathological findings are also used. Addi-
tionally, there are other sets of photos relating to the
removal of lesions. The dataset includes photos with
resolutions ranging from720× 578 to 1920× 1074 pix-
els. The position of the endoscope in the intestine is
depicted in green on fewer photographs using electro-
magnetic imaging methods that aid in image interpre-
tation. Figure 6 lists the various forms of gastric lesions
and Table 1 lists the number of Kvasir datastet-used
lesions.

Pictures are enhanced during pre-processing. Every
single image is enhanced into 25 images to comply with

the CIFAR-10 policy. BCGDU-Net is used to segment
each image once more. Data from the real world are
taken into account while classifying and analysing the
outcome. In the testing step, if more than one-third
of the segmented area has cancer, the entire image is
deemed to be malignant.

A threshold is set throughout the experiment since
the cancer region may vary from patient to

number of regions segmented as cancerous
number of segmented regions

≥ 1
3

The data are augmented and segmented, and then the
segmented data are recognized as whether cancerous or
non-cancerous. As the size of lesion varies from patient
to patient, there is a need for augmentation to identify
the cancerous region from other gastric diseases. There
are around 25 augmented sub-policies. The image is
segmented into nine new images. Every image has one
segmented region which has a higher pixel value. The
comparison of the segmentation result is performed
by augmentation, segmentation and by both of them.
The region below the ROC curve is 0.92, 0.95 and 0.97
for augmentation, segmentation and proposedmethod,
respectively. Figure 6 shows the results of ROC curves.

The deep learning toolbox package was used in
Python to implement the network configuration. The
programme took ∼1 h, ∼1 d, ∼3 h and ∼10 d to
train 150 epochs for the original data, augmentation,
segmentation, augmentation and segmentation, respec-
tively. It took 47,000 iterations to train to have a mini-
batch size of 65, and the learning rate was initially 0.002.
The projected technique is faster than the other tra-
ditional methods. The proposed method is executed
in 0.3 s. Google’s Auto Augment is found the best
using reinforcement learning. A set of sub-policies are
found good with the CIFAR-10 dataset and improve



566 C. JASPHIN AND J. MERRY GEISA

Table 2. Cancer size and depth-based sensitivity.

Gastric cancer (mm)

Depth of cancer ≤ 10 10 = 15 11 = 20 ≥ 25

Aug AUC 90 98.23 100 100
Seg AUC 90 94.12 95 96
Aug+ Seg AUC 100 100 95 96

Figure 7. The results of ROC curves.

Figure 8. FROC curve image-based sensitivity.

gastric cancer classification task. Numerous resources
will form optimization in data augmentation.

We computed the sensitivity by cancer size and
depth based on a prior study, as shown in Table 2.

The respective specimen was used to calculate the
sizes of the neoplasms (the major axis).

Figure 7 displays the detection outcomes for the
suggested strategy, including successful detections, FPs
and false negatives. The free-response receiver operator
characteristic (FROC) curves, employing the numbers
of FPs per image, the sensitivity based on the image
and the sensitivity based on the lesion, are shown in
Figure 8. Calculated from this curve, the sensitivities for
image-based and lesion- based detections were 0.098
and 0.96, respectively.

The projected method’s segmentation performance
is correlated with fuzzy C means, global thresholding,
BCGDNet and UNet. When compared to conventional
procedures, the projected technique offers greater accu-
racy. The segmentation performance is compared in
Table 2 with those of other methods, including fuzzy
C means, global thresholding, BCD-Net and U Net.

Figure 9. FROC curve lesion-based sensitivity.

Figure 10. Proposed segmentation.

Table 3. A comparison of CNN architectures for the minimiza-
tion of false positives.

Sensitivity

Classifier Lesion based Image based False positive

Res-Net 0.972 0.923 0.0321
VGG net 0.976 0.965 0.0452
Mobile Net 0.975 0.965 0.0412
Proposed 0.987 0.976 0.0511

To get rid of the FPs, the classification was applied
to the 444 photos found during the initial detection. A
sample cropped image that would be provided to CNN
for FP reduction is shown in Figure 9.

When an FP reduction was carried out using 3 dis-
tinct CNN architectures, the identification sensitivities
and the number of FPs per picture and per lesion are
shown in Table 2.

The best system to get rid of FPs was BCGDU-Net.
Figure 10 displays examples of FPs that BCGDU-Net
could remove and those that it could not. Table 3 dis-
plays the outcomes of the Di and Ji calculations for GC
situations.

In this paper, we suggested a BCGDU-Net for object
detection and automatic GC case detection that inte-
grates Res-Net, VGG-Net,Mobile-Net and anFP reduc-
tion algorithm (Figure 11).
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Figure 11. False positive.

Using the BCGDU-Net output images, actual can-
didate regions were located using conventional back-
ground subtraction and labelling techniques and
bounding boxes were made. To filter out FPs, CNN
divided candidate areas into two categories: real GC
cases and FPs. This method greatly outperformed the
outcomes of the prior investigation, with a lesion-based
sensitivity for the initial identification of 0.989 and sev-
eral FPs per picture of 0.0511 (sensitivity, 0.987; the
number of FPs per image, 0.976).

On the other hand, the study’s use of Res-Net, VGG-
Net and Mobile-Net allowed for the analysis of spe-
cific areas inside an image. Endoscopic pictures of the
gastrointestinal mucosa were thoroughly analysed, and
abnormal patterns were precisely identified.

Evaluationmetrics

We assessed the results of the CNN models for picture
segmentation and identification to verify the efficacy
of the suggested approach. A confusion matrix was
first built based on the CNN classification findings to
assess the effectiveness of the CNN for image classi-
fication in the first stage. We determined the models’
precision, sensitivity, specificity and Jaccard Similarity
Factor using the matrix.

Accuracy

The classifier’s accuracy is the percentage of correct
predictions it makes. It describes the overall perfor-
mance of the classifier.

The following is how accuracy is defined:

Accuracy = (ak + ai)
ak + ai + wk + wi)

Sensitivity
Specificity

specificity = ai
ai + wk

Precision

precision = ak
ai + wk

F1-Score

F1 - score = 2ak
(2ak + wk + wi)

Jaccard Similarity Coefficient

JAC = ak
(ak + wk + wi)

The Hausdorff Distance is given by

k mod (U,V) = 1
|U|

min∑
usU

vεV ‖ u− v ‖

The above-mentioned indices were evaluated on an
image-by-image (image-based) and case-by-case basis
(case-based evaluation). The outcomes for the first sce-
nario were computed after each image was allocated
to the category with the greatest CNN output value.
For the case-by-case analysis, the output values of the
images acquired from a single case were averaged for
each class, and the class with the highest average value
was taken into account as the categorization outcome.

Figure 12. Graphical plot for Table 2.
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Figure 13. Graphical plot for Table 3.

Table 4. Comparative segmentation performance with fuzzy C
means, global thresholding, BCD-Net and U Net.

Method Accuracy Sensitivity Specificity Precision FI-score

Fuzzy C means 0.9584 0.9585 0.9744 0.9998 0.977
Global thresholding 0.9612 0.9613 0.98310 0.9998 0.9801
BCD-Net 0.9674 0.9685 0.7985 0.9988 0.9832
U-Net 0.9771 0.9784 0.7533 0.9982 0.9882
Proposed method 0.9812 0.9856 0.9903 0.9999 0.9889

Using a feature map-based inference process repre-
sents higher modelling, a method for visualizing CNN
output and determines which aspects of an image have
an effect on the predictions. It can produce a stable
activation map independent of the model and uses a
variety of techniques, such as computing the CNN fea-
ture map’s gradient, to identify the activation map. In
this study, we calculated activation maps for healthy
patients, upper gastrointestinal cancer patients andpro-
gressive gastric cancer patients to visualize the rationale
for classification.

The grouping results show that the segmentation
approaches provide improved results than the use of
only the real image, indicating that the learning process
over area labelling is active. It provides the potential for
recognition techniques that will give lesion data using
the probability of every patch (Table 4).

Table 5. Comparative chart of classification performance with
Res-Net, VGG-Net and Mobile-Net.

Metrics Res-Net VGG-Net Mobile-Net Proposed

JAC 0.62598 0.06314 0.6055 0.86466
HD 6.4032 10.2955 6.0827 8.9282
Accuracy 0.94973 0.60839 0.9471 0.98908
Sensitivity 1 0.67238 1 0.93756
Specificity 0.62598 0.19638 0.6055 0.85153

The accuracy, sensitivity, specificity, precision and
F1 score of the proposed method are observed as
0.9812, 0.9856, 0.9903, 0.9999 and 0.9889, respectively.
Table 5 shows the comparative classification perfor-
mance with Res Net, VGG Net and Mobile Net. JAC,
HD, accuracy, sensitivity and the specificity of the
proposed Image Net are 0.8644, 8.9282, 0.98908 and
0.93756 respectively. Figures 12 and 13 show that the
performance of the projected technique is higher than
that of the existing technique.

TheAreaUnderCurve (AUC) of classification shows
how well it can distinguish between classes. The classi-
fier can correctly distinguish between all positively and
negatively labelled points if AUC = 1. The classifier
views both positive and negative data as positive when
the AUC is zero. The classifier has a decent chance of
telling the difference between the pleasant and unpleas-
ant possible values when AUC 1 is changed to 0.9, as
shown in Figure 14.

Be aware that healthy image segmentation frequently
extracts false-positive zones. The evaluation’s findings
revealed that 25 healthy photos contained 415 false-
positive regions, with an average number of false posi-
tives per image (FPI) of 0.0511.

Figure 15 displays the BCGDU-Net segmentation
findings, while Table 6 lists the Dice and Jacquard
parameters.

Images that are classified as healthy do not need to be
segmented because the suggestedmethod accomplishes
the classification method in the initial stage. By elimi-
nating the photos that were successfully categorized as

Figure 14. Proposed AUC curve.
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Figure 15. Stages of gastric cancer.

Table 6. Evaluation results of cancer segmentation.

Di Ji

Stating stage gastric cancer 0.432 0.321
Advanced stage gastric cancer 0.221 0.212

healthy in the first stage, the false-positive regions from
six images were removed, giving an FPI of 0.005 and the
mistakes from the classification findings were studied.

The best performance was demonstrated by
BCGDU-Net, which reduced FPs by almost 20% to 0.56
while retaining a lesion-based detection sensitivity of
0.096. Finally, we compared the performance of 4 dif-
ferent CNN designs. When measured using an image,
the detection sensitivity decreased from 0.098 to 0.096
or around 4%.

Di and Ji examined the precision of extracting the
invasion region of GC and found that for all GC images,
the results were 0.55 and 0.42, respectively; however,
when the test was limited to the photos that had been
correctly identified, the results were 0.60 and 0.46,
including both. When comparing all GC pictures, the
proposed method outperformed the earlier research
using BCGDU-Net; however the earlier research out-
performed the proposed when comparing only the dis-
covered regions. This suggests that while our technique
may be able to detect minor lesions, it cannot precisely
extract their forms.

To raise the extraction accuracy, it is necessary to
improve the CNN model that was used for the auto-
matic discovery and to perform post-processing, such
as region growth, to the extracted images.

The suggested method yields a sensibility of 0.9856
in detecting GC while maintaining FPs at an acceptable
level, which can assist in maintaining high examination
accuracy in screening for GC by accounting for changes
in physician skills.

5. Conclusion

In this paper, a CADx system is projected to differenti-
ate and categorize cancerous cells from various gastric
disorders. The system provided the Xception network,
with individual convolutions. The projected technique

used two methods: Google’s AutoAugment for data
augmentation and BCGDU-Net for image segmenta-
tion. The augmentation and segmentation permitted
the categorizing model to achieve enhanced results
because this methodology prohibited overfitting. The
segmented region is classified as cancerous or non-
cancerous based on the features extracted in the train-
ing phase. This method is analysed with augmentation,
segmentation and a combination of augmentation and
segmentation. It is found that the area under the ROC
curve for augmentation and segmentation is higher
than those of the other two cases. Moreover, this tech-
nique provides a segmentation accuracy of 98% and a
classification accuracy of 98.9%, which is higher than
the existing techniques.
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