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Abstract

“In the present paper we deal with certain remarks on the
Liouville equation and we define general solutions depending
also on time. From these solutions result such ones that have
physical meaning and close relation with the phase for any
Hamiltonian function. Then with the help of the normalization
conditions of a distribution in the phase space for quadratic

forms of the Hamiltonian function we also -find time fluctuation.

1. Introduction

In a previous paper of Jannussis - Papaloucas l,) the Poisson equation

of motion

% =(F,H} (1.1)

was studied, and certain solutions of the following form.

F(q,p) =F, w)eiV(asp) (1.2)

-1
were found where the function U(q,p)=uw [ dq(-g-g) is the phase and the

integral extends over the surface of H= const.
According to the method applied in 1) for the Poisson equation we
shall work in the present paper with the solution of the Liouville equation

3

Tt (F,H} =0 (1.3)

2) )

Jannussis and Brodimas as well as Contopoulos 8 have already wor-
ked on the above equation asking to define integrals of motion for a spe-
cial case in which the Hamiltonian function is a periodic function of time
and the coefficients are polynomials in (q,p) of ‘the same degree as the
order of perturbation.

In the case where the Hamiltonian function does not depend on time

Wwe consider q,p,t as independent variables. Then the Liouville equation
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(1.3) has a solution of the form

F(q,p,t)~ emf(q,p) (1.4)

and the new function,f(q,p) .satisfies the eigenvalue equation

iwf(q,p) + {£,H} =0 (1.5)

which is a linear differential equation of first order with partial deriva-
tives, the solution of which will be of the form

-1 31,72
-ie [ &gz 1w | dp(E- (1.6)
£(q,p) = F, (e ® =r (e %,

where H=const.

Therefore a solution of the Liouville equation depending on time
will be of the form

-1
iu[t-j dq(g—H) ] . (1.7)
F(q,p,t) = PO(H)e P

Now we can easily prove that for an arbitrary Hamiltonian function
H(q,p) the solution of the Liouville equation (1.3) has the following form

an, "t
Flg,p,t) =F, (H)'U(mt -w I'dq('a—p-) ) ¥ (1.8)

where U is an arbitrary function.
Solutions of the form (1.7) have physical meaning because the expres-

-1
sion w f dq(%) represents the phase.

2. Phase properties

To make things simpler, we will restrict our problem to the simple

classical description starting from the energy theorem

2
z=’5 +V(q) (2.1)
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For the Hamiltonian (2.1), the phdse ¢ is given by the following

relation
o=um J % (2.2)

which because of (2.1) takes the form

—a___ . VE-V(a) da = L 2.3)
L sw/2m — ¥iq) dg= (2.3)
J_I = V( S aE. f W 3E J pdq
or

[ R A] %Bij (2.“)
where ¢= [pdg (2.5)

is the phase integral which was of great importance for the old quantum-
mechanics ¥).

In the case we consider the phase is an integer multiple of 2r. that

@=2m , n = integer (2.6)

then the eigenvalues of w are given by the relation

W= (2.7)

and the limits in the above integral are taken from the relation
B:V(q1)=V(q2) s 3;<4q, o (2.3)

For the simple case of the harmonic osecillator V(q) = - 0q , the re-
lation (2.6) lead to the following result

w=2n

(2.9)
92 d(\/—; moq)

Jl (\/‘; O1:1)2

or finally
ws= nuo . (2.10)
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We come to the same conclusion, if we consider the eigenvalues
Liouville equation (1.5) for the case of the harmonic oscillator, that is

2 9 _ 3 - .
iwf mo(q-$ Ef'wg?q)f 0 (2.11)

which in polar coordinates

mq=P cosd , p=P sind (2.12)
takes the form

. of _

iof - w) 75=0 (2.13)

and has the normalized solution
fz—-e (2.14)

with the eigenvalues

w = nwy (2.15)

Generally, the condition of the eigenvalues does not hold, and the
Liouville equation for the case of the harmonic oscillator has the following

solution according to (1.8)
F(q,p,t) =F(H) U (ur *3% arctg zoo) o (2.36)
For the special case w=w, and

R s p
iggt+i arctg Mg
U~e (2.17)

we come to known solution 5), which for the case of quantum mechanics leads
. 5-7).
to the phuse operators .
If except the above found solutions of the form F(q,p,t) we want to
define such- ones-that will aldo satisfy the condition of normalization on
the phase space and will depend on the time. Then we can assume certain

time fluctuations fcr the case when the Hamiltonian function is a polyno-
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rial in second order as for as q and p are concerned. Such solutions de-
pending on time in the phase space and being also normalizasble, was applied
necentl"y in the "Rate Theory of Solids" 8) not only; classicaly but also
quantum mechanically.

Since the Liouville equation for the case of quadratic forms coinci-
dens with the Wigner equation 9), it is expected that the results can be
explained both in classical or quantum mechanical way.

3. Time fluctuation

In order to find time fluctuvations we will examine both the case
of the harmonic oscillator and the case of electrons in a uniform magnetic
field.

For the harmonic oscillator the Liouville equation is of the form

(2.11) and admits, according to the known facts JD)’ Boltzmann distribu-
H

tion as a stationary solution that is e kT » where k is Boltzmann cons-

tant and T is the absolute temperature.

If for the equation (2.11) we ask a solution of the form

--l:l—Ti» a(t)p+b(t)q
F(p,q,t) =ce J (3.1)

which will fulfill the normalization condition

JF(p,q,t) dpdq =1 (3.2)

then by substituting (3.1) to (2.11) it follows that the functions a(t)
and b(t) satisfy the Hamilton’s equations of motion of the harmonic oscil-
lator, that is

da . _1 D -
at. md & nif'a 3.3

with the known solutions

a(t) =ajéos(ut+g) , blt) = aum sin(ut + 9) (3.4)

which yield to the following relations
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2 2
2. b2 _ 2 b’ m 22 _m 22
BT s FRTZUT TR e (3.5)

In the same way from the normalization condition (3.2) the constant ¢

takes the value

m
- = kT

__w 2 "%

e=gaT e (3.6)

and the solution we seek (3.1) takes the form
1|1 2. m 2 kT 2y \2
—RT{2_m(p nkTa(t)) trw (q-;;b(t))],

F(p,q,t) :—-'-‘—-I‘ T e (3.7)

T .
where the quantities kTa(t) and iﬁ-b(t) correspond to the average value
of the velocity and the mean path and their values are periodic functions

, kTa
of time ‘ar.d fluctuate between |kTa0| and I‘To‘l

In the same way we alzc study the case of electrems in an uniform
magnetic field H parallel to the z axis and with a symmetric vector poten-
tial.

The Hamiltonian function in this case os given by the relation

32 -
Helo , PGSR @)y (3.8)

where 3 represents the generalized momentum.

The Liouville equation takes the form

aF aF 3F \_ 1. P
'E?z'"(Plﬁ’;'Pz '5117";) mP3 3a, - (3.9)

where m:% is the Larmor frequency.

Following the same way we used for the harmonic oscillator (3.1), we

find that the normalized solution of (3.7) is the following

- ., 32 N ) 2
F(p,t)=(-——2]I) exp 4= oo Pl-kaao sin(wt+¢) * +

+ (Pz-nkTao cos (ut + q;))2 + pg]} o (3.10)
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The above distribution is a generalized Maxwell distribution in the
space of generalized momentum, the average velocity of which is a periodic
function of time and has coordinates (k‘l‘aosin(mt +9¢), k‘l‘aooos(wt-r 9),0)

and changes from -aok'l‘ to aok'l‘.

The distributions we found in (3.7) and (3.10) are positive and hold
for any time.

There is a lot of interest for the case of the harmonic oscillator
disturbed by a function of the form a(t)p +b(t)q, that is the Hamiltonian
function depends on time, and is of the form

2 m 2 2.
H(p,q,t) =%+5 w’q“+alt)p+b(t)q g (3.11)

where the correspondent Liouville equation is

& - (g b)) -3—5- (EB+a(t) ?—9; . (3.12)

The equation (3.12) has the following solution

2
- o &+ 2 %) +a(tp + Blt)g + e(t) (3.13)

F(p,q,t) =e

when the time dependent functions A(t), B(t) and c(t) satisfy the following
system of differential equations

dA

l -
P
B
R R T (3.14)
dc -
-a-; + aB bA._—Oc

From the first two equation of the above system we get the following
solution

t
A(t) = Ajcoswt + Alsinwt - E(l-f j [cosw(t-t “b(t “)+masinw(t-t “)a(t )] dt’
0

(3.15)
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t
% B(t) = Aousinwt - A ucosut —-):’—T f[sinm(t-t ‘)b(t ')-meosm(t-t')a(t')]dt’
0 (3.16)

and we dbtain the function c(t) by simple integration respect to time.
‘If the functions a(t) anc b(t) are bounded for all values of time,

then the solution (3.15) has meaning and the distribution (3.13) is po-

sitive.
In the case for which the functions a(t) and b(t) are bounded and
also periodic functions of time with period %5 , it is possible to have

. cases for which for certain relation between w and w, the solutions of the

form (3.13) are both periodic functions of time and integrals of motion

. . . . 3
according to the meaning mentioned in ).

For the special case

a(t) = a,cosu, T, b(t) = aomwosinwot (3.17)
the solutions (3.15), (3.16) yield
g e |
A(t):AOcoswt+Als1nwt+kT 23 [coswyt - coswt (3.18)
w -0
0
Y B(t) =A wsinwt-A winmt+—l—— 2w . wsinw,t - (m2+w2)sinmt
o 0 1 T2 o2y Lo o o
%Y 3.19)
and
alt) = &OI [moﬁ(t)sinmot- B(t) cosmot] dt (3.20)

From the above solutions we ocbtain shat for w= kmo, k#1 and
integer we get periodic solutions with period i.—? . The case w2 = wg has

meaning but it does not give periodic solutions.
)
More details about time fluctuations we can find in Weiner’s papers &
and his contributors, especially for the case of interstitial diffussion

as well as for the study of Schrodinger - Langevin equation.
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