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ABSTRACT
One of the common nervous system diseases in older adults is Alzheimer’s and epilepsy, and
the possibility of occurrence increases with age. The chances of seizure are high for patients
with mild cognitive impairment and Alzheimer’s disease. So, there is a bidirectional association
between Alzheimer’s and epilepsy, as both affect the neurodegenerative processes. Electroen-
cephalogram (EEG) is a possible non-invasive measurement technique widely used to measure
the variations in brain signals. EEG signal is analyzed to discriminate the Alzheimer and epilepsy.
Numerous research works evaluated the clinical relevance of Alzheimer’s and epilepsy. Specifi-
cally, machine learning-based evaluation models developed recently bring the facts by extract-
ing features from the EEG signals. However, machine learning-basedmodels lag in performance
due to high dimensional EEG features. For initial feature selection particle swarm optimization is
included in the proposedmodel and to reduce the computation complexity of the classifier, ker-
nel PCA is incorporated for dimensionality reduction. Experimentations using benchmark Bon
and Dementia datasets confirms the proposedmodel better performances in terms of precision,
recall, f1-score and accuracy. The attained accuracy of 94% is much better than existing Gaus-
sian Mixture Model (GMM), Relevance Vector Machine (RVM), Support Vector Machine (SVM),
and Artificial Neural Network (ANN) methods.
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1. Introduction

The specific reason for neurological disorders varies for
each person. However, some common cause that leads
to neurological disorders like Alzheimer’s and epilepsy
are genetic disorders, congenital abnormalities, lifestyle
problems including malnutrition, etc., among the
numerous neurological diseases, Alzheimer’s and epil-
epsy have gained more attention in the research
community. The most predominant neurodegenera-
tive brain disease, Alzheimer’s, affects older adults.
Alzheimer’s is an irreversible, neurological brain disor-
der, and it is a progressive disease that slowly reduces
brain functions like thinking, memory skills, etc., by
destroying the brain cells. Alzheimer’s patients cannot
perform simple tasks, and their daily activities become
complex due to reduced brain functions. Alzheimer’s is
the primary reason for dementia. Alzheimer’s progress
is defined as customarily controlled in the initial stage,
mild cognitive impairment (MCI) in themid-stage, and
finally, the Alzheimer’s affected stage.World Alzheimer
Report 2022 states that in 2019, the Alzheimer’s rate
was 55 million, increasing to 139 million in 2050 [1].
Figure 1 depicts a simple illustration that differentiates
the brain of an average person, and Alzheimer affected
person.

Another brain dysfunction neurological disease is
epilepsy, where 50 million people around the globe suf-
fer due to epilepsy. Epilepsy is a grave issue as the epilep-
tic patient’s premature death rate compared to aver-
age persons is three times higher. Epilepsy is declared
when the patient faces more than two seizure attacks.
Due to the discrepancy of inhibitory and excitatory
synapses in the brain, an abnormal electrical action
occurs during the epileptic seizure attack. The physi-
cians diagnose both Alzheimer’s and epilepsy through
magnetic resonance imaging (MRI) images, computer-
ized tomography (CT) scans, high-density electroen-
cephalogram (EEG), and functionMRI images. Among
all, EEG is considered a simple and efficient medical
test procedure widely used to detect Alzheimer’s and
epilepsy seizures. Alzheimer’s and epilepsy are detected
generally by physicians by visual examination of EEG
recordings [3]. However, the visual examination is tire-
some and imperfect in some cases. Examining EEG
recording is complex, and even expert neurologists face
challenges in finding the traces of disease activities.

Additionally, EEG analysis is not only used to detect
Alzheimer’s or epilepsy. It can be used for other neural-
relatedmedication procedures [4]. Due to this, an auto-
mated Alzheimer’s and epilepsy detection procedure
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Figure 1. (a) Normal brain (b) Alzheimer’s disease brain [2].

becomes essential to assist physicians in diagnosing the
disease and reducing the time and cost. Researchers put
forward numerous ideologies in the early diagnosis of
this disease by studying the abnormalities.

Earlier Fourier transform-based approaches detect
Alzheimer’s and epilepsy from EEG signals. How-
ever, these methods must improve detection per-
formance due to inefficient spectral estimation and
noise sensitivity. Wavelet transform-based approaches
in Alzheimer’s and epilepsy detection lag in perfor-
mance due to inappropriate selection of wavelet func-
tions. Time and frequency distribution-based detec-
tion methods take more time for computation, and
their extraction procedures are interdependent, mak-
ing the detection process complex. Due to these lim-
itations of traditional approaches, machine learning
algorithms have been used to classify Alzheimer’s and
epilepsy seizures, which are more accurate than tra-
ditional methods and manual examination. Machine
learning models consider the whole brain in a single
modality or multi-modal dataset and learn the features
to classify the abnormalities [5].

In Alzheimer’s and epilepsy detection, feature
classification is performed using machine learning
algorithms like decision trees, naïve Bayes, k-nearest
neighbor, and support vectormachine algorithms [6,7].
Machine learning techniques perform better in detec-
tion performances; however, essential features must
be selected to improve the classification and detection
performances. Thus, in this research work, an opti-
mized machine-learning model is presented for detect-
ing Alzheimer’s and epilepsy detection. The primary
objective of this research work is to attain better detec-
tion performances. To attain this, in this research work,
the optimal features are selected from the dataset using

a particle swarm optimization algorithm and then clas-
sified using a deep belief network. The tuna swarm
optimization algorithm optimizes the network param-
eters to improve the classification performance. The
contributions of this research work are presented as
follows.

• To classify Alzheimer’s and epilepsy from EEG data
using an optimizedmachine learningmodel. A deep
belief network is used to classify the EEG data, and
a novel tuna swarm optimization algorithm

• Optimizes the parameters.
• The particle swarm optimization (PSO) algorithm

is used to select the optimal features from the
dataset, which improves classification performance
and reduces the classifier’s computation complex-
ity. The feature dimensions are also reduced using
kernel principal component analysis (KPCA).

• Benchmark Bonn and Dementia datasets are used
in the proposed model experimentation, and per-
formances are verified regarding recall, precision,
f1-score, and accuracy.

The remaining discussions are arranged in the fol-
lowing order: Section 2 discuss the literature analysis
of existing Alzheimer and epilepsy models. Section 3
describes the proposed detection model. Results and
discussion are presented in section 4, and the conclu-
sion is presented in the last section.

2. Related works

Similar methodologies in detecting Alzheimer’s and
epilepsy are studied and analyzed in detail in this
section. The Alzheimer’s disease (AD) early-stage
detectionmodel reported in [8] effectively differentiates
health control subjects and mild cognitive impairment.
The reliable piecewise aggregate approximation model
compresses the high dimensional EEG data. Further,
the compressed data is analyzed using permutation
entropy and autoregressive model, which detects the
changes. Finally, machine learning techniques like an
Extreme learning machine, Support vector machine,
and k-nearest Neighbor are used to classify the fea-
tures. Experimental confirms that ELM attained better
classification performance than othermachine learning
algorithms regarding execution time and accuracy. The
Alzheimer detection model reported in [9] employed a
surrogate decision tree classifier to differentiate patients
with average and mild cognitive impairment. Features
like maxima, minima, zero crossing, mean derivative
value, relative power, and spectral ratios are selected for
classification and attain better classification accuracy
than conventional methods.

To overcome the manual limitations in analyzing
EEG, a fusion method is presented in [10], including
autoregression and variational mode decomposition
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(VAD) algorithms for initial feature extraction and
signal decomposition. In the signal decomposition,
band-limited intrinsic mode functions using VAD are
used, and a logarithmic operation was performed.
The extracted features are finally classified using a
random forest algorithm and attain better classifica-
tion performances. The Alzheimer detection model
reported in [11] presents a hybrid model that includes
discrete wavelet transform multi-band decomposi-
tion method and cepstral distances. The cepstral dis-
tance is extracted to verify the lag between conven-
tional band signals and cepstral. The hybrid model
attained better classification performance, which effec-
tively differentiates the various stages of Alzheimer’s
disease.

The epilepsy and Alzheimer detection model repor-
ted in [12] initially removes the noise artifacts in the
preprocessingmethod. Through discrete wavelet trans-
form, the signals are decomposed into several bands.
The complexity and chaoticity are measured using the
largest Lyapunov exponent and Shannon entropymeth-
ods. Finally, various machine learning algorithms are
employed for classification, and the experimental anal-
ysis confirmed the k-nearest neighbor’s better perfor-
mance over other classification models. Support vec-
tor machine-based EEG analysis is widely used for
Alzheimer’s and epilepsy detection. EEG signal classi-
fication using the Universum SVM model is presented
in [13], which generates data points by selecting uni-
versum from EEG data. In generating Universum data,
outlier effects are removed, and the computation time
and cost are reduced compared to conventional meth-
ods. A modified Universum model was presented in
[14] for EEG classification as Universum twin SVM.
The binary classification model is functional iterative
model which considers the structural risk minimiza-
tion theory. Then the regularization parameters are
included to improve the stability in the classification
process.

Feature extraction from EEG signals is essential
for both Alzheimer’s and epilepsy seizure detection.
Spectrogram-based feature extraction presented in [15]
initially employs Short Time Fourier Transform (STFT)
for time–frequency representations. In order to obtain
the spectrogram descriptors, spectral peaks are consid-
ered as reference points. Further, based on frequency
and surface, the features are extracted. In another
way, k-means is used to extract features, and finally,
maximum peaks are detected using a local ternary pat-
tern. All the extracted features are combined and classi-
fied usingmachine learningmodels like multilayer per-
ceptron, support vector machine, and k-nearest neigh-
bor models. Among all k-nearest neighbors, better per-
formance is validated by the experimental analysis in
detecting Alzheimer’s and epilepsy diseases.

The seizure detection model presented in [16]
includes transfer component analysis (TCA) for feature

extraction. The Kernel Hilbert space approach is used
in TCA for extracting the features. Further, the fea-
ture vectors are generated using the tocher technique
and classified using a recurrent neural network. The
presented networkmodel attained better detection per-
formances over conventional methods. The multi-task
learning procedure presented in [17] for the Alzheimer
detection model includes a discriminative convolu-
tional high-order Boltzmann machine with hybrid fea-
ture maps. The presentedmodel directly performs EEG
spectral image classification using a deep Boltzmann
machine. Elevated level of feature representation and
enhanced classification accuracy are the observed mer-
its of the presented model.

The epilepsy detectionmodel presented in [18] com-
presses the EEG signals using compressive sensing and
employs entropy models like sample entropy and per-
mutation entropy models. The features are selected
using ANOVA and classified using machine learning
classifiers like discriminant analysis, Decision tree, k-
nearest Neighbor, and support vector machine algo-
rithms. Experimental results proved the better classifi-
cation performance due to compressive sensing com-
pared to traditional methods. An automated epilepsy
detection model presented in [19] includes an ana-
lytic wavelet transform method for initial feature pro-
cessing. Various entropies like log energy entropy,
cross-correlation entropy, and Stein’s unbiased risk
estimate entropy are extracted and classified using
machine learning models like least square support vec-
tor machine (LSSVM) and k-nearest neighbor classi-
fiers. The LSSVM attained better accuracy compared to
other methods.

The epilepsy detection model reported in [20]
uses artificial neural networks, genetic algorithms, and
gradient-boosting algorithms. The initial feature is
extracted using discrete wavelet transform, and the fea-
ture dimensions are reduced using fuzzy logic. The
artificial neural network is trained to detect epilepsy
using gradient algorithms. A genetic algorithm defines
the cross-validation, information, and stopping cri-
teria. The presented detection model attained bet-
ter reliability and complexity. The epilepsy detec-
tion model presented in [21] includes a penalized
robust regression model for feature learning. The
most prominent features are recognized and extracted
using the regression model. Finally, the classification
is performed using a random forest classifier and
attained better seizure detection rates than traditional
methods.

The seizure detection model reported in [22]
includes generalized Stock well transform, random for-
est, and SVD methods. The local and global singular
values are obtained using the single-value decomposi-
tionmodel. A random forest classifier is used to classify
the global and local singular value vectors, defining
the seizures’ impacts. The presented detection model
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attained better detection accuracy than existing meth-
ods. The epileptic detection model reported in [23]
includes performing feature extraction using the Mel
frequency cepstral coefficient and classifying using the
neural network model. Through frequency analysis
considering filter bank, Mel frequency cepstral coef-
ficients are measured. Experimental results confirmed
that the regression neural network classification per-
formance attained better sensitivity and specificity over
existing methods.

The machine learning-based epilepsy detection
model reported in [24] extracts the EEG dataset’s
power spectrum, bi-spectrogram, and correlogram fea-
tures. Machine learning algorithms are used to clas-
sify the extracted features. Algorithms like decision
trees, naïve Bayes, support vector machines, 1-nearest
neighbors, and backpropagation-based multilayer per-
ception algorithms are used in the analysis. Experi-
mentation results confirm that support vectormachines
attained better classification performances over other
machine learning algorithms. A time–frequency anal-
ysis model for epilepsy classification presented in [25]
includes synchro extracting chirplet transform for clas-
sifying epilepsy classes. The signal energy concentrated
time–frequency representation is obtained using the
parameter chirp rate. Further instantaneous frequency
trajectory is obtained using the time–frequency coeffi-
cients relevant to the synchro-extracting chirplet oper-
ator. Finally, the original signals are reconstructed using
an instantaneous trajectory, andmultiple classifications
are performed using a support vector machine. The
presented approach attained better classification per-
formances and robustness against noise factors in the
diagnosis of epilepsy disease.

Machine learning based epilepsy detection model
presented in [26] includes k-Nearest Neighbor to clas-
sify the optimal features extracted from the EEG sig-
nals. The presentedmodel generates two feature vectors
using hypercube-based feature extractor. For multilevel
feature extraction, multilevel discrete wavelet trans-
form is employed. Seven optimal features are extracted
and classified to detect epilepsy. Experimental results
confirms that the presented model attained 87.78%
which is lesser than the recent detection models. The
deep learning epilepsy detection model presented in
[27] overcomes the limitations of machine learning
algorithms. The presented approach samples the input
and map the features into a matrix using Pearson
correlation coefficient. This coefficient is used to define
the statistical relationship between variables. Finally,
the features are classified using the developed Epilep-
syNet. Experimental section includes a tenfold cross
validation to validate the generated results. However,
the obtained accuracy of 85% is lesser than the current
methods.

The epilepsy detection model presented in [28]
includes the machine learning algorithm k-nearest

neighbor for adequate classification. The presented
model obtains two feature vectors using a hypercube-
based feature extractor model. Further, multileveled
feature extraction is performed using a multi-level dis-
crete wavelet transform function. The extracted fea-
tures are finally classified using k-nearest neighbor with
high classification performance over other machine
learning-based approaches. From the literature analy-
sis, it can be summarized that the machine learning-
based Alzheimer and epilepsy detection model outper-
forms traditional methods. Specifically, machine learn-
ing models like Naïve Bayes, decision tree, k-nearest
neighbor, RandomForest, and Support VectorMachine
algorithms are widely used for disease classification.
Though the machine learning approaches perform bet-
ter, the performance can be improved if optimiza-
tion models are incorporated with machine learning
algorithms for feature extraction. Thus, this research
presents optimal feature extraction and an optimized
machine-learning model for classifying Alzheimer’s
and epilepsy disease detection.

3. Materials andmethods

The materials and methods used in the proposed
Alzheimer’s and epilepsy detection model are pre-
sented in this section. The discussion covers the
dataset details, particle swarm optimization algorithm,
deep belief network, and tuna search optimization
algorithm. The complete process flow of the proposed
model is depicted in Figure 2. The process starts
with preprocessing input data, including categorical
to numerical values. Then, null values in the dataset
are replaced with zeros, and standard scaling is per-
formed. The optimal features are selected from the pre-
processed data using the particle swarm optimization
algorithm.

A deep belief network is employed in the clas-
sification process, which classifies the optimal fea-
tures obtained from the particle swarm optimization
algorithm. A tuna search optimization algorithm is
used in the proposed model to enhance the classifica-
tion performance, by optimizing the network parame-
ters. Thus, the classification model attained better clas-
sification performances in the detection of Alzheimer’s
and epilepsy detection process. The combined archi-
tecture is the major novelty of this research work.
The presented model combines an efficient feature
selection model and a better dimensionality reduc-
tion model. The optimized classifier enhances the
classification accuracy which is unique from existing
methods.

3.1. Dataset

The first dataset used in the experimentation is
the Bonn dataset, a data collection recorded at the
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Figure 2. Proposed Alzheimer and epilepsy detection model.

University of Bonn. Epilepsy seizure analysis is widely
performed using this dataset. The dataset has 500 EEG
single-channel data sampled at 173.6Hz for 23.6 s. The
dataset has five classes of data: F, N, O, S, and Z. For
each class, 100 channel recordings are present. Class
O and Z are obtained from five healthy patients. The
data S, F, and N classes are obtained from five patients
who have epilepsy. The second dataset used in the
experimentation is the Dementia Prediction Dataset,
the publicly available dataset from the Kaggle reposi-
tory. The dementia dataset has 150 subjects with lon-
gitudinal scan data. The age of the subjects is in the
range 60–96. Out of 150, 72 subjects’ data are charac-
terized as non-demented, 64 subjects’ data are charac-
terized as demented, in that 51 subjects are character-
ized as mild to moderate Alzheimer’s, and 14 subjects
are characterized as non-demented in the subsequent
visits.

3.2. Preprocessing

The proposedmodel’s preprocessing step includes con-
verting categorical values into numerical values, null
value handling, and standard min–max normalization.
In the initial conversion process, the categorical values
in the dataset are converted into numerical values. After
the conversion of numerical values, the null elements in
the data are checked and converted into zero values. So
that all the datasets’ elements are occupied, avoid com-
putation errors, and reduce the inaccuracy. Finally, for
standard scaling, min–max normalization is employed,
which normalizes the data in the dataset based on the

minimum andmaximumnumerical values.Mathemat-
ically, the min–max normalization is formulated as

x = x − xmin

xmax − xmin
(1)

where xmax indicates themaximumvalue and xmin indi-
cates the minimum value. Further, the preprocessed is
fed into an optimization model for selecting optimal
features for the classification process.

3.3. Particle swarm optimization (PSO)

PSO is a swarm-based optimization used for feature
selection in the proposed work. PSO algorithm is for-
mulated based on the particle’s flying characteristics.
Compared to other optimization algorithms, PSO is rel-
atively simple to understand and converges quicklywith
better solutions. The parameter requirements of PSO is
less and it can be used for wide range of optimization
problems. The velocity and position play a crucial role
in the optimization process. The fitness of each particle
is defined based on these parameters. The selection of
more optimal features from the dataset will reduce the
computation complexity of the classifier and enhance
the classification performance. Thus, PSO is used in the
proposedmodel for optimal feature selection. The basic
formulation of the PSO algorithm is based on differ-
ent bird characteristics classes. The search abilities are
defined in the algorithm. Initially, all the particles are
assigned a randomvalue, and the fitness ismeasured for
each particle. Then, for the next position, the current
fitness is defined, and if the present value is better than
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the previous best, then the current value is updated;
otherwise, the old position is maintained as it is. This
process is repeated in the PSO for all particles until the
best solution for the given problem is obtained. The
mathematical model which defines the PSO is defined
as follows

vdi (t + 1) = wvdi (t) + c1r1(pbestdi (t) − xdi (t))

+ c1r1(pbestdi (t) − xdi (t)) (2)

where velocity is indicated as v, inertia weight is indi-
cated as w, d indicates the search space dimension, the
number of iterations is indicated as t, the population is
indicated as i, the acceleration factor is indicated as c1
and c2, two independent randomnumbers are indicated
as r1 and r2. The personal best solution is indicated
as pbest, and the global best solution is indicated as
gbest. The velocity update in the optimization model is
formulated as follows.

s(vdi (t + 1)) = 1

1 + e(−vdi (t+1))
(3)

The practical pbest and gbest are converted to the fol-
lowing equations

xdi (t + 1) =
{
1 if rand < s(vdi (t + 1))
0 otherwise (4)

where rand indicates the random number and its range
is given as [0,1]. Based on the above terms, the pbest and
gbest are converted as follows.

pbesti(t + 1) =
⎧⎨
⎩
xi(t + 1) if F(xi(t + 1))

< F(pbesti(t))
pbesti(t) otherwise

(5)

gbesti(t + 1) =
⎧⎨
⎩
pbesti(t + 1) if F(pbesti(t + 1))

< F(gbesti(t))
gbesti(t) otherwise

(6)

where the fitness function is indicated as F, inertia
weight is formulated as

w = wmax − (wmax − wmin)(t/Tmax) (7)

where maximum inertia weight is indicated as wmax
and minimum inertia weight is indicated as wmin.
The optimal features from the preprocessed data are
selected based on the optimal particle swarm optimiza-
tion algorithm optimal solution (Figure 3).

3.4. Kernel PCA

In the early stage of our research work [29], we have
analyzed and identified that kernel PCA is more effec-
tive in reducing dimensions. Thus, in this research
work dimensionality of features are reduced using the

Figure 3. PSO search mechanism.

kernel principal component analysis. PCA is a statisti-
cal model that converts high-dimensional features into
low-dimensional features, degrading the feature qual-
ity. For the given data x ∈ Rm, which has m samples,
the following model is obtained to define PCA.

x = t1pT1 + t1pT1 + . . . + tmpTm (8)

where the principal component vector is indicated as
ti, and the projection vector is indicated as pi. The
principal component is obtained as

ti = xpi (9)

Further, using the value problem, the projection vector
is obtained, which is given below.

λipi = 1
n − 1

xTxpi (10)

For nonlinear data decomposition, kernel PCA is used.
In this process, using a nonlinear function φ, feature
space is mapped into the nonlinear data. The decom-
position is formulated as

φ(x) = t1pT1 + t1pT1 + . . . + tf pTf (11)

In the nonlinear case, the assumed function φ(.) is
unknown, and pi is solved by substituting x with φ(x).
Thus, in PCA, kernel trick is introduced, and the load-
ing vector pi is formulated in KPCA is given as

pi = φT(x)αi (12)

where the linear transformation vector is indicated as
αi . Combining equations (10) and (12) to define the
kernel matrix eigenvalue problem is given as

λiαi = 1
n − 1

Kαi (13)

where the kernel matrix is indicated as K and for-
mulated asK = φ(x)φT(x). The high-dimensional fea-
tures are reduced into low-dimensional ones using a
kernel matrix. Features like MMSE, CDR, eTIV, and
nWBV are selected from Dementia dataset for further
classification.
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3.5. Deep belief network (DBN)

The optimal features selected using particle swarm
optimization are further classified using DBN. DBN is
a simple and efficient machine learning model with a
deep neural network and multiple stacked Restricted
Boltzmann Machine (RBM). The RBM comprises a
hidden layer and one visible layer. The neurons in the
layers are interlinked. A complete architecture of a deep
belief network is depicted in Figure 4.

The optimal features are classified using the opti-
mized DBN. The RBM in the DBN is an energy-
dependentmodel, and its energy function of the hidden
and visible layers is formulated in a combined manner,
as given below.

F(w, i|θ) = −
o∑

j=1
w1bj −

n∑
k=1

ikck −
o∑

k=1

n∑
k=1

wjxjkik

(14)

where bj indicates the visible layer neuron bias factor,
ck indicates the hidden layer neuron bias factor, and xjk
indicates the visible and hidden layer link weight. The
weight factor θ is formulated as θ = {bj, ck, xjk}. The
visible and hidden layers connecting the neuron’s like-
lihood function are formulated based on the following
energy function.

P(w, i|θ) = 1
a(θ)

e−F(w,i|θ) (15)

The hidden and visible layers are further considered to
satisfy the condition of independence. Thus, the hid-
den layer kth neuron state is activated and mathemati-
cally formulated as s probability function, expressed as
follows.

p(ik = 1|w) = g

⎛
⎝∑

j
wjxjk + ck

⎞
⎠ (16)

The activation probability associated with the jth visi-
ble layer neuron state provided the hidden layer neuron
state function as follows.

p(wj = 1|i) = g

⎛
⎝∑

j
ikxjk + bj

⎞
⎠ (17)

A contrast divergence approach is used to reconstruct
the input samples based on the data attributes in the
RBM training process. Then, it is evaluated to obtain
the original sample by adjusting the parameter θ . Gen-
erally, the θ is changed to obtain the maximum likeli-
hood function; thus, the log-likelihood function is used
to calculate the θ as follows.

M(θ) =
O∑

o=1
p(wo, i) (18)

Further, the network parameters are optimized using
the tuna swarm optimization algorithm to obtain better
classification performances.

3.6. Tuna swarm optimization

Tuna swarmoptimization is an intelligent swarm-based
algorithm that is formulated based on food foraging
behavior. TSO combines the local and global search
capabilities and provides better balance between explo-
ration and exploitation. Also compared to other swarm
optimization algorithm the convergence efficiency of
TSO is better. Due to this feature benefits, TSO is
included in the proposed work for parameter optimiza-
tion. Tuna fish is one of the marine predators which
consumesmidwater and surface fishes. They swim con-
tinuously in a unique manner where the long, thin tail
swings, and the body stays rigid. Tuna fish travel as a
group and find their prey based on intelligence. The
optimization model is formulated based on spiral and
parabolic foraging strategies. Spiral foraging is the first
strategy where the fishes create a spiral arrangement to
trap the prey in the shallow water. In the parabolic for-
aging, tunas enclose its prey. The optimization initially
generates populations randomly in search space, which
is formulated as

xinti = rand(ub − lb) + lb for i = 1, 2, . . . ,Np (19)

where the individual swarm is indicated as xinti , and
the lower and upper boundaries are indicated as lb and
ub, respectively. The total number of populations is Np,
and the random vector, which is uniformly distributed
from 0 to 1, is indicated as rand. When the tuna fishes
encounter a group of fish, initially, they hunt the fish
using a spiral foraging strategy. A tight spiral will be
formed to catch the small fish groups. In the attack pro-
cess, tunas exchange information to follow the prey fish
groups. The spiral foraging behavior of tuna fishes are
mathematically expressed as

xt+1
i =

⎧⎪⎪⎨
⎪⎪⎩

α1(xtbest + β|xtbest
−xti |) + α2xti ,

i = 1

α1(xtbest + β|xtbest
−xti |) + α2xti−1,

i = 2, 3, . . .Np

(20)

where

α1 = a + (1 − a)
t

tmax
(21)

α2 = (1 − a) − (1 − a)
t

tmax
(22)

β = eblcos(2πb) (23)

l = e3cos
(((

tmax+ 1
t
)−1

)
π

)
(24)

where the current optimal food source is xtbest , weight
coefficients are indicated as α1 and α2. The constant
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Figure 4. Deep belief network (DBN).

parameter, which defines which tune follows the opti-
mal individual and previous individual, is indicated as
a. Current iteration is indicated as t, andmaximum iter-
ation is indicated as tmax. b is a uniformly distributed
random number in the range [0,1]. The exploration
ability of tuna fish is better when they forage spirally.
However, if the optimal individual does not identify the
food, the fish follow the optimal individual, which is
not performing group foraging. Thus, a random coor-
dinate is generated in the search space, considering
the spiral as the reference point. Thus, each individ-
ual searches a wider area, enhancing global exploration
ability. Mathematically, this process is expressed as

xt+1
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1(xtrand + β|xtrand
−xti |) + α2xti ,

i = 1

α1(xtrand + β|xtrand
−xti |) + α2xti−1,

i = 2, 3, . . .Np

(25)

where search space randomly generated reference point
is indicated as xtrand.

xt+1
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1(xtbest + β|xtbest − xti |) + α2xti , i = 1

α1(xtbest + β|xtbest − xti |) + α2xti−1, i = 2, 3, . . .Np , ifrand <
t

tmax

α1(xtrand + β|xtrand − xti |) + α2xti , i = 1

α1(xtrand + β|xtrand − xti |) + α2xti−1, i = 2, 3, . . .Npif rand ≥ t
tmax
(26)

xt+1
i =

⎧⎪⎨
⎪⎩
xtbest + rand(xtbest − xti)
+TFp2(xtbest − xti)

if rand < 0.5

TFp2xti if rand ≥ 0.5
(27)

p =
(
1 − t

tmax

)(
t

tmax

)
(28)

The final mathematical expression that defines the spi-
ral foraging is formulated in equation (26). In parabolic

foraging, tunas form a parabolic structure, keeping the
food as a reference point. Tunas hunt for food by search-
ing around themselves. In finding an optimal solution,
these two foraging processes are performed simultane-
ously, and the process is mathematically formulated in
Equations 26 and 27. The random factor is indicated
as TF, and its range is 1 or −1. In the hunting pro-
cess, tuna use both strategies. For better optimization,
a random initial population is considered for the given
search space. Individuals will select any strategies for
each iteration and regenerate search space positions as
a probability factor z. In the complete process, con-
tinuous updating of positions is performed by all the
individuals until the essential conditions are met.

The summarized pseudocode for the tuna search
optimization algorithm is given as follows.

4. Results and discussion

The proposed model performance analysis includes
two different datasets in the experimentation. Bench-
mark Bonn and Dementia prediction dataset are used
for the experimentation. Python tool is used for validat-
ing the proposed model performance, and two datasets
are used to validate the proposed model performance.
Python was installed in an Intel i5 processor with
8GB memory. The operating system is windows 11.
Essential python packages like tensor flow = =2.10.0,
keras, pandas, pretty table, pyqt5, matplotlib, ReliefF,
phase pack, seaborn, tabulate, scikit-learn, Py_FS, and
Numpy are included. The essential hyperparameters
used for the proposed method are listed in Table 1.

The training time of proposed model is less than
30min and for testing the computation time is approx-
imately less than 2min. The proposed model accuracy
and loss curves for the Bonn dataset are depicted in
Figure 5. The accuracy and loss are observed for 35
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Pseudocode for Tuna swarm optimization algorithm

Input: Population size Np, maximum iteration tmax
Output: Food location and fitness value

Initialize random population xinti , a, z

If (t < tmax)

Obtain the fitness value

Update xtbest
For each tuna do

Update α1, α2 , p

If (rand < z) then

Update the position xt+1
i

Else if (rand ≥ z) then

If (rand < 0.5) then

If

(
t

tmax
< and

)
then

Update the position xt+1
i

Else If

(
t

tmax
≥ and

)
then

Update the position xt+1
i

Else If (rand ≥ 0.5) then

Update the position xt+1
i

End for

T = t+ 1

End while

Return the best individual xtbest and the best fitness value F(xbest)

End

Table 1. Hyperparameter details.

S. No Hyperparameter Range/Value

1 Population size 50
2 Number of particles (population size) 50
3 Social factor c2 2.5
4 Cognitive factor c1 3
5 Maximum bound on inertia weight wmax 0.8
6 Maximum bound on inertia weight wmin 0.5
7 Maximum velocity 5
8 TSO Probability factor z 0.05
9 TSO Constant a 0.7
10 Number of epochs 35

epochs. From Figure 5, it can be observed that the pro-
posedmodel attained better accuracy performance, and
loss is minimal. The training and validation accuracy
attained by the proposed model for Bonn dataset is
94.6% and 94%, respectively. Similarly, for the Demen-
tia dataset, the proposedmodel attained better accuracy
and loss values for 35 epochs, as depicted in Figure 6.
The training and validation accuracy attained by the
proposed model for Dementia dataset is 95.7% and
95%, respectively.

The confusion matrix obtained for the proposed ed
model for the Bonn dataset and Dementia dataset is
depicted in Figures 7 and 8, respectively. In the Bonn
dataset, three classes of data are classified, which define
the healthy, seizure, and seizure activity status. For
the dementia dataset, the classification results are pre-
sented for demented and non-demented classes. The
performance of the proposed model is validated using
metrics like recall, precision, f1-score, and accuracy

Table 2. Overall performance analysis.

Bonn Dementia

S. No Metrics Train Test Train Test

1 Accuracy 0.946 0.940 0.957 0.950
2 Precision 0.955 0.938 0.960 0.949
3 Recall 0.944 0.935 0.955 0.945
4 F1-Score 0.949 0.934 0.957 0.947

for both datasets. The essential formulations for the
performance metrics are given as follows.

Recall = TP
TP + FN

(29)

Precision = TP
TP + FP

(30)

F1 score = (2 ∗ Precision ∗ Recall)
Precision + Recall

(31)

Accuracy = TP + TN
TP + TN + FP + FN

(32)

where the true positive values are indicated as TP, false
positives are indicated as FP; true negatives are indi-
cated as TN, and false negatives are indicated as FN.

The performance comparative analysis of the pro-
posed model using the Bonn dataset is depicted in
Figure 9(a) for metrics like accuracy, recall, preci-
sion, and f1-score. The results are presented for both
training and testing processes. The proposed model
attained 95.59% of precision, 94.45% of recall, 94.91%
of f1-score, and 94.63% of accuracy in the training
process. In the testing process, the proposed model
attained 93.89% of precision, 93.59% of recall, 93.44%
of f1-score, and 94% of accuracy. Due to optimal fea-
ture selection and optimized classifier parameters, the
proposed model exhibited better accuracy for both
datasets.

Figure 9(b) depicts the performance comparative
analysis of the proposed model using the Dementia
dataset for metrics like accuracy, recall, precision, and
f1-score. The results are presented for both training
and testing processes. The proposed model attained
96.01% of precision, 95.51% of recall, 95.70% of f1-
score, and 95.74% of accuracy in the training process.
In the testing process, the proposed model attained
94.99% of precision, 94.54% of recall, 94.76% of f1-
score and 95.05%of accuracy. Table 2 depicts the overall
performance analysis of the proposed model for both
Bonn and dementia datasets. Training and testing pro-
cess performance metrics are numerically presented in
the tabulation. From the results, it can be observed that
the proposed model performs better for both datasets
and detects the impacts effectively.

Further, to compare the proposed model perfor-
mance with existing algorithms, the results of Prasanna
et al. [30] is used. Methods like the Gaussian Mix-
tureModel (GMM), RelevanceVectorMachine (RVM),
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Figure 5. Accuracy and loss curves of the proposed model for the Bonn dataset.

Figure 6. Accuracy and loss curves of the proposed model for the Dementia dataset.

Support vector machine (SVM), and Artificial Neu-
ral Network (ANN) models are used. The accuracy
attained by the GMM is 56.50% which is 38% lesser
than the proposed model. The accuracy attained by the
RVM is 60% which is 34% lesser than the proposed
model. The accuracy attained by the SVM is 88%which

is 6% lesser than the proposed model. The accuracy
attained by theANN is 92.80%which is 1.2% lesser than
the proposed model. Table 3 depicts the comparative
analysis, and it can be observed from the results that
the proposed model attained maximum classification
accuracy over existing methods.

Figure 7. Confusion matrix of Bonn dataset (a) Training (b) Testing.
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Figure 8. Confusion matrix of Dementia dataset (a) Training (b) Testing.

Figure 9. Performance metrics analysis (a) Bonn Dataset (b) Dementia Dataset.

Table 3. Performance comparative analysiswith existingmeth-
ods for the Bonn dataset.

S. No Methods Accuracy (%)

1 Gaussian Mixture Model (GMM) [30] 56.50
2 Relevance Vector Machine (RVM) [30] 60.00
3 Support Vector Machine (SVM) [30] 88.00
4 Artificial Neural Network (ANN) [30] 92.80
5 Proposed model 94.00

5. Conclusion

An optimized machine learning-based Alzheimer and
epilepsy detection model is presented in this research
work. The proposed detection model includes parti-
cle swarm optimization for optimal feature extraction,
kernel principal component analysis for feature dimen-
sionality reduction, and an optimized deep belief net-
work for feature classification. The network parameters
of the deep belief network are optimized using the
tuna swarm optimization algorithm. Experimentation
using the benchmark Bonn and Dementia dataset val-
idated the proposed model’s better precision, recall,
f1-score, and accuracy performances. The proposed
model attained a better classification accuracy of 94%
for the Bonn dataset and 95.05% for the dementia
dataset. The proposedmodel performance is compared
with existing methods like support vector machine,

artificial neural network, and Gaussian mixture model
and validated the superior performance in terms of
accuracy. Though the proposed model attained better
classification accuracy than existing methods, however
it can be improved if the classifier includes recent deep
learning algorithms. The depth features can provide
more accuracy in the classification process.

Thus, in further, the research work can be extended
using deep learning algorithms to improve the clas-
sification performances. Specifically, time series deep
learning models like recurrent neural network, long
short-term memory can be included to attain better
performances.
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