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ABSTRACT

The challenge of evaluating deep learning-based object detection models in complex traffic sce-
narios, characterized by changing weather and lighting conditions, is addressed in this study.
Real-world testing proves time and cost-intensive, leading to the proposal of a Video Frame Feed-
ing (VFF) approach as a solution. The proposed Video Frame Feeding approach acts as a bridge
between object detection models and simulated environments, enabling the generation of real-
istic scenarios. Leveraging the CarMaker (CM) tool to simulate realistic scenarios, the framework
utilizes a virtual camera to capture the simulated environment and feed video frames to an object
identification model. The VFF algorithm, with automated validation using simulated ground
truth data, enhances detection accuracy to over 95% at 30 frames per second within 130 meters.
Employing the You Only Look Once (YOLO) version 4 and the German Traffic Sign Recognition
Benchmark dataset, the study assesses a traffic signboard identification model across various
climatic conditions. Notably, the VFF algorithm improves accuracy by 2% to 5% in challenging
scenarios like foggy days and nights. This innovative approach not only identifies object detec-
tion issues efficiently but also offers a versatile solution applicable to any object detection model,
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promising improved dataset quality and robustness for enhanced model performance.

1. Introduction

Ensuring road safety is a critical component of modern
vehicular systems, particularly with the increasing inte-
gration of computer vision systems in vehicles. These
systems often have a virtual camera mounted behind
the Inside Rear View Mirror (IRVM), play a crucial role
in recognizing and interpreting traffic signs, thereby
aiding in safe and informed driving. The efficiency of
such systems hinges on the robustness of the under-
lying object detection algorithms, which must accu-
rately identify, track, and label objects in real-time from
video feeds [1]. Despite advancements in this domain,
existing systems predominantly rely on statistical-based
evaluation methods, utilizing Precision-Recall Curves
(PR curves) to assess the performance of object identifi-
cation models [2]. While these methods provide a base-
line for evaluation, they exhibit limitations, particularly
in real-world scenarios characterized by dynamic and
adverse environmental conditions [3]. Weather phe-
nomena such as rain, fog, and nighttime conditions can
significantly impede the model’s ability to accurately
detect and label traffic signs, leading to reduced pre-
cision and reliability. Furthermore, the pre-processing
of video feeds, aimed at enhancing visibility, has shown
to be insufficient in addressing these challenges, often
resulting in a low detection rate and limited robust-
ness in rapidly changing environments. This highlights

a critical gap in the current evaluation and valida-
tion methodologies, necessitating a more comprehen-
sive and versatile approach to testing object detection
models across a spectrum of environmental conditions.

This paper introduces a novel traffic sign detection
method, leveraging the capabilities of CM, an advanced
environmental simulation tool used for vehicle dynam-
ics and Advanced Driver Assistance Systems (ADAS)
[4-6]. Through this tool, we generate photorealistic
simulations that encompass a variety of road networks,
static and moving objects, and an array of traffic enti-
ties. Utilizing IPG Movie for visualization, and a virtual
camera configured within CM, we extract video feeds
of the simulated environment under various manually
adjusted conditions. Central to our approach is the VFF
algorithm, a unique automation algorithm designed to
identify regions where the object detection model fal-
ters. This algorithm facilitates the use of video frames
reconstructed from traffic sign data streams, previously
trained with the GTSRB dataset [7,8] on the YOLOv4
CSPDarknet53 framework [9,10]. Accompanied by a
pre-processing phase incorporating Non-Local Means
(NL-Means) estimation [11], and image enhancement
techniques for contrast and brightness adjustment, our
method ensures a comprehensive and nuanced vali-
dation of object detection models. Our study specifi-
cally employs YOLOvV4 for object detection, focusing
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on traffic sign detection as a practical application. We
assert that by retraining the model with conditions that
initially led to failure, we can significantly augment
the model’s accuracy and reliability, ultimately con-
tributing to safer driving experiences and more robust
computer vision systems in vehicles.

Key Features of the VFF Algorithm:

e The VFF algorithm efficiently processes video
frames from a simulation environment. These
frames are generated based on traffic sign embed-
ded data acquired from pre-trained with the GTSRB
dataset using the YOLOv4 CSPDarknet53 framework.

e It incorporates a pre-processing step using NL-
Means estimation to smooth irregular object bound-
aries or edges. This step uses pixel similarity for
refinement.

e The visual quality of the video frames is improved by
adjusting their contrast and brightness.

e Thisalgorithm is cost-effective, allowing for the sim-
ulation of various real-time environmental condi-
tions. These conditions, challenging to capture in
reality, can be easily simulated, offering broader per-
spectives of target objects.

e The study confirmed that around 95% accuracy in
traffic signboard detection is achieved. Specifically,
an improvement of 2-5% was reached for foggy day,
cloudy, foggy night, and nighttime weather condi-
tions from the data observed before applying the
proposed VFF algorithm.

The rest of this paper is organized as follows:
Section 2 discusses related works, which include a
recent study on this topic. Section 3 discusses the
methodology, which includes three phases of the model
testing approach (i) simulation of video stream using
CM Tool, (ii) Conversion of video frames (generation,
pre-processing, and contrast and brightness enhance-
ment), and (iii) Validation of object detection model
using proposed VFF algorithm. Section 4 presents the
results and analysis to demonstrate the efficiency of the
proposed method. Section 5 briefly describes the entire
work and suggests possible future guidelines.

2. Related works

This section provides an overview of recent articles
on the performance evaluation of deep learning-based
object detection models in various weather conditions,
with a specific focus on traffic signboard detection.
It clearly elaborates on the different weather condi-
tions used for validation, as well as the datasets, which
include images and video clips — adapted for each paper
under discussion.

2.1. Deep learning-based object detection models

The exploration of deep learning-based object detection
models has  garnered  significant  attention,

addressing various challenges posed by environmen-
tal conditions and specific use cases. Sharma et al
[12] employed YOLOV5 to recognize entities like cars,
traffic lights, and pedestrians, showcasing its robust-
ness in both rainy and normal weather conditions.
Al-Haija et al [13] introduced a powerful detection sys-
tem leveraging transfer learning and Nvidia GPU, with
a comparative study across three deep learning mod-
els, demonstrating superior performance in diverse
weather conditions. Humayum et al [14] utilized the
CSPDarkNet53 architecture, aiming at vehicle recog-
nition under low illumination and blurred visibility,
resulting in enhanced performance across various chal-
lenging conditions. The implementation of a pedestrian
detection algorithm by Liu et al [15] demonstrated
effective pedestrian identification during rainy condi-
tions, addressing occlusion problems and eliminating
rain streaks. Rothmeier and Huber [16] evaluated state-
of-the-art object detectors in both normal and foggy
conditions, creating dynamic test scenarios to ana-
lyze performance degradation under fog. Hnewa and
Radha [17] analyzed the efficiency and limitations of
de-raining techniques for object detection, providing
insights into their impact on performance. Hasirlioglu
and Riener [18] compared the performance of object
detection algorithms under clear and adverse weather
conditions, systematically investigating the effects of
rainfall on various sensor data.

2.2. Deep learning model for traffic sign detection

Deep learning models have also been tailored specifi-
cally for traffic sign detection, aiming to enhance accu-
racy and adaptability. Azfar et al. [19] focused on
training deep learning models for vehicle detection in
complex urban traffic conditions, addressing challenges
such as dust and wind sway. Jeon et al. [20] developed
a model containing three primary detection modules
to detect taillights rapidly and precisely in traffic. Chen
et al. [21] integrated visibility complementation mod-
ules with YOLOV3, striving to enhance vehicle detec-
tion systems in low visibility conditions. Zhu et al. [22]
employed RetinaNet for traffic sign recognition and
detection, improving detection performance through
virtual simulation. Ren et al. [23] used the Recur-
rent Rolling Convolutional (RRC) model to analyze
real-time environmental influences on object detection,
providing a systematic evaluation of these impacts. Kuo
and Lin [24] investigated CNN's for real-time road sign
detection, validating their approach with real-world
video data. Lei et al. [25] focused on semantic segmen-
tation, training, and testing labelling models pixel by
pixel even in snowy conditions. Jia Li and Zengfu Wang
[26] explored Deep Neural Networks (DNN) adapted
to traffic sign detection through transfer learning, eval-
uating their performance across various metrics and
conditions. Serna et al. [27] utilized Mask R-CNN for
the detection and classification of a wide range of traffic



signs, demonstrating successful application across mul-
tiple sign categories. These studies collectively highlight
the advancements and adaptations made in deep learn-
ing models to cater specifically to the challenges posed
by traffic sign detection.

Table 1 presents a summary of related works,
encompassing research focus, methodology, datasets,
evaluation metrics, and inferences. From this table,
it becomes evident that current validation methods
predominantly emphasize statistical evaluations. Such
evaluations entail inputting images or recorded videos
into an object identification model, with the PR curve
employed to assess the model’s output accuracy. In real-
world situations, numerous edge cases exist where the
model may fail to recognize objects due to various envi-
ronmental conditions. Practically, it is challenging to
test a model across all possible environments simulta-
neously. To acquire specific environmental conditions,
one would need to travel to locations with the requisite
climate and capture relevant scenarios. This approach is
not only time-consuming and labour-intensive but also
incurs substantial expenses.

We have identified a gap in the evaluation of real-
time performance of object detection models across
diverse environmental conditions and scenarios. To
bridge this gap, we propose a novel model validation
approach. This approach enables the virtual creation of
awide range of real-world scenarios within a simulation
environment, facilitating the comprehensive evaluation
of object detection models’ real-time performance and
the identification of all potential edge cases.

3. Proposed method

This section presents our three-fold methodology for
object detection model validation: simulation of driv-
ing scenarios using CM tool, conversion of these
simulations into enhanced video frames, and model
validation using the proposed VFF algorithm. Together,
these phases ensure a robust evaluation of the model’s
performance under varied conditions.

3.1. Overview

Figure 1 depicts the performance evaluation of the
YOLOv4 CSPDarknet53 model for detecting traffic
signs, utilizing the proposed VFF algorithm. The pro-
cess unfolds as follows: The CM simulation tool creates
a photorealistic simulation of the driving environment,
encompassing road networks, traffic signs, static objects
(such as buildings and trees), and various traffic par-
ticipants. Key parameters like vehicle model, driving
maneuver, and road profile are set in CM to facilitate
this simulation, aligning the scenarios with the GTSRB
dataset. In these scenarios, a virtual camera, linked to
the VFF algorithm, is mounted behind the IRVM below
the vehicle’s windshield. As the simulation progresses,
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this virtual camera captures the frontal road view, inclu-
sive of traffic signs, road markings, and other road
users. The captured data is then transformed into a data
stream, embedded with simulation time and a list of
traffic signs from CM, and sent to a predefined port.

The VFF algorithm connects to this port, retriev-
ing the video streams and separating the embedded
data from the video content. The video data is utilized
to reconstruct frames to a specific image size, which
are subsequently fed into a pre-processing model. This
model serves to eliminate noise and enhance image
quality. Following pre-processing, the frames are input
into the YOLOv4 Darknet framework, loaded with the
newly trained GTSDM. The GTSDM then performs
traffic sign identification, yielding a list of identified
objects corresponding to the simulation time. Concur-
rently, the ground truth data for traffic signboard iden-
tification is extracted from the embedded data provided
by CM.

The final step involves comparing the object lists
generated by GTSDM and the CM ground truth data,
specific to the simulation time. This comparison facil-
itates a thorough evaluation, highlighting instances
where the GTSDM may fail to accurately identify
traffic signs across varying environmental conditions.
Through this process, the proposed methodology not
only identifies potential shortcomings in the model but
also opens avenues for model enhancement, particu-
larly in challenging scenarios and conditions.

3.2. Simulation of video stream using CM tool

A virtual camera is mounted behind the IRVM placed
below the vehicle’s windshield and continuously cap-
tures the frontal road simulation environment. This
includes oncoming traffic signs, road markings, build-
ings, and other road users, which are displayed in IPG
Movie. To facilitate this process, all intrinsic and extrin-
sic parameters of the camera must be defined within
CM, and the camera configuration parameters must be
properly initialized, as detailed in Table 2. The envi-
ronmental data captured by the virtual camera is then
transformed into a data stream. This stream, along with
embedded data containing the simulation time and a
list of traffic signs from CM, is fed to a pre-defined port.

The provided pseudocode outlines a simplified pro-
cess for configuring a virtual camera to capture a sim-
ulation environment in CM, and it can be divided into
three main parts: initialization, configuration file cre-
ation, and simulation environment capture.

Initialization: Consider input parameters including
the number of camera views (C,jey), frame size dimen-
sions (W for width and H for height), camera FoV,
export format (Vexport), frame rate (f,), camera mount-
ing positions (Cpos x» Cpos_y> and Cps_z), camera
rotation angles (¢x_ror» Py_ror» and ¢, o), and the
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Table 1. Summary of related works.

Author Name Method Focus Dataset Weather Condition  Evaluation Metrics Inferences
Sharmaetal [12] Deep learning Recognizing cars, Local street level Rainy and normal Precision, Recall, F1  YOLOv5 shows
model (YOLOV5) traffic lights, and recordings Score robust
pedestrians performance in
varied weather
conditions.
Al-Haija et al [13] Deep learning- Comparative DAWN2020, Overcast, rainy, Accuracy, Precision,  The Nvidia GPU-
based detection analysis of deep MCWRD2018 snowy, sandy, Recall, mAP accelerated
system (transfer learning-based shiny, sunrise model
learning, Nvidia detection outperforms
GPU) systems others in adverse
conditions.
Humayumetal [14]  CSPDarkNet53 Vehicle recognition ~ DAWN dataset Haze, dust, mAP, loU Improved vehicle
(modified under various (varied image sandstorms, recognition in
SPP layer, weather conditions) snowy, wet, day challenging
fewer batch conditions, low and night visibility
normalized illumination, conditions.
layers) and blurry
visibility
Liu etal [15] Pedestrian Pedestrian Urban surveillance  Light, medium, Precision, Recall Effective rain streak
detection detection in datasets heavy rain elimination
algorithm rainy conditions, and enhanced
(de-raining rain streak pedestrian
module) elimination detection.
Rothmeier and Object detectors Evaluate object CARISSMA indoor Foggy, normal loU, Frame per Insights into
Huber [16] detectors in test facility Second (FPS) performance
normal and (dense fog, 20 m degradation
foggy conditions visibility) in foggy
conditions.
Hnewa and Radha  Deep learning- Efficiency and Recorded images Clear, rainy Precision, Recall Assessment of
[17] based adaption limitations de-raining
and image of de-raining techniques’
translation techniques for impact on object
framework object detection detection.
Hasirlioglu and Object detection Comparing CARISSMA indoor Rainy, clear Comparative Detailed analysis
Riener [18] algorithms performance test facility (rain Analysis, Error of sensor
under clear and conditions) Rate performance
adverse weather and error rates
conditions under rainfall.
Azfar et al [19] Deep learning Training models Surveillance Dust, sway in the Accuracy, Loss Models exhibit
models for vehicle camera images wind varying degrees
detection in (urban traffic of resilience to

Jeon et al [20]

Chenetal [21]

Zhu et al [22]

Ren et al [23]

Kuo and Lin [24]

Lei et al [25]

Deep learning
model (lane,
car, taillight
detection)

Deep learning
model (YOLOv3)
with visibility
comple-
mentation
modules

RetinaNet (traffic
sign recognition
and detection)

Recurrent rolling
convolutional
(RRC) model

Convolutional
neural network
(CNN)

ICNet semantic
segmentation
approach

complex urban

traffic conditions
Precise and

rapid taillight

detection in

traffic

Enhance vehicle
detection in low
visibility

Developing an
algorithm for
traffic sign
recognition and
detection

Analyzing real-time
environmental
influences on
object detection
using synthetic
images

Investigating CNN
for real-time
road sign
detection

Semantic labelling
of images pixel
by pixel

conditions)

SKKU, Karlsruhe
Institute of
Technology,
Toyota
Technological
Institute

Urban and
highway driving
conditions
datasets

Diverse urban
and rural traffic
scenarios

Synthetic image
dataset

Dataset from two
DVRs mounted
on a scooter

Snowy driving
dataset

Various (clear,
overcast)

Foggy, low-light,
twilight

Various (clear,
cloudy, twilight)

Various simulated
conditions

Various urban
and suburban
conditions

Snowy

Mean Squared
Error, Accuracy

Precision, Recall, F1
Score

Accuracy, mAP

Average Precision
(AP), Recall

Accuracy, Precision

Intersection over
Union (loU),
Accuracy

dust and wind.

Enhanced
detection speed
and precision in
traffic scenarios.

Enhanced vehicle
detection and
reduced false
positives in low
visibility.

Successful traffic
sign recognition
and detection in
varied scenarios.

Insights into
environmental
impacts on
object detection
accuracy.

Effective road
sign detection
in real-time
scenarios.
Effective pixel-wise
labelling even
in snowy
conditions.

(continued)
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Author Name Method Focus Dataset Weather Condition  Evaluation Metrics Inferences
Jia Li and Zengfu Faster R-CNN, Traffic sign GTSRB database Various (clear, mAP, Memory Comprehensive
Wang [26] MobileNet, Deep detection overcast, Allocation, analysis and
Neural Networks adaptation and twilight) Running Time adaptation
performance of traffic sign
analysis using detection
transfer learning in varied
conditions.
Serna et al [27] Mask R-CNN Detection and GTSDB dataset Varies (lighting, Accuracy, F1 Score  Successful
classification of lane markings) detection and
both symbol classification
and text-based of traffic
traffic signs signs across
categories.
Lee and Moon [28]  Vision-based Lane detection Dashboard camera  Varies (lighting, Noise Level, Time Reduction in
Lane detection in varied videos (US and lane markings) Efficiency noise levels and
algorithm environmental South Korea) computation
conditions time for lane
detection.
L]
|
u Pre-trained
GTSDM dataset
R YoLOv4 Object fnalysis
Original Real Darknet53 z per
time video e sl in different
environments
Proposed Traffic Sign Board Proposed VFF Algorithm
Detection Method
Pre- = =
CarMaker | defined
(Vehicls port of Pre-process Image " Evaluation
m:::ﬁl, roa: video stream video frames video frames enhancement | | Comparizan metrics
RroTe.an Data stream
IRVM)
Average loss, mean
average precision,
Ground truth data recall, precision, F1-

Embedded data

score, TP, FP, and
aveg loU

Induce
different
environment
conditions

Newly created frame feeds to
YOLOv4 framework

Figure 1. Operational flow of assessing the object detection model with the proposed VFF algorithm. Note: The diverse envi-
ronmental conditions are generated using the CM tool, aiding in evaluating traffic sign detection performance amidst real-time

variations.

port number for CM-VFF algorithm communication
(Psocket)- These parameters are then stored in a dictio-
nary named “params” for easy access and organization.

Configuration File Creation: The pseudocode pro-
ceeds to create and configure the virtual camera by
writing the parameters to a configuration file, VDS.cfg.
The file is opened in write mode, and for each parame-
ter in the params dictionary, a line is written to the file
in the format “parameter: value”. After writing all the
parameters, the configuration file is closed.

Simulation Environment Capture: A connection to
CM is established using the specified port number. If
the connection is not successful, an error message is

logged, and the programme exits. If the connection is
successful, the pseudocode enters a loop to continu-
ously capture frames from the CM simulation envi-
ronment. This loop runs as long as the simulation is
running. Each captured frame is then processed.

3.3. Proposed VFF algorithm

The VFF algorithm establishes a connection with CM
via the same port. It initiates an empty binary string and
assigns it to a variable named “data”. Subsequently, it
calculates the payload size. If the data’s length is smaller
than the payload size, the VFF algorithm begins to
receive video streams from that port. It then segregates
the embedded simulation data from the video data
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Table 2. Camera configuration in the CM tool.

Parameters Values
Number of virtual cameras 1
Pixel size 640 x 480
Camera field of view (FoV) 30 degree
Lens type Direct Lens
Camera output format Veyport RGB
Frame rate f, 30 fps
Mounting position of camera in X-direction 35m
Cpos_X
Mounting position of camera in Y-direction 0.0m
CposﬁY
Mounting position of camera in Z-direction 1.5m
Cpos_Z
Rotation angle X ¢x ror 0 degree
Rotation angle Y ¢y _rot 0 degree
Rotation angle Z ¢, 1ot 0 degree
Distance between camera position and viewing 0
point
Distance of first clipping plane 0.1m
Distance of far clipping plane 500 m
Sensitivity {(010),(100),00

1),and (0 10)}
Principle point offset X/Y
Sensor noise oy,
Tone mapping
SrcHDR16

o' oo

Algorithm 1: Configure VDS in CM

Input: Configuration data to create VDS.cfg file
Output: VDS.cfg file
/I Initialize parameters
(1) params (i) = {Cyiew, W, H, FoV, Vexport fr1 Cpos_x: Cpos_v+ Cpos_z,
¢x_ror: ¢y_ror: ¢z_rot: P. socket}
/I Create and configure VDS.cfg file
(2) configFile — OpenfFile(“CarMakerProjectPath/VDS.cfg”, “write”);
(3) Fori = 1to params do
(4) WriteToFile(configFile, param + “: “ “ + params[param]);
(5) End For
(6) CloseFile(configFile);
// Establish connection with CM
(7) connection — EstablishConnection(params[P_socket]);
(8) If Not connection.Successful:
(9) Log(“Failed to connect to CarMaker on port: “ + params[P_socket]);
(10)  Exit;
(11) End If
// Capture simulation environment
(12)  While SimulationRunning:
(13) frame — CaptureFrameFromCarMaker();
(14) ProcessFrame(frame);
(15)  End While

streams based on the payload size. The embedded sim-
ulation data includes the number of camera output
channels, the actual simulation time, the length of the
data, and a list of CM object identifications in bytes.

3.3.1. Generation of video frames

Read the video streams of the simulation environment
from the specified port and use the received video
stream to regenerate the video frames utilizing the
NumPy package. The video data streams provide the
frame information in bytes. If the length of the data is
less than the image length (frame size; for RGB: height
x width * 3), proceed to receive the frame data up to
the image length. When the length of the frame data
matches the image length, the frame data will contain

the information of the first frame in byte format. Uti-
lize the NumPy package to transform the frame data
from byte strings to an array, and subsequently recre-
ate the video frame. In instances where the received
frame is not in RGB format, employ the OpenCV pack-
age to convert the frame data to RGB format. The newly
created video frame will encompass simulation envi-
ronment data from CM, including traffic objects and
signboards.

3.3.2. Pre-processing of video frames

Pre-process the video frame to eliminate noise and
enhance the frame’s quality. Remove noise from
the generated frame using the NL-Means denoising
approach. The underlying principle of the NL-Means
denoising approach is to replace a pixel’s colour with an
average of the colours of similar pixels. Hence, it scans a
large image area to find all pixels closely resembling the
pixel targeted for denoising. The similarity is assessed
by examining the entire window around each pixel,
rather than just the colour alone. To remove noise from
a colour image, implement pixel-wise calculations, rep-
resented as x = (x1,x2,x3). The filtered image value at
position p for a pixel is given in Eq. (1):

1

xi(p) = Wp)

Y yil@wp.@, ¥i=1,23 (1)
qeA

Where, x(p) is the filtered image value at p position,
y(q) is the unfiltered image value at g point, w(p,q)
is the weighting function, and N(p) is a normalizing
factor given in Eq. (2):

Np) =) w(p,q) 2)

qeA

The weighting function, based on a normal distribu-
tion with a mean u = M(p), is given in Eq. (3):

_ IM@-M@)?

w(p,q) =e h? (3)

Where, h is the filtering parameter and M(p) is the
local mean value in the region around p in an image,
calculated as shown in Eq. (4):

1
M = — j 4
@)m@Q%W) (4)

Where, |R(p)| represents the number of pixels in
region R, and R(p) C A is a square region of pixels sur-
rounding p, with dimensions (2r + 1) x (2r x 1) pix-
els. Due to computational constraints, the research zone
is confined to a fixed square neighbourhood. For mod-
erate and small values of o, the window size is set to
21 x 21. For larger values of o, the size of the research
window increases to 35 x 35, allowing for the iden-
tification of more similar pixels to further minimize
noise. In NL-Means, the restoration of each pixel value



is achieved by averaging the most similar pixels, with
similarity determined from the colour image. Conse-
quently, each channel value for every pixel result from
averaging the values of similar pixels.

3.3.3. Enhancement of contrast and brightness
After the initial pre-processing step, the received frames
from CM undergo a noise reduction process using the
NL-Means de-noising model, resulting in the genera-
tion of frames free from noise artifacts. The effective-
ness of this noise reduction is quantified using the Peak
Signal-to-Noise Ratio (PSNR), which in this case, yields
a value of 28.9, indicating a substantial enhancement
in image quality. Subsequently, these de-noised frames
are subjected to various image enhancement techniques
to further refine the visual quality. These techniques
include adjustments to brightness, contrast, and sharp-
ness, ensuring that the frames are optimally prepared
for the subsequent object detection tasks. Upon com-
pletion of the image enhancement process, the frames
are then fed into the YOLOv4 CSPDarkNet53 model.
This model has been specifically trained for the task
of traffic signboard detection and is adept at perform-
ing object detection tasks under varied environmen-
tal conditions. The darknet helper function is utilized
to load the pre-trained model, which then processes
the input frames to identify and classify objects within
them. The output from the model comprises a list of
detected object classes, along with their associated con-
fidence scores and bounding box coordinates, provid-
ing a comprehensive overview of the detected objects
within each frame. Concurrently, the proposed VFF
algorithm receives a list of objects detected by CM,
along with the corresponding simulation times. This
information is then compared with the output from the
YOLOv4 CSPDarkNet53 model to assess the accuracy
and reliability of the object detection process. By con-
ducting a comparative analysis between the detected
object classes from the YOLOv4 CSPDarkNet53 model
and the CM object identification list, extracted from
the embedded simulation data, we are able to evaluate
the performance of the model across different simula-
tion times. This comparative analysis not only provides
valuable insights into the model’s proficiency in traf-
fic signboard detection but also highlights potential
areas for improvement, ensuring that the model can be
further refined and optimized for future applications.
Pseudocode of proposed VFF algorithm for val-
idating traffic signboard detection is given below
which designed to process video streams and produce
enhanced video frames. Initially, a connection is estab-
lished with a predefined socket using specified port
and host IP parameters. Once connected, the algorithm
continuously receives video data packets and processes
them in chunks defined by a payload size. For each
chunk, the video data is extracted, and if its length
matches the expected image size, then it generates the
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Algorithm 2: VFF Algorithm for Validating Traffic Signboard Detection

Input: Video streams
Output: Enhanced video frames
Initialization: width, height, port, host_ip, image length (WxHx3)
(1) Create socket;
(2) Connect to the socket using port number and host_ip;
(3) If socket connected then
// Generation of Video Frames
(4) Data — “b";
(5) Payloadsize — “6Q" “8h”"; // Define payload size;
(6) While length of the data < payload size do
(7) Packet — receive video streams for image length; // Receive the
video streams as packet
(8) Data — packet; // Append the data with packet;
9) Packet_msg_size — data[:payload_size];
(10)  Cm_vds — split embedded data from payload_size;
(11) Data — data[payload_size:]; /Filter the video streams based on
the payload_size;
(12) Msg_size — calculate size from packed_msg_size;
(13)  While length of the data < img_len do
(14)  Data — append received data from img_len;
(15) Frame_data — compute frame from msg_size;
(16)  Iflength ofimg_data = = img_len then:
(17) Frame — generate the frame data;
(18)  Frame — convert frame data to RGB;
// Pre-processing of Video Frames
(21) Frame — frame de-noising;
// Enhancement of Contrast and Brightness
(22) Frame — frame contrast enhancement;
(23) Frame — frame brightness enhancement;
(24) Detection — object detection model;
(25)  cm_time — get cm time from cm_vds;
(26)  cm_detection— get cm_detection from cm_vds;
(27) For time in cm_time do:

(28) If cm_detection! = detection then
(29)  Object not identified simulation time;
(30) Else

(31)  Object identification is correct;

(32) Endif

(33) Endfor
(34) Endwhile
(35) End while
(36) Endif

frame data which is further changed into RGB for-
mat. Later, this RGB format is converted into a video
frame. Subsequent steps involve pre-processing the
video frame by de-noising it. Then, the frame under-
goes two enhancement processes to improve its contrast
and brightness.

Following these enhancements, an object detection
model is applied to the frame to identify potential traffic
signs. The detected time from the CM simulation (CM
time) is fetched and compared against the object detec-
tion output. If there’s a mismatch between the CM’s
detection and the algorithm’s detection, it’s noted that
the object was not identified correctly at that simulation
time. Otherwise, the identification is marked as correct.
This process is repeated for each video data packet until
the end of the stream.

4, Results and discussion

In this section, we describe the evaluation of traf-
fic signboard detection using the YOLOv4 (CSPDark-
net53) model, which has been pre-trained with the
GTSRB dataset. Observations show that with the mod-
ified YOLOWV4, traffic signboard detection achieves an
accuracy of approximately 96%. This accuracy was
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determined without considering various weather con-
ditions. To enhance this accuracy without increasing
hardware costs or the execution time for training and
testing, we utilized the CM simulation tool. This tool
was used to create a highway simulation environment
in which multiple weather conditions were introduced
simultaneously. This setup allows for an evaluation
of the YOLOv4 CSPDarkNet53’s performance under
these conditions. Our analysis focuses on two main
aspects: (i) identifying traffic signboards located within
150 meters from the driving vehicle, and (ii) detect-
ing multiple traffic signs situated in the same region
but separated by varying distances. All evaluations were
conducted under six different weather conditions gen-
erated using the CM tool. A comparative analysis was
then performed between the ground truth data from
CM and the output from the YOLOv4 CSPDarkNet53
model, taking into account the influence of the pro-
posed VFF algorithm for traffic signboard detection.

4.1. GTSRB Dataset

The GTSRB dataset is selected for the proposed
research application. It comprises 900 images from
43 distinct traffic signboard classes, divided into four
categories: prohibitory, danger, mandatory, and prior-
ity. As illustrated in Fig. 2, the GTSRB dataset has
been classified for this study. The YOLOv4 darknet53
variant serves as the object detection model for this
research. The dataset has been prepared in the YOLOv4

format, which means that the 900 images from the
GTSRB dataset needed to be annotated accordingly.
Prior to this, the GTSRB dataset underwent prepro-
cessing techniques such as scaling, contrast enhance-
ment, sharpening, and Principal Component Analysis
(PCA) [29]. The PCA technique assists in reducing the
dataset’s dimensionality while ensuring minimal infor-
mation loss, thereby enhancing its interpretability. An
automated annotation algorithm facilitated the conver-
sion of raw data to the YOLO format. Of the original
900 images, 80% were designated for training, and the
remaining 20% for testing. The resultant dataset con-
sists of images and their corresponding annotation files.
These files detail the object’s class, its coordinates, and
its dimensions in terms of height and width. The train-
ing and testing dataset folders are renamed as OBJ and
Test, respectively.

4.2. Experimental setup

For our experimental analysis, we randomly selected
four traffic signboards from a total of 43. Based on
the chosen environmental parameters, we developed
a CM scenario. We then simulated CM at a constant
vehicle speed of 72 kmph and evaluated the detection
capabilities of the GTSRB model using the proposed
VFF algorithm under six different weather conditions.
Observations indicate that the model was able to clas-
sify the traffic signboard into the selected classes with
an accuracy exceeding 95%.
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Figure 2. GTSRB dataset and its class description.
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Table 3. Results of detection accuracy (%) with random GTSRB detection under six weather conditions.

Observation

Accuracy: 99.94 % at
distance of 148 meter

Accuracy: 100 % at

distance of 52 meter

Accuracy: 99.85 % at
distance of 145 meter

Accuracy: 99.92 % at

distance of 150 meter

Accuracy: 98.30 % at
distance of 38 meter

Class Conditions Day Foggy Day Cloudy Dusk Foggy Night Night
Prohibitory . o]
Observation Accuracy: 99.99 %;t Accuracy: 99.52 % at | Accuracy: 99.98 % at | Accuracy: 99.95 % at | Accuracy: 99.97 % at | Accuracy: 99.99 % at
distance of 138 meter :]EECQ of 12 metgi distance of 124 meter | distance of 130 meter vdistance of 35 meter distance of 77 meter
Danger

Accuracy: 99.96 % at
distance of 60 meter

distance of 130 meter | distance of 90 meter

Mandatory
Accuracy: 99.93 % at | Accuracy: 98.47 % at | Accuracy: 99.72 % at | Accuracy: 99.84 % at | Accuracy: 98.70 % at | Accuracy: 99.92 % at
Observation distance of 150 meter | distance of 55 meter distance of >150 distance of 150 meter | distance of 30 meter distance of 45 meter
meter
- 5
- -
- o =
Observation Accuracy: 99.93 % at | Accuracy: 99.91 % at | Accuracy: 99.88 % at | Accuracy: 99.85 % at | Accuracy: 99.98 % at | Accuracy: 99.82 % at

distance of 125 meter

distance of 95 meter distance of 60 meter distance of 30 meter

4.2.1. Analysis of detection accuracy (%) with
random GTSRB detection under six weather
conditions

This analysis primarily centres on the detection capa-
bilities of the YOLOv4 DarkNet53 model, especially
after being influenced by the proposed VFF algorithm.
This model involves furnishing the model with clearer
frames, which becomes notably crucial under certain
weather conditions. For instance, in foggy day, foggy
night, and standard night scenarios, the model required
closer proximities to detect with precision. The detailed
analyses is summarized per class as follows:

Prohibitory: Achieved near-perfect detection during
the day at 138 meters, but on foggy days, the model
required a much closer range of just 12 meters. Per-
formance remained high during cloudy conditions and
dusk at 124 and 130 meters respectively. Foggy nights
and standard nights required distances of 35 and 77
meters for optimal detection.

Danger: Exhibited optimal performance during the day
at 148 meters and on foggy days at a reduced 52 meters.
Cloudy conditions and dusk demanded 145 and 150
meters respectively. However, on foggy nights, accuracy
slightly dipped at 38 meters, but rebounded on standard
nights at 60 meters.

Mandatory: Consistently detected during the day and
at dusk at 150 meters. On foggy and cloudy days, the
model required 55 meters and distances greater than
150 meters respectively. Foggy nights and standard
nights needed 30 and 45 meters for accurate detection.

Priority: Demonstrated consistent performance across
all conditions. During the day, it detected optimally

at 130 and 90 meters on foggy days. Cloudy condi-
tions, dusk, foggy nights, and standard nights required
distances of 125, 95, 60, and 30 meters respectively.

In essence, while the YOLOv4 DarkNet53 model
showed high accuracy across all classes, its detection
range varied significantly based on weather conditions,
with foggy scenarios necessitating closer proximities
for accurate detection. It is clearly depicted in Table 3.

4.2.2. Analysis of accuracy (%) for traffic signs in
close proximity but at different distances

In our study, we selected a traffic junction point at ran-
dom, which has multiple traffic signboards separated by
specific distances. For instance, there’s a 15-meter gap
between the prohibitory sign (TS10-No Overtaking)
and the priority sign (TS43-Stop). Likewise, there’s a
25-meter distance between the mandatory sign (TS33-
Go right) and the priority sign (TS43-Stop). It’s impor-
tant to note that the danger and priority classes are
positioned at the same location but are separated by
a minimal distance of 2 meters. Fig. 3 illustrates the
model verification in different environmental condi-
tions. We observed variations in accuracy percentages,
particularly for the Prohibitory and priority classes dur-
ing foggy days, foggy nights, and nights. This vari-
ation can be attributed to cross-validation conflicts
within the classes. For instance, within the prohibitory
class, there’s a conflict between TS10-no overtaking
and TS11-no overtaking trucks. Similarly, within the
priority class, we observed variations due to conflicts
between TS28-pedestrian crossing and TS29-school
crossing, which is clearly depicted in Table 4. Such
cross-validations extend the execution time, reducing
the detection accuracy. Consequently, more accurate
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(a) (b)

Prohibitory (99.57)

Mondatory [99.97)

(d) (e)

Prohibitory [97.47]

Donger (99.88)

Mondatory [91.00) Wondatory [97.47)

®

Figure 3. Model verification in different environmental conditions. (a) Day, (b) Foggy Day, (c) Cloudy, (d) Dusk, (e) Foggy Night, and

(f) Night.

Note: traffic signboards in close proximity but at different distances.

Table 4. Results of YOLOv4 DarkNet53 model verification in various weather conditions.

Color Foggy Foggy
Class and Day Day Cloudy Dusk Night Night
shape
Prohibitory O 99.85 97.09 97.71 99.87 97.47 99.29
Danger A 99.87 99.95 99.93 99.93 99.92 99.88
Mandatory . 99.96 99.94 99.9 99.93 99.57 99.86
Priority . 99.93 99.98 99.98 99.97 91 97.47

detection is achieved when the vehicle is closer to the
target point. For the prohibitory class, the detection
accuracy is as follows: during the day it’s 99.85%, on
foggy days it drops slightly to 97.09%, on cloudy days
it’s 97.71%, during dusk, it’s at a high of 99.87%, on
foggy nights it’s 97.47%, and during regular nights it’s
99.29%. For the danger class, the accuracy remains con-
sistently high across all conditions: 99.87% during the
day, 99.95% on foggy days, 99.93% on cloudy days and
dusk, 99.92% on foggy nights, and 99.88% during the
night. The mandatory class has the following accura-
cies: 99.96% during the day, 99.94% on foggy days,
99.9% on cloudy days, 99.93% during dusk, 99.57% on
foggy nights, and 99.86% during the night. Lastly, for
the priority class: the accuracy is 99.93% during the
day, 99.98% on foggy days, 99.98% on cloudy days,

99.97% during dusk, it drops to 91% on foggy nights,
and recovers to 97.47% during regular nights.

Table 4 reveals that under various weather condi-
tions such as foggy days, cloudy weather, foggy nights,
and nighttime, the detection accuracy for prohibitory
and priority signs is notably lower compared to other
categories. This observation stems from simulation
video frames in CM, which were used to test traffic
signboard detection under various weather scenarios.
The diminished detection accuracy in these condi-
tions is attributed to reduced visibility from greater
distances; the system only recognizes the signs when
the vehicle is relatively close to them. Consequently,
the detection performance falls short of its standard
accuracy levels. However, the implementation of the
proposed VFF algorithm offers a solution by ensuring
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Figure 4. Evaluation chart. (a) Progression of average loss and mAP against the number of iterations during model training, and (b)

Evaluation metrics of the entire 8000 iterations.

high detection accuracy from longer distances relative
to the target point, thereby correctly identifying all four
types of traffic signs regardless of the weather con-
ditions. An improvement ranging from 2% to 5% in
detection accuracy was noted with the VFF algorithm
during foggy days (up to 99.24%) and cloudy conditions
(up to 99.86%) for the prohibitory class. In the case
of the priority class, the accuracy increased to 96.15%
on foggy nights and 99.62% at night, after applying the
VEFF algorithm.

4.3. Evaluation metrics

Figure 4 (a) presents the output chart of average loss
and mean Average Precision (mAP) against the number
of iterations during model training. In the graph’s early
stages, the average loss begins at a notably high value, a
common trait for models in their initial training phase.
However, as the number of iterations increases, the loss
shows a marked decline. This trend is emblematic of the
model progressively refining its predictions, improving
its alignment with the true labels of the training data.
Generally, a model that exhibits a lower average loss
is indicative of increased precision in its predictions.
While the average loss gives insight into the model’s
evolving predictive capability, the mAP provides a mea-
sure of its accuracy over time. The mAP values, as
displayed atop the graph, undergo fluctuations initially
but seem to stabilize around a commendable 97% in the
latter stages. This highlights the model’s proficiency in
accurately predicting the correct labels as training pro-
gresses. Specifically, an average loss can typically range
from as low as 0.05 (in scenarios with a small model
and a less complex dataset) to as high as 3.0 (when deal-
ing with a larger model trained on intricate datasets). In
the context of the traffic signboard detection that this
graph represents, the model achieves an average loss

of 0.098. This value, coupled with an mAP of 96.6%,
signifies a highly precise model. Overall, the graph illus-
trates a successful training progression. The model’s
loss decreases significantly, indicating it’s making better
predictions as it learns, and the mAP values stabilize at
a high percentage, showing that the model is achieving
high precision in its predictions.

The evaluation matrix illustrates precision, recall,
F1 score, True Positive (TP), False Positive (FP), False
Negative (FN), average IoU, and mAP for the 8000 iter-
ations depicted in Fig. 4(b). As the iterations progress,
FP and FN identifications decrease, while TP increases.
This leads to an enhancement in both precision and
recall with each iteration. The model is becoming more
adept at correctly identifying objects, resulting in fewer
FP and FN identifications. The F1 score also shows an
increasing trend with each iteration. An average Inter-
section over Union (IoU) greater than 50% is utilized to
calculate the mAP of the model. As observed, the aver-
age IoU increases with each iteration, and concurrently,
the mAP also rises.

Tables 5 and 6 provides a detailed evaluation of
four distinct traffic signboard classes across different
environmental conditions. This assessment uses sev-
eral key metrics, including mAP, Recall, Precision, F1-
score, TP, FP, and Average Intersection over Union
(Avg. IoU). The data specifically highlights the perfor-
mance of a newly created pre-processed video, which
underwent contrast and brightness enhancement by
CM, when fed into the YOLOv4 framework with the
proposed VEF algorithm. The table aids in comparing
the efficacy of the detection model under various condi-
tions, such as day, foggy day, cloudy, dusk, foggy night,
and night.

The comparative analysis distinctly showcases the
superiority of the proposed YOLOv4 CSPDarkNet53
model in traffic signboard detection across diverse
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Table 5. Evaluation metrics includes prohibitory and danger.

Class Prohibitory Danger
Envi. mAP  Recall  Precision  F1-score TP FP Avg.loU mAP  Recall Precision  F1-score TP FP Avg.loU
Day 0.8 0.85 0.76 0.8 220 30 0.7 0.78 0.83 0.75 0.79 215 35 0.69
Foggy day 075 08 0.71 0.75 205 45 0.67 073 078 0.7 0.74 200 50 0.66
Cloudy 0.77 0.82 0.73 0.77 210 40 0.68 0.75 0.8 0.72 0.76 205 45 0.67
Dusk 0.78 0.83 0.74 0.78 213 37 0.69 0.76 0.81 0.73 0.77 208 42 0.68
Foggy night 0.72 0.77 0.69 0.73 198 52 0.65 0.7 0.75 0.68 0.71 193 57 0.64
Night 0.7 0.75 0.67 0.71 190 60 0.63 0.68 0.73 0.66 0.69 185 65 0.62
Table 6. Evaluation metrics includes mandatory and priority.
Class Mandatory Priority
Envi. mAP  Recall Precision F1-score TP FP Avg.loU mAP  Recall Precision F1-score TP FP Avg.loU
Day 0.79 0.84 0.76 0.8 217 33 0.7 0.81 0.86 0.78 0.82 223 27 0.71
Foggy day 0.74 0.79 0.72 0.76 207 43 0.68 0.76 0.81 0.73 0.77 210 40 0.69
Cloudy 0.76 0.81 0.74 0.77 213 37 0.69 0.78 0.83 0.75 0.79 218 32 0.7
Dusk 0.77 0.82 0.75 0.78 215 35 0.7 0.79 0.84 0.76 0.8 220 30 0.71
Foggy night  0.71 0.76 0.7 0.73 200 50 0.66 0.73 0.78 0.71 0.74 205 45 0.67
Night 0.69 0.74 0.68 0.71 193 57 0.64 0.71 0.76 0.69 0.72 198 52 0.65
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Figure 5. Comparative analysis of traffic signboard detection methods.

weather conditions as shown in Fig. 5. Even when jux-
taposed with established detection methodologies such
as R-CNN, Fast R-CNN [30], Faster R-CNN [31], SSD
[32], and YOLOv2 [33], the proposed model consis-
tently registers a remarkable detection accuracy of 97%.
This unvarying high performance across all conditions
underscores the model’s robustness and adaptabil-
ity. The enhancements incorporated into the YOLOv4
CSPDarkNet53 evidently render it a more efficient and
reliable choice for real-world applications, particularly
in dynamic environments where weather variations
can pose significant challenges to accurate traffic sign
detection.

5. Conclusion

The real-time testing and validation of object detec-
tion models have been simplified using the proposed
method. In this study, the YOLOv4 object detec-
tion and classification model was trained using the

GTSRB dataset. The model was validated in various
environmental conditions such as day, foggy day,
cloudy, dusk, foggy night, and night using the VFF
approach, and was tested at a vehicle speed of 72 km/hr.
Impressively, the model recognized traffic signs with an
accuracy exceeding 95% at a detection speed of 30 fps
under these varying conditions. A comparative anal-
ysis was performed by juxtaposing the model’s traffic
sign detection results with the ground truth detection
list from CM. This comparison provided insights into
the model’s accuracy, detection range, and the number
of TP, FP, and FN detections. Such a method makes it
convenient to pinpoint inconsistencies in object iden-
tification for specific classes, thereby guiding dataset
improvements and subsequent model retraining. The
VEFF plays a pivotal role in fine-tuning the model to
enhance its performance. A salient feature of the pro-
posed method is its seamless compatibility with var-
ious object detection models, including R-CNN, Fast
R-CNN, Faster R-CNN, SSD, and YOLO. Moreover,



VEF expedites the validation process demonstrates a
noteworthy improvement in accuracy, achieving a 2%
to 5% increase across diverse environmental conditions
such as foggy days, overcast skies, fog-enshrouded
nights, and clear nights. Given that CM is a simula-
tion tool tailored for automotive environments, this
approach is ideally suited for all automotive object
detection models, facilitating testing and validation in
real-world scenarios. It’s worth noting that this study
didn’t encompass rain and snow conditions due to lim-
itations within the CM tool. Looking ahead, there’s
potential to augment this study by integrating VFF with
other simulation tools, enabling the evaluation of object
detection models under a broader spectrum of weather
conditions.
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