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ABSTRACT

Pulmonary diseases impact lung functionality and can cause health complications. X-ray imag-
ingis aninitial diagnostic approach for evaluating lung conditions. Manual segmentation of lung
infections from X-rays is time-consuming and subjective. Automated segmentation has gained
interest to reduce clinician workload. Semantic segmentation involves labelling individual pixels
in X-rays to highlight infected regions. This article presents PulmonU-Net, an innovative semantic
segmentation model using PulmonNet modules as the base network to highlight infected areas
in chest X-rays. PulmonNet modules leverage global and local chest X-ray characteristics to create
intricate feature maps. Incorporating leaky ReLU activation enables uninterrupted neuron func-
tioning during learning. By adding PulmonNet modules in the encoder’s deeper layers, the model
addresses vanishing gradients and improves dice similarity coefficient to 94.25%. Real-time test-
ing and prediction visualization demonstrate PulmonU-Net’s effectiveness for automated lung
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infection segmentation from chest X-rays.

1. Introduction

Pulmonary diseases cover an extensive range of ail-
ments ranging from mild to potentially deadly infec-
tions that prevent the optimal functioning of the lungs
and profoundly impact health and well-being [1]. It is
essential to promptly identify and implement preven-
tive measures to mitigate the consequences of these
respiratory ailments as many of them tend to worsen
over time [2]. X-ray imaging is often used as an initial
diagnostic method for assessing lung diseases [3,4].
Healthcare practitioners can recognize abnormal-
ities and make informed decisions regarding future
diagnoses and treatments with the aid of segmenta-
tion, which highlights the diseased lung area in X-rays
[5]. However, the manual annotation of the contami-
nated lung region is a demanding and labour-intensive
process that requires skilled personnel and significant
resources [6]. Hence, there is a substantial need for
automated segmentation, due to its potential to alleviate
the considerable workload associated with manual seg-
mentation. Computerized segmentation employs deep
learning algorithms to precisely identify and delineate
the region of infection in the chest radiographs [7,8].
U-Net is a dedicated semantic segmentation frame-
work specifically crafted for biomedical purposes which
labels every individual pixel to localize the area of
abnormality [9]. One advantage of U-Net is its ability
to learn features from limited data samples, while the

skip connections help accurately locate features by pre-
serving spatial information [10]. The U-Net encoder
has been modified to incorporate richer feature rep-
resentation patterns [11-13]. Some notable backbone
enhancements include residual blocks [14] to train the
network faster and DenseNet [15] to mitigate van-
ishing gradients. However, the inclusion of long skip
connections increases the model complexity and dense
connections introduce redundant parameters.

Therefore, the focus of this research is to introduce
an innovative semantic segmentation model named
PulmonU-Net that replaces the backbone of the con-
ventional U-Net model with PulmonNet modules to
generate dense predictions. PulmonNet modules incor-
porate filters of various sizes to handle features at mul-
tiple scales. The model integrates the local and global
features of X-rays to alleviate challenges like vanishing
gradient and overfitting, and it concurrently enhances
GPU memory utilization due to its smaller parameter
count in contrast to ResNet and DenseNet. The output
generated by the model is a binary segmented mask that
illustrates the anomaly and the background when the
model is trained using chest radiographs comprising
four distinct forms of lung illnesses.

The research  presents
contributions:

several  significant

1. The backbone of the U-Net segmentation model
is replaced with PulmonNet modules to present
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the PulmonU-Net semantic segmentation model
which has produced promising outcomes in the
categorization of pulmonary diseases.

2. Through the utilization of data extracted from
X-rays at varying scales, the fusion process aids
in segmenting infections with different sizes, effi-
ciently addressing concerns related to overfitting
and vanishing gradients.

3. The utilization of Leaky ReLU as the activation
function makes sure that the neurons remain active
throughout the feature learning process.

4. Real-time data is used to test the PulmonU-Net
model to evaluate its ability to manage a wide
variety of instances and produce reliable segmen-
tations even under challenging circumstances.

The structure of the article unfolds as follows: The
recent trends in the field concerning the localization
of medical images are covered in Section 2. Section 3
clarifies the essential details regarding the dataset and
delineates the framework of the PulmonU-Net model.
In Section 4 the article focuses on the assessment of
the proposed approach, encompassing both quantita-
tive and qualitative performance metrics and Section 5
concludes the article by summarizing key findings and
outlining future research considerations.

2. Related works

U-Net segmentation was presented by Olaf Ron-
neberger et al. and trained for three biological tasks by
assigning a class label to each pixel. To achieve more
accurate segmentations, elastic deformations have been
applied to the training images. Skip connections con-
catenate the local details with the up-sampled feature
maps improving the overall localization process [10].
To ensure semantic comparability between the encoder
and the decoder feature maps prior to fusion, UNet+-+
redesigns the skip paths by including dense convolu-
tions. The deep supervision of the model accurately
segmented multi-scale lesions when evaluated using
medical imaging datasets [16].

The DoubleU-Net introduced by Debesh Jha et al.
employed two U-Nets in the analysis path to effectively
capture the deep features and generate the output mask.
With a greater number of model parameters, DoubleU-
Net suppressed the performance of U-Net [17]. In
DUNet, the retinal vessels are captured by stacking the
encoder and the decoder with the deformable convolu-
tion blocks. This approach adjusts the receptive fields
based on the shape and scale of the retinal vessels
enabling the model to capture even the tiny and weakest
vessels with a global accuracy of 96.97% [18].

Xiaomeng Li et al. improved the segmentation per-
formance of the liver lesions by optimizing the inte-
grated intra and inter-slice features. The H-DenseUNet
model effectively tackled the limitations of 2D

convolutions in capturing volumetric contexts and the
high memory usage of 3D convolutions [19]. Ozan
Oktay et al. trained the U-Net model with attention
gates for the dense prediction of the pancreas from the
CT images. The attention coeflicients suppress the irrel-
evant regions from the CT images thereby enhancing
the capacity of the model without the need for multiple
modules [20].

The Sparse-MLP incorporated by Jiaming Luo et al.
into the U-shaped architecture is an efficient computer
vision framework for mass delineation in mammo-
grams. The encoder and decoder in the convolutional
stage are connected through skip connections, allow-
ing for the fusion of their respective features. The use
of MLP blocks enhances the extraction of supplemen-
tary information from the feature maps [21]. In [22]
MSD-Net was proposed to segment three different cate-
gories of COVID-19 infection from the CT images with
a better specificity rate. This model utilizes ResNet-101
as the encoder backbone and is capable of segment-
ing infections of varying sizes while refining the feature
maps.

Short skip connections were added to U-Net by
Michal Drozdzal et al. to enhance longer ones which
ensures an uninterrupted flow of gradients in deep net-
works. With the two connections, the model speeds
up the training process and increases the convergence
of biomedical delineation [14]. To address the inade-
quate sensitivity of existing models in segmenting tiny
blood vessels from retinal fundus images, DR-VNet was
proposed in [23]. The model employs three encoders
and decoders, utilizing DenseNet and ResNet back-
bone patterns to extract spatial information from input
images.

3. Materials and methods

PulmonU-Net aims to precisely detect and segregate
the impacted regions of four specific pulmonary abnor-
malities namely COVID-19, lung opacity, tuberculosis
and pneumonia, from radiographs by generating binary
masks that represent the abnormality and the back-
ground. The proposed approach follows a workflow
consisting of four essential stages: Data collection, Data
pre-processing, Model training, and Model evaluation,
as illustrated in Figure 1.

3.1. Data collection

The PulmonU-Net segmentation model has been
trained on two heterogeneous datasets from the Kag-
gle database: the COVID-19 Radiography Database
[24,25] and the Tuberculosis (TB) Chest
X-ray Database [26]. The combined data collection
consists of three classes namely COVID-19, lung opac-
ity and pneumonia from the COVID-19 Radiography
Database and Tuberculosis class from the Tuberculosis
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Figure 1. Procedural sequence of PulmonU-Net.

(TB) Chest X-ray Database. 50 infected chest radio-
graphs from each class are manually annotated by a
professional radiologist, resulting in the generation of
corresponding binary masks. Out of the 200 annotated
images, 90% (180 images) are used for training and val-
idation, while 10% (20 images) are allocated for testing
purposes. The study was granted ethical authorization
by the SRM Medical College Hospital and Research
Centre located in Kattankulathur, India. The hospital
also contributed 25 real-time chest X-ray images that
are utilized to assess the model.

3.2. Data pre-processing

The chest radiographs acquired from three distinct
sources are resized to a standardized dimension of
224 x 224. This resizing was performed to strike a
balance between image resolution and computational
efficiency [27]. The utilization of data augmenta-
tion has been necessitated by the sparse amount of
annotated samples, in order to improve the gen-
eralization of the PulmonU-Net model [28,29]. In
the pre-processing stage, six augmentation techniques
were employed, including image rotation, vertical and
horizontal shifting, shearing, zooming in or out, and
horizontal flipping of the radiographs [30,31].

3.3. PulmonU-Net

Localizing the anomaly in biomedical applications is
made easier with the help of the semantic segmen-
tation model U-Net, which is excellent at extracting
complex characteristics from small datasets. However,
recent enhancements to the U-Net algorithm aimed
at addressing overfitting and vanishing gradient issues
come at the cost of introducing redundant parameters
and increasing model complexity [32]. The PulmonU-
Net technique uses Leaky ReLU and multiscale feature
concatenation to provide better segmentation to handle
these barriers.

3.3.1. Architectural details

The PulmonU-Net, specifically crafted for segment-
ing lung diseases is built upon the U-Net architec-
ture, featuring convolutional layers enhanced by Pul-
monNet modules. Figure 2 presents the layout of the
model which consists of a compressing path rooted with
encoders, an expanding path rooted with decoders, and
the incorporation of skip connections.

The encoder layers responsible for feature extraction
use PulmonNet modules as feature extractors which
has produced promising outcomes in the classifica-
tion of pulmonary diseases. Batch normalization and
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Figure 2. PulmonU-Net architecture with feature fusion approach.

a leaky ReLU activation function are added to each
encoder layer to maintain training stability and guar-
antee increased neuron activity throughout the train-
ing process. As the encoder layers progress towards
the bottleneck, the spatial resolution of the feature
maps is decreased while their depth is increased
by the convolutional and pooling operations carried
out by the encoder layers. The initial encoder layers
comprise convolutional layers that extract the shal-
low features of the input chest radiographs. Many
existing algorithms encounter challenges in seam-
lessly merging the deep and shallow features to retain
fine details, resulting in constraints on segmentation
accuracy [33].

To enhance the feature fusion ability, the PulmonU-
Net model uses PulmonNet modules at the deeper lay-
ers of the encoder and mitigates the effect of vanishing
gradient and overfitting. These PulmonNet modules
in the deeper layers merge the global features with
the local features of the chest radiographs to produce
more intricate feature maps. Figure 3 presents the three
PulmonNet modules involved in the feature fusion
process.

Incorporating filters of different sizes at the same
level enables the model to capture a wide range
of features from the input images [34]. The Pul-
monNet module 1 incorporates three filters of sizes
Ix 1, 3x3 and 5x5 for deep feature extraction
to capture multi-scale features. The concatenated
multi-scale deep features of dimension 56 x 56 x 192
are fused with the low-level features of dimension
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v
f
S
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mp Conv1x1
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56 x 56 x 64. The PulmonNet module 1 output fea-
tures with dimensions 56 x 56 x 256. Subsequently, a
max pool layer follows module 1 to reduce the spa-
tial dimension to 28 x 28 x 256 which is fused with
the down-sampled low-level features of dimension
28 x 28 x 64, resulting in dimensions of 28 x 28 x 320.
The down-sampled high-level features are passed
through 512 convolutions to produce feature maps
of size 14 x 14 x 512. These feature maps are fused
with the down-sampled low-level features of size
14 x 14 x 64 and outputs 14 x 14 x 576 at PulmonNet
module 3. Down-sampling of low-level features is done
to align their spatial aspects with the high-level features
for feature concatenation.

The decoders in the extended path reverse the
encoding process by enhancing the spatial resolution of
the feature maps, leading to a segmented output at the
pixel level. The feature maps produced at each encoder
layer are merged with the feature maps of their cor-
responding decoder layer through skip connections,
maintaining detailed spatial information from the input
images. The incorporation of a 1 x 1 convolution in the
concluding decoder layer is essential for channel lim-
itation in the feature maps. This process plays a vital
role in aligning the feature maps with the desired num-
ber of output classes, ultimately leading to the intended
result. The utilization of a sigmoid function in this layer
facilitates the discrimination between the infected area
and the background. Dropout layers are utilized in the
PulmonU-Net model to promote the learning of more
generalized features and prevent overfitting [3].
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Figure 3. PulmonNet modules involved in the feature fusion process.

3.3.2. Feature concatenation

The PulmonNet modules employed at the deeper lay-
ers of PulmonU-Net undergo feature concatenation.
Module 1 involves multi-scale deep and local fea-
ture concatenation, while the subsequent modules per-
form concatenation with the extracted deep and local
features.

The combined features of module 1:

h = lfafnl (1)

The deep multi-scale features of module 1:

far = [fiax)>figx3)fiGxs)] (2)

where fi(1x1) € Rwxar 5 56 % 56 x 64 denotes the
feature map of 1 x 1 filter. h, w and c represent the
height, width, and number of channels respectively.
figxs) € Rh*wxe2 _ 56 % 56 x 64 denotes the feature
map of 3 x 3filter and fi(5x5) € Rhxwxes 5 56 56 x
64 denotes the feature map of 5 x 5 filter.

fdl c Rhxwx(c1+cr+c3) _>fd1 c Rhxwxecs_y 56« 56
x 192 represents the deep multi-scale features of mod-
ule 1 and fj; € R""*% — 56 x 56 x 64 denotes the
low-level feature maps.

fl e Rh><w><(C4+cs) _>f1 c RhXWXC6 — 56 X 56 X
256 represents the combined deep multi-scale and low-
level features of module 1.

The combined features of module 2:

f2 = [faz- fi2] (3)

where f;; € RP*"*% — 28 x 28 x 256 represents the
down-sampled deep feature mapsand fi, € R"*"*¢ —
28 x 28 x 64 represents the down-sampled low-level
feature maps.

f2 c thwx(c6+cs) _>fZ c thw><C7 5 28 x
28 x 320 represents the combined deep and low-level
features of module 2.

The combined features of module 3:

13 = [fas- fi3 (4)
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Table 1. PulmonU-Net hyper-parameters.

Hyper-Parameter Value
Optimizer Adam

Epochs 200

Batch size 32

Learning Rate 0.001
Momentum B1 =0.9and 2 = 0.999
Weight Decay 0

Epsilon 1e~7

Leaky ReLU Slope (@) 0.001

Table 2. Evaluation metrics comparison of PulmonU-Net with
U-Net.

Classification Metrics (%) U-Net PulmonU-Net
Precision 0.8312 0.9130
Recall 0.8580 0.9230
F1 Score 0.8670 0.9587
Specificity 0.8704 0.9480
Accuracy 0.8400 0.9708
Segmentation Metrics (%) U-Net PulmonU-Net
DSC 0.8687 0.9425
loU 0.8232 0.8830

where f;3 € R""*% — 14 x 14 x 512 represents the
down-sampled deep feature maps passed through 512
convolutions and fj3 € R™*"*¢ — 14 x 14 x 64 rep-
resents the down-sampled low-level feature maps.

f € RPxwxlestes) e RPXwxes 5 14 % 14 x
576 represents the combined deep and low-level fea-
tures of module 3.

3.3.3. Model training

The PulmonU-Net model undergoes training for 200
epochs, employing 5-fold cross-validation with the
resized chest radiographs and their corresponding
binary masks of size 224 x 224 x 3. The mask layer
obtained has a size of 224 x 224 x 1, featuring the
white representation of the affected portion of the lung
region, while the rest of the background is depicted in
black. The predicted binary mask is compared with the
ground truth using the binary cross-entropy loss func-
tion. During backpropagation, the weights and biases
are adjusted in every epoch using the default hyper-
parameters of the Adam optimizer. Through weight
updates, the model progressively captures more com-
plex features from the training set, which helps it
produce accurate segmentations on unobserved data.
Table 1 reports the hyper-parameters used to train the
PulmonU-Net model.

3.4. Model evaluation

After being trained, the PulmonU-Net model is loaded
and undergoes testing. The predicted binary masks are
compared with their ground truth and the model is
evaluated using the segmentation metrics.

4. Experiments and results

A thorough comparative analysis has been conducted
to systematically assess the PulmonU-Net model in
relation to the baseline U-Net segmentation model.
Furthermore, a visualization of the real-time predic-
tions made by both models on data samples has been
provided.

4.1. Experimental parameters

The PulmonU-Net model, which is specifically devel-
oped for segmenting pulmonary diseases, undergoes
training on the Google Colaboratory platform for a
total of 200 epochs. Through extensive experimen-
tation, it has been determined that the most effec-
tive value for the slope of the Leaky ReLU activation
function is 0.001. To enhance the model’s ability to
capture intricate features, the Adam optimizer is uti-
lized along with the binary cross-entropy loss func-
tion to adjust the weights and biases. The output layer
of the model employs the sigmoid activation func-
tion, enabling pixel-wise classification and generating
a binary segmented output.

4.2. Performance metrics

The effectiveness of the PulmonU-Net model in pre-
cisely identifying regions of interest in a chest radio-
graph is measured through the application of mul-
tiple assessment criteria. To calculate these metrics,
four measures are necessary: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Nega-
tives (FN). TP represents the number of infected pixels
correctly identified, TN denotes the number of back-
ground pixels correctly identified, FP represents the
number of pixels incorrectly identified as infected, and
EN represents the number of pixels incorrectly iden-
tified as background. In terms of infection detection,
the five evaluation metrics used are precision, recall,
F1 score, specificity, and accuracy. On the other hand,
infection segmentation is assessed using the Dice Sim-
ilarity Coefficient (DSC) and Intersection over Union
(IoU).

.. P
Precision = ——— (5)
TP + FP
Sensitivity / Recall L (6)
ensitivi ecall = ——
¥ TP + FN
Precision x Recall
F1 Score = 2 x — (7)
Precision + Recall
TN
Specificity = ————— 8
pecificity TN + Fp (8)
TP+ TN
Accuracy = + 9

TN + TP + FN + FP

To assess the agreement between the ground truth
and predicted masks, two segmentation parameters are
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Figure 4. Performance curves of PulmonU-Net.

commonly used. The first one is the Dice Similar-
ity Coefficient [35], which determines the fraction of
overlapping pixels between the two masks relative to
the total number of pixels in both masks. The second
parameter is the Intersection over Union (IoU), which
measures the percentage of common pixels between the
ground truth and predicted masks with respect to the
pixels that belong to either of the masks [36].

2% |[Ng N N;
Dice Coefficient = u (10)
ING| + |Np|
Ng NN,
Intersection over Union = M (11)
ING U Np|

where Ng signifies the number of pixels in the ground
truth mask and Np signifies the number of pixels in the
predicted mask.

4.3. Results and discussion

To evaluate the effectiveness of PulmonU-Net, a set of
20 data samples is utilized, with each class (COVID-
19, Lung opacity, Pneumonia, and Tuberculosis) con-
tributing 5 images. The testing process resulted in a
binary segmented mask that accurately distinguishes
the infected lung region from the background. The
PulmonU-Net model is trained on a 4-class segmen-
tation dataset for 200 epochs, achieving an impressive
training accuracy rate of 98.25%. By analyzing the per-
formance graphs presented in Figure 4, it becomes
apparent that the accuracy of the training curve gradu-
ally increases until it reaches 175 epochs. Subsequently,
between epochs 176 to 200, the accuracy remains rela-
tively consistent, staying around 98%. This signifies that
the PulmonU-Net model has achieved optimal feature
learning from the 4-class segmentation dataset. Con-
versely, the validation accuracy has reached its peak at
95.08%. The minimal disparity between the training
and validation accuracies serves as evidence that the
model has successfully avoided both underfitting and
overfitting. The accuracy and loss graphs depicted in

0 25 50 75 100 125 150 175 200
Epoch

b) Training and Validation Loss

Figure 4 showcase the exceptional performance of the
PulmonU-Net model.

To compare its performance, the same dataset was
used to train and test the U-Net model for an equal
number of epochs. The U-Net model achieved a train-
ing accuracy of 91.44%, which is 6.41% lower than that
of the PulmonU-Net model. The performance curves of
both the U-Net and PulmonU-Net models are visually
represented in Figure 5.

Table 2 presents a quantitative comparison of the
PulmonU-Net model and the U-Net model in terms
of their performance. The proposed PulmonU-Net
model, which integrates the features, achieves a dice
coefficient of 94.25%, surpassing the baseline U-Net
model by 7.38%. Furthermore, it attains an IoU of
88.3%, which is 5.98% higher than the U-Net model.
These findings consistently demonstrate the supe-
rior performance of the PulmonU-Net model over
the U-Net model, with a testing accuracy rate of
97.08%.

Figure 6 illustrates the comparison chart, which dis-
plays the classification metrics and segmentation met-
rics of both the PulmonU-Net model and the baseline
U-Net model. The PulmonU-Net model exhibits an
impressive capability to accurately detect infected pix-
els, while also effectively minimizing the occurrence of
false positives. This is evident from its exceptional pre-
cision and recall metrics, which highlight its efficacy
in accurately recognizing and segmenting the desired
regions. The F1 score of 95.87% and specificity of
94.80% of the PulmonU-Net model prove its excellence
in performance.

The SRM Medical College Hospital and Research
Centre in Kattankulathur, India granted ethical
approval for this study. A total of 25 real-time chest
X-ray images, representing four different classes, are
collected from the hospital to assess the performance of
the model. Figure 7 depicts a sample of the visual pre-
dictions of real-time data made by the PulmonU-Net
model and the baseline U-Net.
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The first row of Figure 7 presents the infected
sample X-ray images from each class. The second
and third rows represent the ground truth masks
and the predicted masks respectively. When segment-
ing the infected region, two scenarios can occur:
under-segmentation and over-segmentation. Under-
segmentation can lead to loss of information which
makes the model challenging to generate a robust seg-
mentation boundary. However, in the case of over-
segmentation, it is still possible to reconstruct the
infected region since no useful information is lost [37].
From the visualized results it can be observed that
the PulmonU-Net model highlights the infection effec-
tively close to the ground truth with negligible over-
segmentation in comparison with the baseline U-Net.

Despite the varying sizes of the infection in each
sample, the model effectively detects them using the
multi-scale filters of the PulmonNet modules, which
retain contextual information at different scales. The
PulmonU-Net model is specifically trained to segment
infections in four different lung diseases. In Figure 7,
each column represents a specific lung disease. Among
the four real-time samples, the PulmonU-Net model
successfully replicated the tuberculosis-infected sample

with a high dice coefficient of 95.02% and an IoU of
90.5%. In comparison, the U-Net model achieved a dice
coefficient of 75.02% and an IoU of 60.03% for the
same sample, which is 20% and 30% lower than the
PulmonU-Net model, respectively.

5. Conclusion and future works

Segmentation of chest X-ray images helps in coming up
with the apt medical treatment by diagnosing the spe-
cific lung condition. Automated segmentation is pre-
ferred over labour-intensive manual segmentation pro-
cedures. This research work has presented PulmonU-
Net, an innovative semantic segmentation model that
utilizes PulmonNet modules as the underlying network
to highlight the infected region in chest radiographs.
The PulmonNet modules have intricate feature maps
that are created by taking into account the global and
local characteristics of chest radiographs.

Leaky ReLU activation function is included in
these modules to ensure the uninterrupted function of
neurons throughout the learning process. The model
effectively addresses the vanishing gradient issue by
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incorporating PulmonNet modules in the deeper layers
of the encoder. This enhances.

The real-time testing of the semantic segmentation
model PulmonU-Net reveals the impressive capabili-
ties of the model in capturing fine-grained details and
accurately delineating object boundaries across diverse
data samples. The essence of PulmonU-Net lies in its
ability to leverage the richness of multi-scale features
and maintain active neurons throughout the training
process.

The model achieved 94.25% dice coefficient and
88.3% IoU. This reflects its accuracy and reliability,
making it well-suited for lung disease segmentation.
Though the effectiveness of PulmonU-Net in highlight-
ing infections across all four classes is notable, the
inability to differentiate between different infection cat-
egories may impact its utility in providing detailed diag-
nostic information. A prospective direction for future
research on the PulmonU-Net model is to encompass
multi-class segmentation and provide a quantitative
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assessment of infection severity within each class to
broaden its utility.
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