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1 . Introduction 

A high-energy representation for the scattering 

amplitude is a suitable tool for describing a number of 

properties of the hadron interaction at high energies 

(see reviews112> ). In order to obtain the so-called

eikonal representation for two-particle amplitudes, 

perturbation-theory series were summed in the four­

dimensionai Feynman-Dyson formalism3> by use of the 

quasipotential equation (QPE)1) and by the functional­

integration method in quantum field theory (QFT)
2> . 

In Ref.4), a high-energy representation for the

scattering amplitudes was derived in the framework of the 

QPES) using Fourier analysis on a three-parametric group of 

horospherical shifts embedded as a subgroup in the Lorentz 

group617> . This representation has the form

!2 = -t . (1.1) 

Here Pz is an ordering operator, in which ·the step functions

00 

J 
iaz 

8 (z) = 2!1 
e da , 

ea-1-1£-oo 

obtained by finite-difference analysis7 18>, are used

instead of the usual 8 functions; V
8(z) is a quasipotential

I\, operator in the space of "state vectors" IP>, with the two-
"' dimensional vector p = (p1,p 2) being an analogue of the im-

pact parameter. Formula (1.1) is a direct relativistic 

generalization of the eikonal representation of non-
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relativistic quantum mechanics9> . 
In this paper, a generalized eikonal representation 

(1 .1) for the scattering amplitude at high energies is 

derived by sunnning diagrams of a covariant Hamiltonian 

formulation of QFTlO) and diagrams of a three-dimensional 

formulation of QFT on the light coneli) ·• We consider the 

interaction Lagrangian i...<x) = g :1i' 2 
(x) � (x) : , where 1¥ (x) 

is a "scalar nucleon" with mass M and t(x) is a scalar 

meson with mass m. 

2. A generalized e�konal representation in

relativistic Hamiltonian theory

We demonstrate how the usual eikonal representation 

3 

is obtained in the framework of a three-dimensional formula­

tion of QFT by summing generalized ladder diagrams 

desdribing the scattering of two high-energy "nucleons". 

The summation is performed by the variational-derivative 

method (see Fig. 1). To this end let us recall the basic 

rules for construction of matrix elements. Suppose that 

all vertices of a given Feynman diagram are numbered. Then. 

the continuous dotted line of guasiparticles must connect 

all vertices and be oriented along the increasing vertex 

number. The internal solid lines of physical particles 

are oriented in the opposite direction, al�ng the decreasing 

vertex number . The factor 
�ff K�i£ 

corresponds to each
. 2 2 2 internal dotted line with the four-momentum AK (A =A0-I =1,

A
0>0) and the function � (+) 

(k)=8 (k0)cS(k2-M2) (D (+) 
(k)=8 (k0)x

xcS(k2-m2
)) corresponds to each internal "nucleon" (meson) line 
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with the four-momentum k. 

The sum of diagrams in Fig. 1 gives the following 

expression for the amplitude on the energy shell 

(i.e. when p1+p2 = q1+q2)

= lim 

pf,qf+M2

where G(p,qfx> = Jc1xc1x-eipx-iqx-G(x,x-lx> is the Fourier

transform of the one-particle Green function of a nucleon 

in the external field x(x)EA(x>,<x); it satisfies the

equation 

[a!-M2-gx(x)JGCx,x-,lx> = 6 (x-x-) •

(2 .1) 

The operators k and f',, which involve the derivative

operators over the external fields A
i
(icl,2) and,, have

the form 

ll(
A

= exp{-1g2fdudv!!'(Au-1v)D (-) 
(u-v)-O (lv-lu)D (+) 

(u-v86 A1 (!:6A2 (v) 

� = Jdz 6,�z) exp{Je<Az-Az1) d�<�
i
> dz1},

where D
<+> 

(x) = ±1(2u)-l f e+ikx o <+) (kldk is the negative­

(positive-) frequency part of the Pauli-Jordan commutator 

function. The operator (Kt
appears owing to the presence of

quasiparticles in the theory. 

The validity of formula (2.1) can be verified by 

perturbation expansion using the following formal properties 

of the 8 function: 
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n>2 ;(11) e (x1-x2) e (x·
2-x3) • • •  e (xn-xl) =O,

(iii) e n (x) = e (x) , n>l;
(2 .2) 

(iv) I e(xi -xi )e(xi -xi ) • • •  e(xi -x. ) = 1 .
over all n! 1 2 2 3 n-1 1n 
permutations 

Let us compare (2.1) with the analogous formula of Refs. 3>

obtained by summing generalized ladder diagrams of the four­

dimensional Feynman-Dyson formalism (see Fig. 2): 

= lim 
2 2 2 Pi,ql+M

where 

O< 2 r C o2 

= exp{-ig J D (u-v) cSA (u)cSA (v) dudv}
1 2 

(2. 3) 

For the physical external lines, the relativistic 

Hamiltonian scheme coincides with the Feynman one, the action 

of the operator (I(, leads.to the multiplication by unity,

and the chain of diagrams of Fig. 1 coincides with the one 

given in Fig. 2, i.e. the relation (2.1) gives the same 

result as (2.3). 

In the I k1kj = 0 approximation2 '3) for the amplitude

T(p1,p2;q1,q2):T(s,t), we obtain the eikonal representation

2 dkl -ikib 
T(s,t) = -2isJd2be-ilb(exp[�; J--�

2 
e

2 
� 

2
]-1), A2=-t. (2.4)

(21r) m +k
l 

In order to derive the generalized eikonal representation 

(1.1), let us examine, in the ladder approximation, completely 
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Fig. 1 

Fig. 2 

- .a ,c '"",
P, -- q, --

rr

· -
\ I I \ --ri:- +I+\ , + ... 

-P2-.U.::--q2 - , l,,c•c11x·1 --- _,. " · ........... 

Fig. 3 
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Fig., 

Fig. 5 

2n -- q2
lx·rµ.x·1 -

7 
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reducible (CR) diagrams describing the process under con­

sideration (Fig. 3). In the ladder approximation, we call 

a diagram a CR diagram if its irreducible components cor­

respond to one-meson exchange. (In what follows we omit 

the words "in the ladder approximation 11 for brevity. ) 

For one of the CR diagrams of the 2nth order in g, 

depicted in Fig. 4 (the number of all CR diagrams that differ 

in the way the vertices are connected by dotted lines, 

is equal to 2
n), one obtains the following expression 

� g
2n 

J 
2n-2 + 2n-l � Tn (s,t) = �--..._..--....._ rr dkj� (kj) · rr � x

(2n)3 (n-1)
j==o j==o J 

(2 .5) 

where k_1=P1, ko=P2
, k2n-1=q1, k

2n=q
2

, Ko=K, K2n=K', �;=kj-2
-kj.

When the integration is performed over k2j+2 (j�,1, • • •  n-2),

the expression (2. 5) takes the form 

� 2n 

J T
n (

s,t) == 31n-1) ·
(2TT) 

Now, integrating over K2j+l (j=0,1, • • •  ,n-1), we obtain:

(2. 6) 



"' 
Tn (s ,t) :::: 

g:2n

I (2,r) 3 (n-1)

A fDGH-ENERGY ••• 

n-2 

n 
j==o 

D <+> dk
2j+16 (k2j+1>

(+) + AK2j+2
)

dK2j+2 ] X 6 (62j+l K2j+2 
- ie

n-1 
n [ } 

j=o 2w2j+l

, - ( ( , ) 2_ ,2 2 1/2 
W2j+l - A62j+l 62j+l + m )  • (2.7) 

All subsequent calculations are carried out on the energy 

shell (K = K' = O). 

Suppose that at hfgh energies (i. e. when s = P2+ °",

2 t = (p1-q1) = const.), the terms K
2j in the denominators

of the type K
2j

-.>.62j+l+w2j+l of the integrand (2.7)

may be neglected (for a discussion of this approximation, 

see the Appendix), i.e. 

(2. 8) 

In this approximation the sum of all terms corresponding 

to 2n CB diagrams is equal to

K2j+2 - !£
(2. 9) 

9 

2 k k k 
v[Ck

1
(-)k

2 > 2J - g ic··(-)k::: k - ..1. Dk0- 1 £T. where - 2 ( )2 ' 1 2 1 M 1 M+koJ,m - k
1
-k

2 
-ie: 2 

We choose the four-vector). in the form 

P k2j+l + k2]· ). = =-------�-�� 
2 1/2 2 1/2 {P ) ( (k2j+l + k2j) ) 

(2.10) 
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Then expression (2.9) in the centre-of-mass system

(i. e. q1=-q2=q, p1=-p2=p) can be written as follows

(2.11) 

= E = 

Since high energies are carried by nucleon lines, 

(i. e. the essential contribution in (2.9) comes from the 
-1 -1regions E2j +l � Eq) ' E2j+l(E2j+l-Eq-i£) 

-1 can be substituted by Eq (E2j+l-Eq-i£), so

n-1 
= (2n) -3 (n-1) <ai > 

q 
)( 

n-1 
X Il 

j=o 
(2 .12) 

In order to find the asymptotics of (2. 12), we

apply the technique developed in Ref.4).

+ + '1" p(-)q = /l, 

and taking into account relations dn2j +l = dn1-, we can
j 

write (2. 12) in the form

(2 .13) 
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Using the relations (Ai(-)Xj)2 = cri. t;1
>

2 (see Ref . 4>),

we pass to holospherical coordinates! = (a,�), t. = (a.,� .) 
a. J J J 

in (2. 14) by use of the formulas El.+lj
3 

= Me J ,
-a a J 2a 

Elj
-lj

3
� Me 

j 
+ A y� e j

, lj = (lj
1
'lj

2
), c:Ullj

= e
jdajd2Yj•

Then we obtain 
2a. 2"' 

J 
n-1 e J da.d Y· n

2 Il ( J JJ Il V (!: ) , 
J ·=1 

a, 
J
0 =l J 

e J - 1 - i£

(2 . 15) 

where !'= 1. • t;1, !2 :=z. t1 e t;1 �· •• , -1.' = tn_2 • 1"��1 ,
· n-1

1.� = In-1·

The definitions of the operations (+) and e are given 

in Ref.7 >, for example. We have chosen q in the form

q = (O,O,q) and have taken into accoun� the fact that 

the following approximation holds for S>>M2,ltl
E, +l. 

I\ .  J 3 E+ + - E = (E, .E +).J . q)/M-E0 � E ( J M 
- 1) =

Aj (+) g q I\J q 3 � q 
a. 

E (e J - 1) • q 

i .. ( .. I\,') .. S nee 6 = 'ic'Yk (k=l, 2, • •  �,n), then ak
= 8k-l - �,

"'' 
ak"' "' .. "'' "' 

yk = e (yk-l - yk) when l�k�n-1 and 8k = an-l' yk = Yn-l
'\, '\, when k=n, where by definition a0:a, Yo=Y• Using in (2.15)

the operator Fourier transformation on the group T(3) 

= Jdz
j

d2i1j>d27><j><ip> IV(z�) l?>(j)> x

. .. i '\, '\,(j) ..
x· 8

-1ajzj- YjP -aj 

'\, and performing the integration over all Yj' we arrive at 

the expression 
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n-1 
i I aJ. (zJ.-zJ.+l)-iaz1 

n
�

l 
[
e�

_
j
_
=

_
l ��������d

_
a 
...
. 
1 

J·=1 a. 
e J - 1 - iE 

(2 .16) 

Taking into account that in the high-energy regime the rela­

tions�, r�l, ltl�r2 hold and perfonning the integration

over aj (j=l,2, ••• ,n-1), we obtain the· representation

· (2.17)

Thus, we have demonstrated that the sunnnation of the chain 

of diagrams (Fig. 3) at high energies leads to the re-

presentation (1 . 1) for the amplitude T (s,t) = I Tn (s,t),
n=l 

which was derived in Ref.4) from the QPE.

3. A generalized eikonal representation in a three­

dimensional fonnulation of QFT on the light cone

According to the diagram technique of a three-dimensional 

formulation of QFT on the light cone11) , the dotted line cor­

responds to the four-momentum µK; here the four-vector µ, 
2 2 +2 in contrast to the four-vector A, is light-like:µ �µ

P
-µ =O,

µ0>0. I� this case the CR diagram of the 2nth order in g,

depicted in Fig. 4, can be expressed by the expression 



T
n

(s,t) = g
2n 

J (2,r) 3 (n-1)
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.)( 
dK2j+2 n-1 (+) dK2j+l 

i n D (A
2
'

J. +l+µK
2J

0
+1

-µK
2J

0 +2) K i£ •K
2j+2

- £ j=o 2j+l-

When we perform the integration over Kj (j=l, 2, • •• 2n-1) ,

instead of ( 3 • 1) we obtain * J 

X 
n-1
n

j=o

where K2j = (M2-A�j+l> /l2µA
2j+ll, j=l, 2, • • • n-1.

(3 .1) 

(3. 2) 

Suppose that at high energies the terms K
2j in the de­

nominators of·the form K
2j+ (M2- 2�+1> / l2µA2j+ll may be neglect­

ed (cf. with (2.8)). Then the sum of all terms corresponding 

to 2
n CR diagrams is equal ·to (in the following K = K'= O)

T
n

(s,t)

In (3. 3) it is convenient to pass to the centre-of-mass 
+ · system (P=O) , where

*) As it is known, the points µA
2j+l = µA2j+l = o do not con­

tribute in (3U) (see Ref • 11> ) . 
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J 
n-2 dn 

T (s,t) = (2n)-3(n-l) (SE )-(n-1) n 2j+l 
n q j=o E2j+l - Eq - ic

In the high-energy limit, i. e. when 2E ::: Ii+ m, the 8. q 

X 

(3. 4) 

functions in (3. 4) can be replaced by unity. As a result, 

the expression (3. 4) for Tn takes the form

3 < 1) < 1) J
n-2 dn2j+lTn(s,t) = (2n)- n- (SE )- n- n 'E - _ ic x

q j=o 2j+l - Eq

which coincides exactly with expression (2. 12) of the 

preceding section. 

Thus, we again obtain the representation (1. 1) for 

(3 .5) 

the scattering amplitude; it differs from the usual eikonal 

representation (2.4) due to a more complicated dependence 

of the phase function on energy and potential. For example, 

"' I
"' 

I
"' 

"' "' "' in the case when the matrix <p1 V(z) p> = 6 (p1-p)V8(z,p) 

is diagonal, the logarithmic dependence arises417> 

T(s,t) = -4'1TiS 

'\, m Vs(z,p) 
m i J ln(l + 28 )dz
f pdpJ

O
(/=£ O){e -m 

0 
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Appendix 

Irr deriving expression (2.9) we used the approxima­

tion (2.8) , which is analogous to the-approximation 

l kikj = 0 2, 3) ._�t can be shown that in this approxima­

tion the asymptotics of the amplitude is conserved. The 

conservation of asymptotics .. consists in the following12) •

Let Tn (s,t) be the exact contribution of CR diagrams of

the 2nth order in g to the amplitude, _and let Tn (s,t) be

in the approximation (2.8). Then, as s + �, t = canst.

�n(s,t) + � (t) �(s) ,

Tn (s,t) + a (t) a (s) •

(A. l)

If B (s) = }Cs) , then the asymptotics does not change, 

though a (t) and � (t) are different. 

For example, let us consider CR diagrams of the 

15 

fourth order (Fig. 5) ; they give the following contribution 

to the amplitude: 

x o (k-pl+p'->.Kl) o ( q2-k'-q'+>.K3) +o ( q1-k-q'+AK3) x

x o (k-pl-p 'HK1-AK2) o (q2-k '+q 'HK2->.K3) +

+ o ( q1-k+g'+>.K2-AK3) o (k-p1-p'+AK1-AK2) 6 (q2-k'-q'+>.K3) +

+ o (g1-k-q'+>.K3) 6 (k-p1+p'->.K1) o (g2-k'+q'+>.K2->-K3) J  x

X dkdk' dp'dq' (A. 2) 
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We write the relation (A.2) in the form 

(A.3) 

'\, 
Here T

2 
is defined by formula (2 .9) with n=2, and for the 

case when A is taken in the form (2 . 10), A2 
in the centre-of­

mass system has the form (Ek = (m2+k2)1/2 �
J dnk A

2
(s,t) = -const Ek 

{ 

+ 1 + 
E "' rm2-(k-p ) 2-ieJ r..,. "'2 -(E -E ) 2-ie]
q-k� l u:,q-k q k 

The approximation ( 2.  8) implies that the terms An (s.,t) =

= Tn(s,t)-Tn(s,t), n�2 (see (A.1)) are neglected . Here we

demonstrate that the asymptotics of A
2
(s,t) is of the form 

1/s. Because of (2 . 13) and the relation 

2 2 1/2 E
p

Ek ± piEp (+) Jt = (r-t + <te> ]t) J = - M 

we have 
2 2 m -(k-q

1
) 

2 2 m -(k-p1) 

where f <ic> 

Consequently, 

= E'2 - 2 =£et>,q-k (Eq-Ek) 

= E .-2 
p-k (E

q-Ek) 2 = £ clc->t>,
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E,_+>.3 -2

J 
(1- --) E +}. 

A2 (s ,t) = - con
s
st dn M (2 i (1 :.l..:l>J 

ut f(A)f(A(-)t)
+s gn - M , (A. 4)

which is proved. 

In the same way we c,au prove that omission of K2j in the

denominators of the integrand in the expression (3. 2) does 

not change the asymptotics of this expression. Indeed, con­

fining ourselves to the CR diagram of the fourth perturbation­

expansion order (see Fig. 5), we obtain the following expression 
· 

J 
8 (µP-µk) d0t 

A2(s,t) = -const 2µ (P-k) ·- [m2-(k-ql) 2-ie:J [m2
-(k-pl) 2-ie:J

+ 8 (µk-µql) 8 (µk-µpl) li +! -1� + __ 1 __
1 2 � K2

+K3
-i£ 

X 

(A. 5) 

2 2 
IC = m - (P-k) 

2 2µ (P-k) 
. + As above, we orient the vector q along the z axis and the 

vector n against this axis. · Then, at high energies in the 

centre-of-mass system, we obtain the relations µq1�µp1�2Eq�µP

and the integrand in (A. 5) vanishes. It means that with 

Eq + m, the asymptotics of A2(s,t) is smaller than that of

T2(s. t).

We may draw the following conclusion. In deriving the representa­

tion (1. 1) we took into account only some generalized ladder dia­

grams (in contrast to the eikonal representation where all 

generalized ladder diagrams are used). In spite of this, the 
asymptotics of the amplitude is not changed since the sum of all 

n-1 
omitted diagrams in each 2nth order tends to zero as 1/s 
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Dobivene su reprezentacije amplitude rasprsenja kod 

visokih energija, sumiranjem dijagrama u formulaciji 

kovarijantnog Hamiltonijana u kvantnoj teoriji polja 

te dijagrama trodimenzionalne formulacije kvantne 

teorije polj� na svjetlosnom konusu. 
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