
Automatika
Journal for Control, Measurement, Electronics, Computing and
Communications

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/taut20

Development of embedded fuzzy control using
reconfigurable FPGA technology

Ayman A. Nada & Mona A. Bayoumi

To cite this article: Ayman A. Nada & Mona A. Bayoumi (2024) Development of embedded
fuzzy control using reconfigurable FPGA technology, Automatika, 65:2, 609-626, DOI:
10.1080/00051144.2024.2313904

To link to this article: https://doi.org/10.1080/00051144.2024.2313904

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 14 Feb 2024.

Submit your article to this journal

Article views: 713

View related articles

View Crossmark data

Citing articles: 2 View citing articles

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

https://www.tandfonline.com/journals/taut20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00051144.2024.2313904
https://doi.org/10.1080/00051144.2024.2313904
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=taut20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2313904?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/00051144.2024.2313904?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2313904&domain=pdf&date_stamp=14%20Feb%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2313904&domain=pdf&date_stamp=14%20Feb%202024
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2024.2313904?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/00051144.2024.2313904?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=taut20

AUTOMATIKA
2024, VOL. 65, NO. 2, 609–626
https://doi.org/10.1080/00051144.2024.2313904

RESEARCH ARTICLE

Development of embedded fuzzy control using reconfigurable FPGA
technology

Ayman A. Nada a and Mona A. Bayoumib

aMechatronics and Robotics Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology
E-JUST, Alexandria, Egypt; bElectrical Engineering Department, Benha Faculty of Engineering, Benha University, Benha, Egypt

ABSTRACT
The purpose of this work is to investigate the construction of fuzzy embedded control systems
combining fast execution and parallel processing capabilities provided by Field Programmable
Gate Arrays (FPGAs) and Reconfigurable Inputs/Outputs (RIO) chips. A fixed-point fuzzy con-
troller is developed and implemented on a fast mechatronic system with high-speed control
and high channel count on an FPGA target. This paper provides a brief introduction to deploying
Fuzzy LogicControl (FLC)methodsusingRIO-FPGA technology. It suggests a technique for imple-
menting the three stages that constitute the FLC and the PD-like FLC and PID-like FLC structures
into practice. Controllers with 1 and 2 degrees of freedom are developed and tested experi-
mentally. Parallel loops, key challenging advantage of LabVIEW programming, are utilized for
decoding feedback signals, generating pulse trains for actuator’s drivers and for calculation of
control gains. An NI-SbRIO board that combines deployable devices with a real-time processor,
a re-configurable FPGA, and analogue and digital input–output ports is used. The experimen-
tal work demonstrates the significant enhancement of implementing reconfigurable embedded
fuzzy control upon such mechatronic systems.

ARTICLE HISTORY
Received 11 September 2022
Accepted 25 January 2024

KEYWORDS
Embedded systems; FPGA;
fuzzy logic; mechatronic
systems

1. Introduction

Classical and model-based control methods need a
mathematical description of the system; however, fuzzy
controller considers systems as a black box that is a
noteworthy prominence of the fuzzy controller in com-
parison with other traditional methods [1]. Unlike with
conventional, computationally expensive control algo-
rithms, Fuzzy Logic control does not need a fast pro-
cessor or very precise measuring instruments to get
admissible results. At lower costs, Fuzzy Logic Control
(FLC) provides a simple way to arrive at a definite out-
put based upon inexact, uncertain, imprecise, noisy, or
missing input information [2, 3]. This is a distinguish-
ing feature of Artificial Intelligence (AI) that makes
quick and urgent judgment actions, without the need
to be absolutely certain of the input.

The most evident feature of the fuzzy controller
is the experimental use of expert’s knowledge. Along
with this advantage, it has a big problem. These rules
and amounts might not be optimized or be com-
pletely wrong. That is why the thought was to utilize
implementation mechanisms that could be reformu-
lated upon application, i.e. re-configurable controller.
Regardless of this disadvantage, it also required to pro-
vide a technique for optimal implementation of FLC
upon embedded and fast mechatronic systems. In such

applications, it is required to overcome the complexi-
ties of the real-time implementation of the controller,
especially for nonlinear systems.

Multiple stages are required to execute fuzzy com-
putation. The total computational time is based upon
the complexity of the given system. For a small, simple
control system, the computation time is not a signifi-
cant factor. In the majority of situations, the compu-
tation is complex, indicating the presence of several
controls within the entire system.Moreover, parallelism
is frequently inherent in these computations [4].

A review of the relevant literature reveals that real-
time control necessitates the parallel construction of
algorithms that can be achieved through splitting of
instructions that are deemed independent of each other
amongmultiple processing elements [5–8]. Various uti-
lization techniques have been identified in the litera-
ture. First, the utilization of multi-threads (OpenMP
or OpenMPI) for parallel implementation in multi-
processors may lead to an energy overhead due to
the utilization of multiple large processing elements.
Chantrapornchai et al. [4] demonstrated that OpenMP
has certain overhead and the dependency between iter-
ations may prohibit the iteration parallelization. Sec-
ond, the parallelized processors encompass a range
of processing units, such as Very-Large-Instruction-
Word processors, Digital Signal Processing processors

CONTACT Ayman A. Nada ayman.nada@ejust.edu.eg Mechatronics and Robotics Department, School of Innovative Design Engineering,
Egypt-Japan University of Science and Technology E-JUST, New Borg El-Arab City, Alexandria 21934, Egypt

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in anymedium, provided the original work is properly cited. The terms onwhich this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2024.2313904&domain=pdf&date_stamp=2024-02-07
http://orcid.org/0000-0002-1873-5756
mailto:ayman.nada@ejust.edu.eg
http://creativecommons.org/licenses/by/4.0/

610 A. A. NADA ANDM. A. BAYOUMI

and Graphics Processing Units. All of the aforemen-
tioned alternatives are architectures that follow the
Single-Instruction–Multiple-Data paradigm, which is
intended to execute identical operations on numerous
data elements concurrently. These devices are specif-
ically optimized for the purpose of executing digital
filters. Typically, the cost of each processing element in
any of the aforementioned architectures is lower than
that of a single processing element in a conventional
multiprocessor. However, these architectures tend to
have limited compiler support. This form of paral-
lel processing is well-suited for tasks such as image
processing and feature recognition. Third, microcon-
trollers possess the ability to execute compiled C code
and, similar to larger processors, they possess the
advantage of having built-in memory. Accessing mem-
ory will not be as quick because of the serial nature of
access, but several microcontrollers working in parallel
could speed up the process.

In this context, Field Programmable Gate Array
(FPGA) can be considered as a valuable tool for control
implementation upon embedded systems due to low
consumption of energy, high speed operations and con-
siderable capacity of data storage and can be deliberated
for the optimal solution of implementing the intelligent
control methods upon such systems [9, 10]. It is pro-
posed that the FPGA and Real-Time modules of Lab-
VIEW softwaremay introduce an efficient hardware for
control implementation [11–13]. The powerful FPGA’s
robust capabilities enables the fast execution speed, par-
allelism the data processing and the re-configurability
that allow for the adaptation of the FLC-FPGA con-
troller design and implementation.

It should be mentioned that whereas microcon-
trollers are still used in low- to medium speed appli-
cations for embedded systems, i.e. require relatively
large computation time, FPGAs have made it possi-
ble to target high speed applications and use minimal
computation time for the controller [14].

On the practical side, LabVIEW setups can be exe-
cuted in one of two modes: first, as hardware-in-the-
loop (HIL), where the host computer controls the real-
time mechatronic system’s hardware via wireless net-
work protocols that are used to transmit control actions
[15–18]. In the second mode, the system can be uti-
lized as a standalone real-time system that executes the
control law independently on its own [14, 19–21].

The reference [22] provides an overview of fuzzy
logic as well as information on how to develop fuzzy
logic algorithms utilizing LabVIEW FPGA. Despite the
fact that the reference was published in 2016, the Lab-
VIEW functions referenced seem to require LabVIEW
8.2, which was released 10 years earlier. Moreover, the
toolkit subroutines [23] are absent, contrary to what
is mentioned in the book [22]. Access to the Toolkit
that the authors produced for academic use is expressly
reserved by the publisher and/or the authors.

DC motors are extensively utilized in the field of
robotics and mechatronics. Typically, these motors are
utilized within position servo systems. In various appli-
cations, such as those involving mobile robots, the reg-
ulation of DC motor velocity is a crucial factor. Several
research papers have presented different approaches
and configurations for implementing Fuzzy Control in
DC Motors. The paper by Garrido et al. [24] intro-
duced a novel approach for regulating the velocity of
a DC motor, which involves the utilization of a pro-
portional plus adaptive fuzzy compensation technique.
The methodology employed in this study is based on
Lyapunov theory and compared with a conventional
proportional integral controller. The algorithms were
executed in the Matlab–Simulink real-time environ-
ment in HIL manner. Sanjay et al. [25] proposed a
fuzzy logic controlled robotic system for person fol-
lower behaviour in an indoor environment. The robot’s
movement is governed by a fuzzy logic algorithm that
involves the implementation of fuzzy control on the
host computer by utilizing the real-time processor in
a Hardware-in-the-Loop (HIL) interface. The FPGA is
only used for generating the pulse modulation and pro-
cessing the encoder pulses into speed signals. Several
papers employed a similar implementation approach,
whereby the controller was activated on the real-time
processor, while the FPGA board served as a sup-
plementary component for facilitating communication
with the sensors and actuators and interpreting digital
signals with lesser computational time [3, 26, 27].

In this paper, FLC-FPGA stand-alone controller is
developed, synthesized, simulated and implemented on
reconfigurable FPGA board for fast mechatronic sys-
tems. Instead of building the membership functions
using lookup tables, as mentioned in [23, 28, 29], we
developed our set of LabVIEW functions based on
logic operations. The advantage and disadvantage of the
proposed technique will be discussed throughout this
paper. The FLC-FPGA has been design using system-
atic approach. The results of the FLC implemented on
FPGA have been compared with the results obtained
using PID-FPGA on LabVIEW Real-Time environ-
ment. The obtained results indicate the possibility of
successful application of the proposed FLC-FPGA con-
troller for embeddedmechatronic systems in which the
reference signal changes at a frequency not exceeding
50[Hz].

This article provides a concise method to deploy
Fuzzy Logic Control (FLC) using RIO-FPGA technol-
ogy. We also provide a technique for implementing the
three stages that constitute the FLC structures in Lab-
VIEW environment using fixed math operations. This
paper is organized as follows; in Section 2, we describe
the FLC in wording that facilitates the understanding
of the programming mechanism and implementation
on the FPGA board. Then in Section 3, we explain
the features and capabilities of the NI-SbRIO that used

AUTOMATIKA 611

Figure 1. The four basic constructors.

as the embedded controller, afterwards the program-
ming of the controller and the construction of necessary
subroutines (sub-VIs) are presented in Section 4. The
next section explains the laboratory verification of the
proposed FLC-FPGA of a Sugeno-type fuzzy logic con-
troller with five triangular membership functions for
two inputs and with no membership functions for the
output. Finally the results and conclusion are summa-
rized.

2. Fuzzy logic control

Fuzzy logic is a multivalued logic with truth repre-
sented by a value on the closed interval [0, 1], where 0
is equated with the classical false value and 1 is equated
with the classical true value. Values in (0, 1) indicate
varying degrees of truth. The first component in the
FLC is the fuzzifier that converts crisp inputs into a set
of membership values in the interval [0, 1] in the cor-
responding fuzzy sets. Fuzzy sets are often defined by
piecewise functions, which can be defined using prede-
fined constructors. The four basic constructors, L,�,�
and� are named after the shapes which they construct
(L, �,� and�, respectively) [2], see Figure (1).

In addition to the default linear model, numer-
ous other forms of fuzzy sets may be constructed by
indicating the models to be used. For example, the
quadratic model constructs fuzzy sets as defined by
Zadeh’s S-functions. Additional models are based on
crisp sets; cubic polynomials; and rational, exponen-
tial, arc-tangent and hyperbolic-tangent functions. An
interval can be partitioned into a sequence of fuzzy sets
using piecewise functions, as shown in Figure 2.

Fuzzy controllers take input variables (observables)
and, based on a set of rules, construct a controlling
response. The entire fuzzy logic controller is divided
into mainly three different subsystems: fuzzification,
fuzzy rule-based decision making and defuzzification
as shown in Figure (3). In the fuzzification phase, a lin-
guistic variable requires the conversion of its numerical
inputs (crips set) to its normalized form (linguistics).
The inputs of FLC, usually the error and error gradi-
ent, are normalized using the factors as Ke, Kė to be in
the range of [−1, 1]. TheMembership Functions (MFs)

Figure 2. sequence of fuzzy sets.

are selected by the designer based on scaling parame-
ters. Finer control is achieved with a narrow band of
MFs near the zero regions. Thewider band ofMFs away
from the zero region results in faster system response
[30].

The fuzzy rule table is a matrix of values that defines
what the output control surface should look like. The
number of inputs and amount of inputs along with
the number of fuzzy membership functions will deter-
mine the table dimensions. The values that are placed
in the rule table indicate the number of membership
functions used in the fuzzy system.

The Defuzzification phase, called Inference, uti-
lizes Fuzzy Logic (FL) operators to map the function
between input and output. The two basic methods of
fuzzy inference are Mamdani and Sugeno. Both Mam-
dani and Sugeno forms of fuzzy rules may be used [9,
30]. Both zeroth-order and higher-order Sugeno forms
can be implemented. The fuzzy inferences used with
the Mamdani form of fuzzy rules include both Mam-
dani and Gödelian combinations. The first includes
the minimum and product inferences whereas the sec-
ond includes Dienes–Rescher, Lukasiewicz and Zadeh
inferences. The forms and inferences used may be
quickly changed simply by updating options passed to
the controller routine. The gain factor Kc for the output
is determined in such a way that the output of the FLC
can generate the required control action.

Fuzzy systems are traditionally done on a micropro-
cessor. The traditional fuzzy controller contains only
two or three inputs that do not contain very many bits.
The problem with a fuzzy system is the output control
surfaces can be very choppy. This paper proposes an
optimized implementation procedure of fuzzy control
system using a new FPGA technology with weighted
average concept to keep the fuzzy lookup table small. A
concise description of the FPGAs will be demonstrated
in the following section.

3. Field programmable gate arrays (FPGA)

An FPGA is analogous to a printed circuit board
that has a number of unconnected devices on it.

612 A. A. NADA ANDM. A. BAYOUMI

Figure 3. Schematic of Fuzzy Logic Controller.

Traditionally, the devices are connected with physi-
cal wires soldered to the pins with a wire wrapping
tool or embedded with the printed circuit board. The
physical wires are difficult to modify; however, the con-
nection in an FPGA circuit is dynamically defined by
software programming. The program causes semicon-
ductor switches to turn ON or OFF, thereby defining
the connections between gates. Therefore, an FPGA
can be defined as a programmable chip composed of
three basic components: logic blocks, programmable
interconnects and Input/Output blocks [11, 13]. A
single FPGA chip can replace thousands of discrete
components by incorporating millions of logic gates.
Figure 4 shows an FPGA as a reconfigurable dig-
ital architecture with a matrix of configurable logic
blocks with horizontal and vertical routing channels
surrounded by a periphery of I/O blocks. Signals can
be routed within the FPGA matrix in any arbitrary
manner by programmable interconnect switches and
wire routes. Traditionally, programming these FPGA
chips is difficult and, therefore, it is only allowed by
experienced digital designers and hardware engineers.
National Instruments (NI) has simplified programming
of these devices via visual programming system design
with LabVIEW FPGA-module, so that the advantages
of these powerful reconfigurable chips can be utilized
[31].

First, one can use the LabVIEW FPGA module
to define the FPGA logic, instead of using the low-
level language such as very high speed integrated cir-
cuit hardware description language (VHDL). LabVIEW
FPGA generates the VHDL code and passes it to the
Xilinx1 compiler. Then the Xilinx compiler synthe-
sizes the VHDL and routes all synthesized components
into a bitfile. The compiled bitfile is downloaded to
the FPGA chip. FPGA logic provides timing, trigger-
ing, processing and custom I/O measurements. One
can implement multiloop analog control systems at
loop rates exceeding 100KS/s, and digital control sys-
tems at loop rates up to 1MS/s, and it is possible to
evaluate multiple rungs of Boolean logic using single-
cycle While-Loops at 40MHz. LabVIEW and FPGA
can implement parallel tasks in hardware to process
and generate synchronized analog and digital signals

Figure 4. Reconfigurable FPGA chip.

rapidly and deterministically. FPGA module creates
dedicated hardware for each independent function in
FPGA VIs. Furthermore, the FPGA module does not
have an operating system that can allocate the time of
the Central Processing Unit (CPU) to various activities
in a task-based manner. In addition because of the par-
allel architecture of the Reconfigurable-Input–Output
(RIO) core, increasing computational power does not
always result in a decrease in FPGA application speed.

To attain parallel processing, one should separate
the code into different and independent segments. In
mechatronic systems, for example, self-governing loops
can be programmed to acquire and quickly process
measured analogue or digital data at distinct loop rates.

In the experimental validation of this paper, single
board RIO (sbRIO), shown in Figure (5), is employed.
The sbRIO-9631 in this instance combines a 110 dig-
ital I/O line, 1M gate Xilinx Spartan FPGA and a
266MHz real-time processor. It offers 128MB of non-
volatile memory for storing programs and data logging
along with 64MB of DRAM for embedded operation.
This device has an integrated 10/100Mbits/s Ethernet
connection that allows for network signal communica-
tion. The real-time processor plays an important role in

AUTOMATIKA 613

Figure 5. sbRIO-9631 www.ni.com.

the Hardware In Loop (HIL) applications. The design
flow and graphic outlines of FPGA design that begins
with evaluating the system and ends with deploying the
code are clarified in [32].

An actuator (DC motor), sensor (Encoder) and
drivers (linear/pulses) are the three major parts that
construct up a preliminary mechatronic system. The
FPGA layout should have two basic independent loops
for the purpose of operating and controlling themecha-
tronic system: one for measuring and feeding back the
angular velocity via the optical quadrature encoders
and another for generating the required pulse width
modulation (PWM) to drive the actuator. Along with
these fundamental loops, additional loops must be
incorporated together during the implementation pro-
cess. One loop is used to calculate the control law, and
another loop is used to pass the collected data to the
real-time processor for the validating process. Figure 6
shows the layout of the parallel processing loops. The
details of measuring and driving loops are found in
[12, 14, 33]. Whereas the contribution of this paper
is concerned in the calculation of the fuzzy logic con-
trol law within the FPGA environment, referred to as
FLC-FPGA, which will be discussed in the following
section.

4. FLC-FPGA

FPGA module restricts the use of mathematical oper-
ations in FPGA VIs to integer numeric data types and
it is not possible to use the floating point operations.
When integer math is used, the results may overflow.
Integer overflow occurs when the result of a mathe-
matical operation exceeds the range of the output data
type. To avoid the integer overflow, one can use the scale
by power of 2 to reduce the magnitude of the inputs
or to use a larger output data type. The scaling mini-
mizes the amount of space used in FPGA device, but on
the other side, loses the precision of the mathematical
operations. Larger output data type takes more space

on FPGA device but performs the processing more
quickly and receives more accurate data. Furthermore,
only fixed-size, one-dimensional arrays in FPGA VIs
can be used. The arithmetic manipulation that returns
a variable-size array cannot be used. Since arrays con-
sume significant amounts of space on FPGA, therefore,
arrays larger than 32 elements should be avoided.

In this study, a Sugeno-type fuzzy logic controller
with five triangular membership functions for two
inputs and with no membership functions for the
output is examined for implementation in embedded
mechatronic systems.

4.1. FPGA – fuzzification

A membership function (MF) is a function that asso-
ciates each point in X, where x ∈ X, with a real integer
in the range [0, 1]. There are several MF which can be
used as Fuzzy sets, as described earlier, that can be con-
structed using the basic four constructors, L, �, � and
�. The mathematical representation for triangular MF
(�), see Figure (7), is defined by its parameters {a, b, c}
such that

μA (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x ≤ a
x−a
b−a a ≤ x ≤ b
c−x
c−b b ≤ x ≤ c
0 x ≥ c

(1)

The parameters {a, b, c} with a<b< c determine
the x-coordinates of the three corners of the underly-
ing triangular MF. Triangular MFs can be asymmetric.
Depending on the relationships between a, b and c, tri-
angularMFsmay be asymmetric. A trapezoidalMF (�)
is specified by four parameters {a, b, c, d}, see Figure (8),
is defined as

μA (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x−a
b−a a ≤ x ≤ b
1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d
0 x ≤ a ∪ x ≥ d.

(2)

The Crisp is defined by its parameter c such as

μA (x) =
{
1 x = c
0 otherwise.

(3)

Instead of building the membership functions using
lookup tables, as mentioned in [23, 28, 29], we devel-
oped our set of LabVIEW functions based on logic
operations and fixing some geometrical parameters that
do not affect the subsequent control operations. Fixing
the distances, for instance, between the triangle MF’s
left foot, peak, and right foot and controlling the trape-
zoidal MF’s top points, left and right shoulders, and
other characteristics.

614 A. A. NADA ANDM. A. BAYOUMI

Figure 6. Preliminary FPGA layout with measuring, driving and control loops.

Figure 7. Triangular MF.

Figure 8. Trapezoidal MF.

Using max–min operators, Equation (1) can be rep-
resented as

μA (x) ≡ A (x) = max
(
min

(
x− a
b− a

,
c− x
c− b

)
, 0

)
.

(4)
In a similar way, Equation (2) can be written as

μA (x) ≡ A (x) = max
(
min

(
x− a
b− a

, 1,
d − x
d − c

)
, 0

)
.

(5)

Due to the fact that the normal divide function is not
supported in LabVIEW FPGA and the quotient and
remainder function imposes a constant delay, Equa-
tions (4) and (5) can be modified, without loss of
generality, into the following forms:

A (x) = max (min (2 (x− a) , 2 (c− x)) , 0)

⇔ b− a = c− b = 0.5 (6)

A (x) = max (min (4 (x− a) , 1, 4 (d − x)) , 0)

⇔ b− a = d − c = 0.25. (7)

Left and Right triangle MFs can be constructed by set-
ting a = b and c = b respectively. Using Equations (6)
and (7), the membership values of the input/output
variable can be obtained. It should be mentioned that
the results are almost as accurate as those from a dou-
ble precision version written in LabVIEW. Given an
input value x, the membership value obtained is a
floating-point value in a range between 0 and 1. Since
all variables are handled in integer format, this value
is challenging to implement in hardware and also uses
additional system resources. Consequently, the values
are scaled to integers based on the needed resolution in
accordance with

AScaled = A× (
2n − 1

)
. (8)

In this manner, floating point values are scaled to a
(2n − 1) resolution, where n represents the number of
bits used in the system. Tomake the calculations easier,
the probability scale utilized in this study is suggested
to be 10, 000 , equivalent to n equals 14, that is the
saturation limit for the computation.

In LabVIEW FPGA module, the triangle member-
ship function can be established through the program-
ming of Equations (6) and (8), as presented in Figure 9.

AUTOMATIKA 615

Figure 9. LabVIEW TriangleMF.vi.

Figure 10. LabVIEW TrapezoidalMF.vi.

Figure 11. Fuzzy sets of the error variable.

Also, the trapezoidal membership function is presented
in Figure 10. Note that the Max & Min Function com-
pares two inputs and returns the larger value at the top
output terminal and the smaller value at the bottom
output terminal.

Consequently, five triangular membership functions
subjected to input’s variable can be constructed as
shown in Figure 11. Each membership MF1 to MF5
describes the probability of the input variable as (− ⇓
) Negative Big, (− ↓) Negative Small, (←→) Zero,
(+ ↑) Positive Small, and (+ ⇑) Positive Big. The Lab-
view programming of FPGA-Fuzzification process is
constructed via LabVIEW sub-VIs called 5MFTri.vi by
using five TriangleMF.vi with the scaled boundaries
from−10, 000 to 10, 000 , see Figure 12. The output of
the 5MFTri.vi is a fixed-size array of 5 elements repre-
sents the probability of the input conditions. For exam-
ple, if the input value is−0.3 (−3000 scaled value), then
the array of input probabilities should have the form of:

AScaled =
[
0 6000 4000 0 0

]T . (9)

In the case of manipulating more than one input
variable, i.e. two inputs, such as the error e and the

Figure 12. Input error fuzzy sets – 5MFTri.vi.

Figure 13. Strength of inputs’ MFs – CompatMF.vi.

change of error ė, one can estimate the measure of the
influence of membership functions. This can be done
by estimating the strength of each rule,wi, according to
the corresponding probabilities, as follows:

wi = Ai
1 ∩ Ai

2, (10)

where Ai
1,2 is the probability of membership function

i for inputs 1 and 2 respectively. The fuzzy OR/AND
operator simply selects the maximum/minimum of
the two probabilities. Figure (13) shows the Lab-
VIEW block diagram of CompactMF.vi that estimates
Equation (10) using the AND operator by utilizing
the Max & Min Function. Note that the lower termi-
nal denotes the minimum value. The output of Com-
pactMF.vi is a vector includes the strength of the rules
of one probability of input 1, with all probabilities of the
input 2.

4.2. FPGA – inference engine and defuzzification

In the rule base unit, there are a set of rules that relate
to input and output variables of the controller. These
rules are simple if−then structureswith a condition and
conclusion. For example, rule 1: if Error e is (− ⇓) &
Change of error ė is (− ⇓) then the appropriate value
from the rule table c1 is −1, where (− ⇓) means Neg-
ative Big. Table 1 shows the appropriate value of each

616 A. A. NADA ANDM. A. BAYOUMI

Table 1. Rules Table: (− ⇓) Negative Big, (− ↓) Negative
Small, (←→) Zero, (+ ↑) Positive Small, (+ ⇑) Positive Big.
e/ė − ⇓ − ↓ ↔ + ↑ + ⇑
− ⇓ −1 −1 −1 −1/2 0
− ↓ −1 −1 −1/2 0 1/2
↔ −1 −1/2 0 1/2 1
+ ↑ −1/2 0 1/2 1 1
+ ⇑ 0 +1/2 1 1 1

rule, i.e. cis, where i = 1 −→ N andN is the number of
rules.

The inference engine manages the data and the rule
base and it decides that the appropriate values are used.
There are two types of inference systems vary some-
what in the way outputs are determined. Mamdani’s
fuzzy inference method, the first control systems built
using the fuzzy set theory, is the most commonly seen
fuzzy methodology. Mamdani-type inference expects
the output membership functions to be fuzzy sets that
needed defuzzification. However, it is possible to use a
single spike as the output membership function rather
than a distributed fuzzy set. This type of output is
known as a singleton output membership function. It
enhances the efficiency of the defuzzification process
because it greatly simplifies the computation required
by the more general Mamdani method. Instead of inte-
grating across the two-dimensional function to find the
centroid, one can use the weighted average of a few data
points to calculate the control output. Sugeno-type sys-
tems support this type of model. A typical rule in a
Sugeno fuzzymodel for two-input single-output has the
form: If Input 1 is x and Input 2 is y, then Output is
z = ax+ by+ c, and for zero-order Sugeno model, the
output level z is a constant (a = b = 0), i.e. z = c. Thus
the final output of the system is the weighted average of
all rule outputs, computed as

Final Output =

N∑
i=1

wizi

N∑
i=1

wi
(11)

where wi is computed by using Equation (10) and N is
the number of rules according to Table 1. The weighted
average method is suitable for symmetric membership
functions, see Figure (11).

It is concluded that three stages of calculations
are required to construct the FPGA-Fuzzy Logic con-
troller on LabVIEW. First, in the fuzzification stage, the
two inputs are checked to obey the saturation limits
(±10, 000) and then introduced, individually, to two
5MFTri.vi to generate five probabilities of the each input
(error and the change of error). Each probability out-
put (one value permembership) of the input 1, i.e. error
signal, is fed-forward to CompactMF.vi with all proba-
bilities of the input 2 (change of error), to generate the
strength of each pair corresponding to the rule table.

Figure 14. First row of 0-order Sugenomodel Defuzz−row1.vi.

For example, the probability of the MF1 of the error
signal, Ai(e) in the block of Figure 13, with the proba-
bilities ofMF1 toMF5 of the change of error,A(de/dt),
generates the strength vector corresponding to first row
of the rule table, Table 1, and therefore the weighted
output can be estimated using the block diagram shown
in Figure 14.

Figure 15 shows the complete block diagram of the
three stages of the FLC-FPGA controller proposed in
this paper. In the second stage, step 1 involves five
calls of CompactMF.vi are carried out to generate the
strength vector of each row of the rule table, followed by
step 2 that estimates the weighted outputs of each row
according to zero-order Sugeno model. The Defuzzi-
fication stage estimates the final output according to
Equation (11). Note that the definition of the outputs
has nomembership functions, by doing this the compu-
tation of the centroid of mass or any other defuzzifica-
tion method is avoided because there is only one value
defined for the output.

4.3. Fuzzy controller

As described earlier, in the FLC, it is assumed that
the mathematical model of the system is unavailable;
instead, only the system output, y, can be monitored
and the system’s states, particularly; the error can be
estimated and change of error can be approximated.
Depending on the type of control type required, i.e. PD,
PI, or PID type. The control law of the fuzzy controller
can be estimated using the error, e(k), change of error
�e(k), and the sum of error

∑
e(k) as inputs and con-

trol input u(k) as output, where k is the sampling time.
Thus typical proportional differential PD-like FLC can
be developed by [34, 35]

u (k) = Kp.e (k)+ Kd.�e (k) , (12)

where Kp and Kd are the proportional and differen-
tial gain coefficients. The error and change of error are
defined as

e(k) = yr − y(k) (13)

�e(k) = e(k)− e(k− 1), (14)

AUTOMATIKA 617

Figure 15. LabVIEW Block diagram of FLC-FPGA, FLC−FPGA−5mf−2I− 1O.vi.

Figure 16. Block diagram of PD-type fuzzy controller.

where yr is the reference input, i.e. desired output and
y(k) is the real output. Figure 16 shows the block dia-
gram of a PD-FLC with error and change of error as
inputs. The inverse z− operator, z−1, represents the
unit time delay. The error e(k) and the change of error
�e(k) are fed into the FLC. The error and change in
error are first normalized by using two gains Kp and
Kd , respectively. These normalized gains are fed to
the FLC and after a process of defuzzification, the FLC
gives a control signal which has a value within the
pre-described range of discourse. The control action is
then obtained by multiplying the control signal by an
additional constant, Kc, known as the output scaling
gain.

The classical PI control action in time domain takes
the form of u(t) = Kp.e(t)+ KI .

∫
e(t) dt, differentiat-

ing both sides, yields

d
dt
u (t) = Kp.

d
dt
e (t)+ KI .e (t) . (15)

Using the forward differential approximation, the dis-
crete form of Equation (15) takes the form of(

1− z−1
)
u (z) = Kp.

(
1− z−1

)
e (z)+ KI .e (z)

Taking the inverse z− transform, yields

u(k)− u(k− 1) = Kp (e (k)− e (k− 1))+ KIe (k)
(16)

�
�u(k) = Kp�e(k)+ KIe (k) (17)

Figure 17. Block diagram of PI-type fuzzy controller.

Equation (17) is similar to Equation (12), however,
the output is the difference of the control action and
the integral constant is multiplied by the error signal
while the proportional constant is multiplied by the
error difference. Figure 17, which depicts the structure
of the PI-FLC controller, shows the accumulation of
the output of the PD-FLC, to produce the FLC with
the PI effect, note that the output of the first stage is
�u(k). Using a digital approximation for integration,
the control signal u(k) is obtained as

u(k) = �u(k)+ u(k− 1). (18)

A fuzzy controller structure that resembles a PID-like
controller can be created by combining PD-FLC with
PI-FLC control actions. Figure 18 depicts the FLC-PID
control system’s entire structure. The output of the PID-
FLC is the sum of the outputs of the PD-FLC and
PI-FLC, and it has two scaling gains, (KPD

c ,KPI
c), for the

FLCs of types PI and PD, respectively,

u(k)|PID−FLC = Kp.e (k)+ Kd.�e (k)

+�u(k)+ u(k− 1). (19)

Given the output of the defuzzification phase, see
Figure 15, Equation (18) will be used to add the inte-
gral part to the final control action, that is expressed by
Equation (19).

618 A. A. NADA ANDM. A. BAYOUMI

Figure 18. Block diagram PID-FLC control system.

Figure 19. LabVIEW FPGA project.

Figure 20. LabVIEW front panel interface with the FPGA target.

AUTOMATIKA 619

Figure 21. Block diagram of the interface with FPGA target shows the Bitfile call.

4.4. LabVIEW implementation of embedded
PID-FLC-FPGA controller

FPGA applications can range from a small embedded
system with a single FPGA target, one or more RT tar-
gets, and a development computer to a large embedded
system with several FPGA targets. One can use Lab-
VIEW project files (.lvproj) to manage targets and VIs,
references to project files, configuration data; deploy-
ment data; build data and other data, see Figure 19. This
project includes the following items: The sbRIO-9631
chassis houses and directly connects the I/O blocks of
the FPGA target (ModA, ModB and Inboard I/O) to
the interchangeable I/Omodules for high-performance
timing, triggering and synchronization. The controller
(RT Single-Board RIO) attaches instantly to the sbRIO-
9631 chassis and communicates either directly or via
a network with the development computer. The FPGA
VIs (subroutines of the FLC in the previous section) are
the VIs that would be downloaded and run over the
FPGA target. The LabVIEW compilation tools trans-
late the FPGA VI into a circuit schematic to recon-
figure the blocks and interconnect on the FPGA tar-
get. Figure 19 shows the FPGA project files as well as
the main FLC-FPGA control file, the VI is called as
PID_FLC_FPGA_1DOF_5mf _2I_1O_10ms.vi that call
all the aboveVIswith loop rate of 10[ms]. In last, project
files are configured and translated throughout the com-
pilation process into a bitfile that can be downloaded to
the FPGA target.

5. Experimental work

This paper compares every result with traditional PID
control of an actual robot platform, a National Instru-
ments robot platform (DaNI 1.0). A DaNI robot comes
preassembled and has two DC motors for each side,
installed on the front wheels with encoders and the
Starter Kit 1.0 (sbRIO) VIs are included in the pack-
age. It is equipped with the sbRIO-9631 embedded

control board, integrating a user-reconfigurable field-
programmable gate array, as presented earlier. The
sbRIO-9631 can be programmed in the LabVIEW
graphical development environment. The onboard
reconfigurable FPGA can be quickly programmed
using the LabVIEWFPGAModule for high-speed con-
trol. LabVIEW contains the necessary built-in drivers
for handling data transfer between the FPGA and real-
time processor.

The Starter Kit 1.0 (sbRIO) VIs includes a ready-
made classical PID control employed in the FPGA envi-
ronment and referred to in this investigation as PID-
FPGA. The PID-FPGA controller compares the feed-
back signal with the set point (desired angular velocity)
and manipulates the error signal to generate a pulse
width modulated signal (PWM) as a control signal.
The frequency of the PWM signal takes a value from
1000−2000 [μs], 1000 [μs] for full-speed in counter-
clockwise direction and 2000 [μs] for the full-speed of
themotor in the clock-wise direction, and 1500 [μs] for
zero rotation. The percentage of duty cycle of the PWM
signal is varied by the PID-FPGA controller, which
switches the driver ON/OFF to deliver the necessary
power to the motor so as to achieve the desired angular
velocity of the DCmotor. The velocity is fed back to the
controller through a two-channel optical encoders that
are attached to the motor and produce 400 pulses per
revolution. Similar PID-FPGA control structures have
been developed in previous research work [14, 36] and
for different applications with acceptable and encour-
aging results. In this section, the obtained results of the
PD-FLC and PID-FLC -FPGA controllers developed in
this work will be compared to the classical PID-FPGA.

Given that the FPGA code developed in this paper
that utilizes the membership functions depicted in Fig-
ures 7 and 8 and simplified so that the memberships
are vertically symmetrical, this may prohibit the mem-
bership functions from being optimized. However, it
is possible to optimize the controller by adjusting the
rules of the inference system as well as the scaling con-
stants. Rules of Table 1 may serve as an initial selection

620 A. A. NADA ANDM. A. BAYOUMI

and can be further refined (optimized) through using
the utilization of the genetic algorithm that minimize a
predetermined cost function [37].

By employing Figure 18 as a fundamental frame-
work for implementing Fuzzy-FPGA control upon an
embedded system, it is possible to outline the stability
boundaries of scaling constants. The proportional, inte-
gral and derivative constants can be described as [38,
39]

KP = KPD
c · Kp + KPI

c · Kd
KI = KPI

c · Kp
KD = KPD

c · Kd

⎫⎬
⎭

where Kp and Kd are the input scaling constants sub-
jected to the error and change of error, while KPD

c and
KPI
c are the output scaling constants related to the PD

and PI control actions respectively. In themechatronics
motion systems, the direct current motors can be mod-
elled as, neglecting the mechanical friction, first order
of time constant τwith an integrator. In this case, the
sufficient conditions for the stability are [38](

KPD
c
τ
− KPI

c

)
Kp + KPI

c
τ

Kd ≥ 0, (20)

which implies that

KPI
c · Kp ≥ 0, KPD

c · Kd ≥ 0,
KPD
c
τ

Kp ≥ KPI
c Kp.
(21)

Under these conditions, the preliminary selection of
scaling constants can be performed so as to maintain
system stability.

5.1. One degree of freedom controller

To assess the performance of the designed FLC-FPGA
controller, step references with two different desired
velocity levels, and consequently, different levels of
power demand, have been introduced to a loaded DC-
motor system. In this section, the tests were performed
on one motor side of the DaNi robot among the motors
of the robot used. Figures 20 and 21 show the LabVIEW
interface, front panel as well as the block diagram, with
the FPGA target via a development computer over a
network. In this instance, the controller is referred to
as a 1-degree-of-freedom controller, and the control
action is calculated once for each loop. The identifi-
cation of the time constant of the motor yielded that
being equal to τ = 0.068865[s] and thus the prelimi-
nary selection of the scaling constants can be taken as
KPD
c = 1, KPI

c = 0.06, Kp = 1, Kd = 0.02 which satisfy
the stability conditions of Equation (21).

Figures 22 and 23 show the results as set desired
velocity levels are: 10 and −10[rad/s]. Figure 22 rep-
resents the performance of the various selected con-
trollers that are PD-FLC-FPGA, PID-FLC-FPGA and
classical PID-FPGA, with respect to the step reference.

Figure 22. Step response of DC motor.

Figure 23. Width modulation of the control action.

It is worth noting that these PD-and PID-FLC-FPGA
response curves compared to the traditional PID con-
trol, in itself, have a positive contribution. In which,
we ensured the success of building FLC-FPGA control
structure on a reconfigurable digital environment.

According to this figure, PID has been able to reach
the reference velocity at various levels; however, the PD-
FLC controller is not. The PD-FLC controller shows
a significant amount of steady-state error. This is due
to the absence of the integral action on its structure.
Furthermore, the PID-FLC-FPGA controller demon-
strates a very quick response and little overshoot dur-
ing the start-up of the system with zero steady-state
error. Moreover, introduce a control action that does
not exceed the saturation limit of themotor’s driver, see
Figure 23, where the saturation limits are±500[μs].

5.1.1. Optimization of FLC-FPGA controller
Although the primary emphasis of the paper pertains
to developing of the Fuzzy controller on FPGA target
and not necessarily on the optimization of the con-
troller itself, it is recommended to take into account
the effects of optimized variables when undertaking
comparative evaluations. In this context, the study has
established a cost function that can be expressed as the
addition of the overshoot and the root mean square
error (RMSE). One may conduct trials using various
rule bases and compute the corresponding cost func-
tion for each iteration. If the modified set of directives
yields better outcomes, it will be retained and employed

AUTOMATIKA 621

Figure 24. Comparison of optimized versions.

Table 2. Optimized rules table.

e/ė − ⇓ − ↓ ↔ + ↑ + ⇑
− ⇓ −1 −1 −1/2 −1/2 0
− ↓ −1 −1/2 −1 0 1/2
↔ −1/2 −1/2 0 1/2 1/2
+ ↑ −1/2 0 1 1/2 1
+ ⇑ 0 1/2 1/2 1 1

in subsequent attempts to ascertain the optimal solu-
tion based on permissible standards. Specifically, the
cost function is defined as

J = min (|e (k)|)+
√√√√ 1

N

N∑
k=1

e (k)2 (22)

The MATLAB software (tunefis) tool is utilized for
the purpose of optimizing rules, employing the genetic
algorithm as the tuning methodology. The opti-
mized rules are shown in Table 2 with scaling con-
stants are obtained as KPD

c = 1.0667, KPI
c = 1.6956,

Kp = 1, Kd = 0.0010. Figure 24 depicts a compar-
ison between the preliminary design of the con-
troller (FLC−FPGA−1), and subsequent updates that
involve optimization of rules (FLC−FPGA−2), as
well as the optimized rules and scaling constants
(FLC−FPGA−3). The comparison illustrates the antic-
ipated improvement in the scenario of optimizing the
rules and the scaling constants with regard to the
amount of error and the percentage overshoot.

5.1.2. Execution-time calculation and hardware
resources
TheVIs code ismapped to gates and slices on an FPGA-
based target, allowing concurrent loops to be realized
on separate regions of the FPGA fabric. This enables
all computations to perform concurrently (in parallel).
Each loop’s time is independent of the other loops,
with the flexibility to add operations that let loops to
interact and exchange data. To measure the execution
time of the proposed controller, different timing VIs
can be implemented in parallel on the FPGA without
affecting the code’s performance. Defining the execu-
tion time as the difference between consecutive loop
iterations, the execution time of different VIs is shown

Figure 25. Comparison of FLC-FPGA with various loop rates.

Table 3. Execution time of FLC’s VIs.

V Is Fig./Eq. time Regis LUTs

5MFTri.vi Figure 12 2μs 2210 −
CompatMF.vi Figure 13 0.5μs 425 414
Defuzzrow1.vi Figure 14 1.6μs 2415 1311
FuzzyFPGA · · · Figure 15 6μs 3175 2371
SUM_y Equation (11) 0 342 –
Encoder Figure 6 8000μs 1031 –
Min. Loop rate Figure 19 8000μs – –

Table 4. Execution time of FLC’s using look-up tables.

V Is Fig./Eq. time Regis LUTs

5MFTri.vi Figure 12 11750μs 110 5093
CompatMF.vi Figure 13 0.5μs 425 414
Defuzzrow1.vi Figure 14 1.6μs 2415 1311
FuzzyFPGA · · · Figure 15 12000μs 3175 2371
SUM_y Equation (11) 0 342 –
Encoder Figure 6 8000μs 1031 –
Min. Loop rate Figure 19 12000μs − –

in Table 3, in which the largest consumed time is 8[ms]
which is required for encoding the feedback signal. As
mentioned in Section 4.1, the work of the paper relied
on avoiding the use of look-up tables due to their rela-
tive difficulty, but also the comparison in the execution
time calculations revealed a significant increase of up to
12[ms], i.e. over the encoding time that negatively affect
the control of fast systems, see Table 4. The impact of
the FPGA loop rate on the performance of the FLC’s
VIs is illustrated in Figure 25 with the loop rates of
δt = 10, 20, 50[ms]. The results indicate that faster loop
rates lead to an improved performance. The utilization
of encoders featuring high resolutions has the potential
to reduce the duration of converting the pulses per sec-
ond into rad/s, thereby leading to an enhancement in
performance. Tables 3 and 4 show the number of FPGA
resources that utilized to construct the FLC-FPGA con-
troller using the proposed VIs and using the look-up
tables.

5.2. Two degrees of freedom controller

The autonomy of the twoDaNImotors, see Figure (26),
allows not only driving but also manoeuvrability of the
robot. Thus the controller for each motor should be

622 A. A. NADA ANDM. A. BAYOUMI

Figure 26. DaNi mobile robot.

independent, and the control signal should be calcu-
lated for each motor separately. Here, the effectiveness
of the LabVIEW in programming and communicating
with the hardware targets becomes clear; the control
action can be calculated by adding one more parallel
loop or through the For loop structure.

Concerning the trajectory shown in Figure (27),
half-circular trajectories are usually imposed in obsta-
cle avoidance algorithms. The angle ψ(t) can be
estimated such that ψ(t0) = 0, ψ(tf) = π , ψ̇(t0) =
ψ̇(tf) = 0, ψ̈(t0) = ψ̈(tf) = 0. The obtained values of
ψ are used to calculate the position and orientation of
the robot in the specified path. The orientation of the
robot is selected to be in the tangent direction of the
radial direction, the constraints function can be stated
as follows [40]:

CD (q, t) =
⎡
⎣Rx − a+ R cosψ (t)
Ry − b+ R sinψ (t)
θ − ψ (t)− π

2

⎤
⎦ = 0 (23)

Defining the wheel radius as r, and the wheel has
a distance � from the origin point. Given r, �, θ , the
velocity kinematics models can be constructed to pre-
dict the robot’s overall speed in the global reference
frame. The generalized coordinates vector is defined
as q = [

Rx Ry θ
]T and the operational velocity vec-

tor takes the form of q̇ = [
Vx Vy ω

]T that can be
evaluated based on the constraints of Equation (23).
The velocity transformation between the motors angu-
lar velocities and the generalized velocities of the robot
carrier can be expressed as

[
φ̇R
φ̇L

]
=

⎡
⎣2/r cos θ 2/r cos θ
2/r sin θ 2/r sin θ
2�/r −2�/r

⎤
⎦

⎡
⎣Vx
Vy
ω

⎤
⎦ (24)

Given the generalized velocity vector, q̇, the tracking
problem’s reference values for the robot’s controller

for the right and left wheels, φ̇R and φ̇L, are estimated
by using Equation (24). The following results consider
the implementation of the preliminary design of FLC-
FPGA and the PID-FPGA controllers, that discussed
earlier in Figure 22, upon the motion of the robot for
tracking the trajectory of Equation (23), and with the
loop rate of 10[ms]. Figure 28 shows the results of the
assigned controllers upon the robot’s spinning veloci-
ties φ̇R and φ̇L. Figures 29 and 30 show the results of
the assigned controllers upon the generalized velocities.
In the case of implementing PID-FPGA, it should be
noted that the two motors are controlled by the identi-
cal set of PID control parameters, providing that both
motors have the same dynamic model. However, the
two motors’ dynamics actually differ. As a result, the
regulated controlled results clearly distinguish between
the right and left motors. The right motor in the PID-
FPGA in Figure (28) oscillates more in relation to the
reference value. With the PID-FLC-FPGA, because the
controller design is independent of the system model,
the results are more accurate, especially during starts
and stops. As illustrated in Figure (27), the robot’s
orientation has to be initiated at π/2 degrees and ter-
minate at 3π/2, as they were shown in Figure 31,
of the real-time orientation of the robot, that demon-
strates an error margin of the robot orientation below
0.5 degrees for both controllers. It is worth mentioning
that the implementation of a control system for reg-
ulating the position of the robot was not carried out.
The control entirely takes place as a velocity control
upon the robot’s motors, and the robot’s position with
respect to the intended trajectory serves as ameasure of
the effectiveness of the control systems that are imple-
mented on these motors as subsystems. Based on this,
the percentage of error is clear when drawing the Carte-
sian coordinates of the aforementioned control systems
(PID-FPGA and FLC-FPGA-1). In the case of using
the PID-FPGA, the error in the x-direction reaches to
−2[mm] and +16[mm] in the y-direction , while the
FLC-FPGA-1 controller exhibits a comparatively lower
error of in x and y directions as−1[mm] and−12[mm]
respectively, see Figures 32 and 33.

The effectiveness of the proposed FLC-FPGA con-
troller in the presence of external disturbance is the
true assessment, and therefore the subsequent inves-
tigation discusses this issue. The fuzzy controller with
maximized rules and scaling constants (FLC-FPGA-3)
is implemented upon the robot system for tracking the
circular trajectory (Equation 23), and an external dis-
turbances are introduced at approximately 15 and 21
seconds. The effect of implementing the (FLC-FPGA-
3) upon the DC-motor is presented in Figure 24 that
shows fastest response, smallest overshoot and mini-
mum amount of error among other controllers. Specif-
ically, an overshoot of 2% and settling time of 0.85[s].
Figure 34 demonstrates a high level of functionality, as

AUTOMATIKA 623

Figure 27. Desired circular trajectory.

Figure 28. Angular velocity of the robot’s wheels.

Figure 29. Robot’s linear velocity.

Figure 30. Robot’s angular velocity.

Figure 31. Robot’s angular displacement.

Figure 32. Robot’s Cartesian position.

Figure 33. Trajectory tracking of the robot.

evidenced by the rapidity with which wheel responses
are observed to compensate to disturbances. The effect
of external disturbances appears across Figures 34–37.
It is noteworthy that, at a time of 15 seconds, the
instance of changing the direction of the robot, see
Figure 37, the effect of this disturbance, appeared in the
Vy component and did not appear horizontal direction
Vx. In the case of the second 21, this effect appeared
in both velocity components when the robot was sub-
jected to the external disturbance. The robot position-
ing figures, i.e. Figures 36–37 show distinctive char-
acteristics compared to PID-FPGA and FLC-FPGA-1,
whereby the error reaches zero at the end point of the
trajectory, not in normal operation but in the presence
of disturbances.

624 A. A. NADA ANDM. A. BAYOUMI

Figure 34. Effect of disturbance on the robot’s wheels.

Figure 35. Effect of disturbance on the linear velocity.

Figure 36. Effect of disturbance on the linear position.

Figure 37. Effect of disturbance on the robot’s track.

6. Conclusion

The Fuzzy Logic Control (FLC) is implemented in
the current study on an FPGA target, which has sev-
eral benefits for high-speed embedded applications.
The computation of the control law may be challeng-
ing when a standalone controller is implemented, as
opposed to Hardware-in-the-Loop (HIL) applications.
LabVIEW FPGA does not support floating point data
types. It only uses fixed math operations on integer
data types. Complex mathematics is difficult to imple-
ment on FPGAdue to the target device’s lack of floating
point operations. This paper provides a brief introduc-
tion to deploying FLC methods using Reconfigurable
Inputs/Outputs (RIO) FPGA technology. It proposes
a method of implementing the three stages that con-
stituent the FLC and the PD-FLC and PID-FLC struc-
tures as well. Both 1- and 2-degrees-of-freedom con-
trollers are developed and implemented upon step ref-
erence, controlling the speed of the DC-motor system
and tracking a differential-wheeled mobile robot. The
experimental results and performances of the PD-FLC-
FPGA and PID-FLC-FPGA are compared with the
classical PID-FPGA controller for reference speed and
tracking problems. The preliminary selection of rules is
defined, suitable formotion control ofmechatronic sys-
tems. Furthermore, the stability criteria are established
to enable the user to choose the initial scaling coeffi-
cients. Moreover, the rules and scaling factors of the
PID-FLC-FPGA controller can be optimized using a
genetic algorithmwithout affecting the embedded con-
troller structure. The optimized PID-FLC-FPGA con-
troller exhibits an overshoot of 2% and settling time of
0.85[s] against 32% and settling time of 1.5[s] for the
PID-FPGA controller. The proposed controller, in its
optimized version, shows minimum error, and conse-
quently reduce the energy demanded. In addition, it
produce an excellent attenuation of disturbance rejec-
tion, resulting in the elimination of trajectory tracking
errors. In conclusion, the experimental results validate
the control design procedure and implementation and
additionally show an improvement of the PID-FLC-
FPGA over the PID-FPGA in both tests. This study
could be useful in the effective integration of intelli-
gent control systems with FPGA technology to create
embedded systems for fast mechatronics applications.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Note

1. www.xilinx.com.

ORCID

Ayman A. Nada http://orcid.org/0000-0002-1873-5756

file:www.xilinx.com
http://orcid.org/0000-0002-1873-5756

AUTOMATIKA 625

References

[1] Hou Z-S, Wang Z. From model-based control to data-
driven control: survey, classification andperspective. Inf
Sci. 2013;235:3–35. doi: 10.1016/j.ins.2012.07.014

[2] Wang L. A course in fuzzy systems and control. Engle-
wood Cliffs, New Jersey: Prentice Hall; 1997.

[3] Somwanshi D, Bundele M, Kumar G, et al. Compar-
ison of fuzzy-pid and pid controller for speed con-
trol of dc motor using labview. Procedia Comput
Sci. 2019;152:252–260. doi: 10.1016/j.procs.2019.05.
019

[4] Chantrapornchai C, Pipatpaisan J. Fuzzy application
parallelization using openmp, Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics). 6132 LNCS; 2010, p. 122–132.

[5] Qasaimeh M, Sagahyroon A, Shanableh T. A paral-
lel hardware architecture for scale invariant feature
transform (sift), International Conference on Multi-
media Computing and Systems -Proceedings. 2014. p.
295–300.

[6] Li J, Pan Y. Gpu-based parallel optimization for
real-time scale-invariant feature transform in binoc-
ular visual registration. Pers Ubiquitous Comput.
2019;23:465–474. doi: 10.1007/s00779-019-01222-3

[7] Park H, Kim S. Hardware accelerator systems for arti-
ficial intelligence and machine learning. Adv Comput.
2021;122:51–95. doi: 10.1016/bs.adcom.2020.11.005

[8] Song WJ. Hardware accelerator systems for embedded
systems. Adv Comput. 2021;122:23–49. doi: 10.1016/
bs.adcom.2020.11.004

[9] Dubey R. Introduction to embedded system design
using field programmable gate arrays. London:
Springer; 2009.

[10] Rosero JR, Gonzalez GR, Khanna R. Field pro-
grammable gate array applications – a scientometric
review. Computation. 2019;7:63. doi: 10.3390/compu
tation7040063

[11] Miguel EEC, Resendiz JR, Martinez JRG, et al. Field
– programmable gate array – based laboratory ori-
ented to control theory courses. Comput Appl Eng Edu.
2019;27:1253–1266. doi: 10.1002/cae.v27.5

[12] Ortiz A, Mendez E, Balderas D, et al. Hardware imple-
mentation ofmetaheuristics through labview fpga. Appl
Soft Comput. 2021;113:107908. doi: 10.1016/j.asoc.
2021.107908

[13] Kandidayeni M, Macias A, Trovao JP, et al. Control sys-
tems with compact-rio implementation. In: Reference
Module inMaterials Science andMaterials Engineering.
Elsevier; 2022.

[14] Hemalatha B, Ravi VR, Divya S, et al. Embedded fpga
controller for robot arm in material handling using
reconfigurable nicompact rio. IEEE; 2014. p. 125–131.

[15] dos Santos MPS, Ferreira J. Novel intelligent real-time
position tracking system using fpga and fuzzy logic. ISA
Trans. 2014;53:402–414. doi: 10.1016/j.isatra.2013.09.
003

[16] Antonio-Mendez R, de la Cruz-Alejo J, Penaloza-
Mejia O. Fuzzy logic control on fpga for solar track-
ing system. Mech Mach Sci. 2015;25:11–21. doi:
10.1007/978-3-319-09858-6

[17] Akbat O, Uzgun HD, Akkaya S. Hardware-in-the-loop
simulation and implementation of a fuzzy logic con-
troller with fpga: case study of a magnetic levitation
system. Trans Inst Meas Control. 2019;41:2150–2159.
doi: 10.1177/0142331218813425

[18] Bourhnane S, Abid MR, Lghoul R, et al. Real-time con-
trol of smart grids using ni compactrio. IEEE; 2019. p.
1–6.

[19] Contreras-Medina L, Romero-Troncoso R, Millan-
Almaraz J, et al. Fpga based multiple-channel vibration
analyzer embedded system for industrial applications in
automatic failure detection. IEEE; 2008, p. 229–232.

[20] Nada AA, Shaban EM. The development of proportio
nal-integral-plus control using field programmable gate
array technology applied to mechatronics system. Am J
Res Commun. 2014;2:14.

[21] Shaban EM, Nada AA. Proportional integral deriva-
tive versus proportional integral plus control applied to
mobile robotic system. J Am Sci. 2013;9:583–591.

[22] Ponce-Cruz P, Molina A, MacCleery B. Fuzzy logic type
1 and type 2 based on LabVIEWFPGA. Cham, Switzer-
land: Springer International Publishing; 2016.

[23] Ponce-Cruz P, Molina A, MacCleery B. Fuzzy logic type
1 and type 2 labview fpga toolkit. Stud Fuzziness Soft
Comput. 2015;334:159–230. doi: 10.1007/978-3-319-
26656-5

[24] Garrido R, Calderon D, Soria A. Adaptive fuzzy control
of dc motors, International Power Electronics Congress
– CIEP; 2006. p. 158–163.

[25] Sanjay D, Kumar PR, Savithri TS. Fuzzy control for per-
son follower fpga based robotic system. Indian J Sci
Technol. 2015;8(23):1–5. doi:10.17485/ijst/2015/v8i23/
85333.

[26] Singh DA, Singh RK, Sharma S. Analogous research
of classical pi controller and fuzzy logic controller to
control the speed of d.c. servo motor. J Phys Conf
Ser. 2021;2007:012044. doi: 10.1088/1742-6596/1714/1/
012044

[27] Harshitha S, Shamanth S, Chari AK. A review of
various controller techniques designed for the oper-
ational control of dc and servo motors. J Phys Conf
Ser. 2022;2273:012001. doi: 10.1088/1742-6596/2273/1/
012001

[28] H. M. Ramadan EAE, El-Bardini M, El-Rabaie NM,
et al. Embedded systembased on a real time fuzzymotor
speed controller. Ain Shams Eng J. 2014;5:399–409. doi:
10.1016/j.asej.2013.10.001

[29] García-Montalva JC, de la Cruz-Alejo J, Díaz-Salgado J.
Fuzzy logic control on fpga using labview. Mech Mach
Sci. 2015;25:261–271. doi: 10.1007/978-3-319-09858-6

[30] Siddique N, Adeli H. Computational intelligence: syn-
ergies of fuzzy logic, neural networks and evolutionary
computing. 1st ed. Hoboken, New Jersey: John Wiley
and Sons, Ltd; 2013.

[31] Ziouzios D, Kilintzis P, Baras N, et al. A survey of fpga
robotics applications in the period 2010–2019. Adv Sci
Technol Eng Syst J. 2021;6:385–408. doi: 10.25046/astesj

[32] National instruments – getting started with the fpga
module, 2023. https://www.ni.com/pdf/manuals/374
737k.html, last visited 2023-03-16.

[33] Wang G, Andrade HA. Labview: a graphical system
design environment for adaptive hardware/software
systems. IEEE; 2010, p. 82–82.

[34] Perry AG, Feng G, Liu YF, et al. A design method
for pi-like fuzzy logic controllers for dc-dc converter.
IEEE Trans Indust Electron. 2007;54:2688–2696. doi:
10.1109/TIE.2007.899858

[35] Pati S, Patnaik M, Panda A. Comparative performance
analysis of fuzzy pi, pd and pid controllers used in a
scalar controlled induction motor drive, 2014 Interna-
tional Conference on Circuits, Power and Computing
Technologies, ICCPCT; 2014, 2014. p. 910–915.

https://doi.org/10.1016/j.ins.2012.07.014
https://doi.org/10.1016/j.procs.2019.05.019
https://doi.org/10.1007/s00779-019-01222-3
https://doi.org/10.1016/bs.adcom.2020.11.005
https://doi.org/10.1016/bs.adcom.2020.11.004
https://doi.org/10.3390/computation7040063
https://doi.org/10.1002/cae.v27.5
https://doi.org/10.1016/j.asoc.2021.107908
https://doi.org/10.1016/j.isatra.2013.09.003
https://doi.org/10.1007/978-3-319-09858-6
https://doi.org/10.1177/0142331218813425
https://doi.org/10.1007/978-3-319-26656-5
https://doi.org/10.17485/ijst/2015/v8i23/85333
https://doi.org/10.1088/1742-6596/1714/1/012044
https://doi.org/10.1088/1742-6596/2273/1/012001
https://doi.org/10.1016/j.asej.2013.10.001
https://doi.org/10.1007/978-3-319-09858-6
https://doi.org/10.25046/astesj
https://www.ni.com/pdf/manuals/374737k.html
https://doi.org/10.1109/TIE.2007.899858

626 A. A. NADA ANDM. A. BAYOUMI

[36] Calderon CA, Sarango R, Macas E, et al. Implementa-
tion and comparative analysis of fractional order pid
embedded controllers, applied to speed control of a
robotic prosthesis. IEEE; 2018. p. 1–6.

[37] Wong SV, Hamouda AM. Optimization of fuzzy
rules design using genetic algorithm. Adv Eng Softw.
2000;31:251–262. doi: 10.1016/S0965-9978(99)00054-X

[38] Sio KC, Lee CK. Stability of fuzzy pid controllers. IEEE
Trans Syst Man Cybern A Syst Hum. 1998;28:490–495.
doi: 10.1109/3468.686710

[39] Carvajal J, Chen G, Ogmen H. Fuzzy pid controller:
design, performance evaluation, and stability analy-
sis. Inf Sci. 2000;123:249–270. doi: 10.1016/S0020-0255
(99)00127-9

[40] Nada AA, Bashiri AH. Integration of multibody sys-
tem dynamics with sliding mode control using fpga
technique for trajectory tracking problems. Georgia,
USA: American Society of Mechanical Engineers; 2018.
https://doi.org/10.1115/DSCC2018-9108

https://doi.org/10.1016/S0965-9978(99)00054-X
https://doi.org/10.1109/3468.686710
https://doi.org/10.1016/S0020-0255(99)00127-9
https://doi.org/10.1115/DSCC2018-9108

	1. Introduction
	2. Fuzzy logic control
	3. Field programmable gate arrays (FPGA)
	4. FLC-FPGA
	4.1. FPGA – fuzzification
	4.2. FPGA – inference engine and defuzzification
	4.3. Fuzzy controller
	4.4. LabVIEW implementation of embedded PID-FLC-FPGA controller

	5. Experimental work
	5.1. One degree of freedom controller
	5.1.1. Optimization of FLC-FPGA controller
	5.1.2. Execution-time calculation and hardware resources

	5.2. Two degrees of freedom controller

	6. Conclusion
	Disclosure statement
	Note
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

