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Abstract: The Dyson-Schwinger equation for the electron
propagator in the "finite" quantum eleétrodynamics of
Johnson et al. is considered. The solutions of the
corresponding nonlinear second-order differential
boundary value problem in momentum representation are
investigated in detail. It is shown that the electron
propagator has singular points in the complex p2 plane.
The problem of generating nonvanishing physical electron
mass in the theory with vanishing bare electron mass is
discussed.
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l. Introduction

‘It is well known that the standard perturbation
approach to local quantum electrodynamics leads to the lo-
garithmic divergences for the electron self-energy ém as
well as for the renormalization constants zl = 22 and Zal).
The renormalization theory successfully removes these singu-
larities, but the question of the exact solutions structure
still remains open. The possibility of a finite charge re-
normalization in an exact theory seems to be the most
attractive one. An interesting way to develop such "finite"
quantum electrodynamics has been proposed by Johnson et al.
2’5)- In the basis of their approach is the idea of the
application of a nonstandard perturbation theory with a zero
bare electron mass me. In that case,the bare electron charge
€0 has to be determined from the conditions of the finiteness
of vacuum polarization effects. In an exact theory that would
correspond to the vanishing of the Gell-Mann - Low function
~z) for the finite value of z==7'€7%1 .

The first step of this programme appears to be the
solving of the nonlinear homogeneous equation for the
electron propagator (2.6). The corresponding nonlinear diffe-
rential boundary value problem has been discussed several

2-5)

times in literature s but it has not been completely exa-
mined as yet. The behaviour of the solutions in the region of

large space-like momenta and small bare coupling constant has



INVESTIGATIONOF... 53

2) In Refs.z’a)

been discussed in Ref. investigation of
the nonlinear equation has been reduced to an examination
of the linearized problem by replacing the square value

of the unknown function by a constant. Of course, such a
method does not allow one to explain completely the nature
of the exact nonlinear problem solutions.

) the

In the recent paper of R.Fukuda and'T.Kugo5
nonlinear second-order differential boundary value problem
has been reduced to the first-order problem, solving then
the latter by phase trajectories method. On the basis of
numerical analysis the authors have come to the conclusion
that the electron propagator has no singularities for
—oo<p*¢ oo . In fact, this conclusion in Ref.?) has not
been proved, but rather implicitely assumed. It has virtually
been shown only that the propagator cannot have poles.
From the investigations performed in the above-mentioned
paper, it does not necessarily follow that the propagator
cannot have a branch point on the real axis; that very point
could determine the finite electron mass.

The present work is devoted to the investigation
of the nonlinear integral equation solutions (2.6) as well as of
the corresponding differential boundary value problem (2.7),
(2.8). In Section 2 the derivation of these equations based
on the Dyson-Schwinger equation for the electron propagator
in the first approximation is demonstrated. In Section 3
some general properties of the solutions have been obtained
either directly from the one-dimensional integral equation,
or by means of an analysis of the nonlinear differential

equation. Section 4 contains the proof of convergence of
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power series representing the solutions of the investigated
equations in a circle of a finite radius with the centre at
p2 = O. As a result of the numerical analysis dependence of
the radius of convergence of the above - mentioned power

series on the coupling constant is given. The basic results
of the present work are summarized and discussed in a short

conclusion (Section 5).

2. Nonlinear equations for the electron propagator

in the first approximation

The Dyson-Schwinger equation for the complete
electron propagator in quantum electrodynamics has the

following form:
1 -1 . L& 5 "]
Sp) = SQ;P} — (éz._%"fd? ¥ 59 /_}P,?;ﬁ)D(_,{Z) (2.1)

where S and S. are complete and free Green’s functions
respectively, Dpv is a complete photon Green'’s function, F\—’—
complete vertex part, and ﬁ:f—?. In order that (2.1) be an
equation for one unknown function S(P) , it is necessary to
substitute in it some explicit expressions for /—'y and D,w ,
which may be obtained by the perturbation method. In "finite"
electrodynamics the first nontrivial approximation is
obtained by replacing complete photon Green’s function :Dr“
and the complete vertex part re by their free parts D;w and

& respectively. In this approximation, taking into account

that
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S;,D) =mo+ Z_Ip)— F = Jd-p* — /5'/3!-/”)

S, (pr=me i
o e =L — _E.e.ﬁv(,,..a/) (2.2)
DLth= g = T (1-%)]

whered[ determines the gauge, we obtain a system of two

nonlinear integral equations for A&P’) and /~"(-/°") :

L Eo ‘7( (—? ) 34 a{‘
de-pit = Mo + (2:':)"/ ! e e (2.3a)
i [os 8 2(pq)

PRI =T+ arpt| % Legy —gtril (p-ar

mtrﬁgz;lﬁﬁu d,] (2.3b)

The system (2.3) can be transformed into another system of

twe one-dimensional equations after going to the Euclidean metric
( 70-"?'- ) -9'= 7‘—73' — §i= 7’21“ 73 and in an analogous
manner for P ):

ﬂ{ 2
C,uf"l) .?.f:'l;‘-_/% ?o@T?'J-(:?iﬂf?‘) ./‘fz"f'? "-sz'ﬂ (2.4a)

(9%
pPr="1+ fzm'-pj? ?‘,(}(?ﬂ; + ?‘[5”(?")/‘ [ff’ 9)*

4 E9pY) —2p9t o
(-9} {7 t)] (2.4v)
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After the angular integration has been performed and the
Landau gauge dlf-—"o (seel’a) has been fixed, the system (2.4)
becomes maximally simplified because /b{/?")§7 and only one

equation for oL(f’) remains:

1 3] A_pnd
v_g* LT [59;1:?) - 3(??3,;*’)] (5.3

kX
36
a(.(P" =+ (Mr)z.f f glsz"h‘- ?1

which can be transformed into

Lix)=me+] [xfg_%lgg fﬁ%] 2.6)

(o(o is the bare fine structure constant).

It can be easily shown that the nonlinear integral
equation (2.6) is equivalent to the following nonlinear

second-order differential boundary value problem:

gt
[X"U”] e (2.7)
X‘[o((x)]‘—, 0 4 [x,,ux)]‘ —_ M (2.8)
X — C X— oo

We have arrived to the question on the existénce of a
finite solution of the inhomogeneous equation (2.6). Assum-
ing that the solution of Equ. (2.6) can bve represented

as a power series in ?2
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= an(x)q”"
OL_()()=mo+nZ=;1 " ? (2.9)

from (2.6) we obtain

mi+Xx y Z%!ﬂ;ihl_
Q0 =[x = mi &r T ]"'m°,’{,":’, i (2.20)

A logarithmic divergence which is present here was treated
by the authors of Ref.e) as an indication that it is impo-

ssible to construct a finite quantum electrodynamics for
Mo 0,

We shall further discuss only the homogeneous integral
equation (2.6) (/M:=0) and the corresponding homogeneous
differential boundary value problem (2.7), (2.8). such a
problem can give nontrivial finite Green’s functionsz’s)
the singularities of which in the time-like region would
determine the electron mass. We notice that the presence of
infrared divergences "smears out" the pole of the propagator
in quantum electrodynamics, and that the electron mass must

be determined by the branch point of the propagator,closest

to zero.

3. General properties of solutions of the nonlinear

integral and differential equations

In this section we pay attention to some solution

properties which can be obtained either directly from the
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integral equation, or from an analysis of the differential

equation (2. 7) .

If Atx) is a solution of the integral equation

Jul‘. ]'d (

.1

otx) = j!_x Lyry M H-j] >-1)
then —o(x) ig also its solution. Equation (3.1) nas

evidently alﬁays a trivial solution Aoy=1 . It is not
difficult to show that for an arbitrary

behaviour of dJix) for x—»0 , there exists a limit

-?—3_—1“ 19y — ¢ (3.2)
x{";" 3 LAty >

Tending to the limit X—0 in Equ. (3.1), we
obtain .
2/ iy &
(0) = —;)——3——‘ (3.3)
& 7.-, LHy)+ ¢

On the basis of the equality (3.3) the integral equation

(3.1) can be rewritten in a more suitable form:

x .
L = dior + gf (% -1) N
1f Lwj=0 , then Equ. (3.4) has only the trivial
solution. In fact, let us assume that J(0)=0 and that there
exists an interval (0,£] such that .L(x)>0 ) x e (0,€] « Then

(from (3.4)) it follows
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—1)d" (3.
Al€) = g‘/#g _1 7)0"7 <0 3.5)

and this is in a contradiction with the assumption £(€)>0
(of course, there is an essential assumption here on a
monotonous behaviour of the solution in a certain neighbour-
hood of the point X= 0 , see below). For an arbitrary fwj=¢
Equ. (3.4) can be solved by the perturbation method
giving expressions of the tjpes (2.9), (2.10), but in the
present case it is finite. In an arbitrary order in 37‘ s LX)
has a branch point for x:—o(zm) . We notice that for x=-«fto)
the ordinary perturbation theory is not applicable and we
shall show below, that the exact solution at that point

actually has no singularity.

Let us consider the behaviour of the solution of the
differential equation (2.7) in the neighbourhood of the
points X= 0o . For small values of X we shall look for

the solution in the form of a power series

do= xS a, x” (3.6)
n=

Substituting (3.6) in (2.7) we find that A can have the
following values: 1) A,=7; 2.=-7, 2, - an arbitrary
constant; 2) )3—-—1-- ] Q:=—(1+%yz) . Here coefficients Qn
satisfy certain nonlinear recurrence relations. Solutions of
the differential equation, corresponding to A2 and A, do
not satisfy the boundary conditions (2.8) therefore, they do
not appear as solutions of the boundary problem (2.7),(2.8)
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and consequently, of the integral equation (3.1). Let us
turn to the solution for A4=0 which evidently satisfies

the boundary condition (2.8) and can be represented in a form

oo n_ _,Zi .3_1(1'_ y . g:'(.a-.s 2+ 9. 3 .
Ao =2, Qi) X' = a0 =g, X REw PP Konss kg VL

= QOZ g 1) (%) (3.7)

In such a way, the solution we consider depends on an
arbitrary constant Q.= K(9) where if o((*,g") is a solution
of the equation, then Qoo(("étolgz) is also a solution (this

conclusion can also be obtained directly from the differential
equation (2.7)). Therefore, it will be enough to further

consider only power series with @e=7. For X—»of» the solut-
ions can have the following behaviour:aﬁx;t :"NBXS where
can take the following values: 1) &,,.:-i‘!i\fif_‘g?. where B is
an arbitrary constant; 2) &=F B"=—(1+%g’-) . The solut-
ion corresponding to & evidenfly does not satisfy the
boundary condition at infinity (2.8) (let us mention that Bx¥
is an exact solution of Equ. (2.7)).

Concluding this section let us notice that from the

convergence of the power series (3.7) (#ee Sec. 4) it follows

that the equality (3.3)

(3.8)
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is identically satisfied for all values of jz « In order that

the identity (3.8) be satisfied for ?iao , it is necessary
that in an asymptotic limit o&(X) contains the term x'**vf“gz.

4, Investigation of the power series convergence

and analytical properties of the solutions

The principal question in the further study of the
solutions of the boundary value problem (2.7), (2.8) appears
to be investigation of convergence of power series construc-
ted in Section 3 around the point X=0 . It yields the fol-.
lowing possibilities:

l. To obtain an important information concerning
analytical properties of the solutions (finite or infinite

radius of convergence) ;

2. To numerically determine #(x,9*) with an arbitrary

degree of accuracy;

3. To.correctly define the task of the analytical
continuation of the solution onto the whole real axis (time-
like momentum region is specially interesting), and into the

complex plane.

Substituting the power series (3.7) into Equ.
(2.7) one can easily get the following nonlinear recurrence

relations for the coefficients:
Qo= 1

L} . 2 (4.1)

z,¢c bn-c +{htn+1) +9 } an -

c=1

(n+1)(n+2)

QAny1 = —
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n

where b,,=(n+4)(n +2)Qnet y Cn =Z—oa" Qri, The complicated struc-
ture of these nonlinear recurrenceequations does heither
admit the obtainment of their solutions in an explicit form
nor asymptotic behaviour of @a for 7—»>-o what would in
principle be sufficient, for the answer to the question on
the power series convergence (3.7). Thus, we use a slightly
different analytical method that enables us to find the upper
limit for /@»n/ and to utilize completely the recurrence
relation (4.1) even without solving them. After that,we
pursue numerical investigation of the nonlinear equations
(4.1), which allows us-to estimate the radius of convergence
of the power series (3.7) and to determine its dependence
on g‘ .

We shall carry out the proof of convergence of the

power series (3.7) by the method of mathematical induction.

It is evident that Ja./=7= §° . Supposing that
. Q" (4.2)
< — .
net 19 .
let us prove that [Qa./< § (n+2) . Using the recurrence

relations (4.1) one can easily learn that the inequality

n

la-"+1l< bz_,/Cc/lb"_il +{’7{“”)+3"}mnl, ¢ ?n-a-‘r (4.3)

(n+1)(N+2) S Ttra)T

is satisfied under the condition that

fk(7i
72 =X

(4.4)
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7((9) 6 .. .
where and I are the upper limits of .the functions

Q) _ (n+2. ) wins1) + 93

" T \n+1] (n¥1)(n+a) h.s)
4.5

9-7,
"= ((71:3‘)) Z(Z ::;ﬁ’ rcw}i (k-C+7)9 (.4.6)
respectively, i.e. 7(:”‘ K«” "’5 IG}. If it is possible to
find the upper limit for 7C,, such that I 7 then we
automatically get a nontrivial inequality for § : ga\f(g").
For all f’(j") , satisfying the latter inequality, an
estimate for coefficients (4.2) will be proved inductively,
i.e. /anlg \f"(g")(l')-f‘l)'?. Hence, we will get absolute and
uniform convergence of the power series (3.7) in the circle
with the radius K= f?%‘) . In such a way, the proof by
induction is possible only provided that the condition

(qu) — max x(?l

0&n<cea (4.7)

is fulfilled. Then the best (lower) estimate of the radius

of convergence is obtained choosing x<7l 7d7'and }(ﬂ’ HE r?::“ ‘9’.
Without difficulties one estimates the maximum of %ﬁ’ :
3
n < K= l’{g"— A (4.8)
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Fig. 1. Results of the'numerical investigation of CCG)
(see def.(4.7)) in the region 2.5¢q<10.
R(g?1)

Fig. 2. Results of the numerical investigation of

the radius of convergence of the power series

-(3.7) for a, = 1.



INVESTIGATIONOF ... 65

It is much more difficult to estimate the maximum of 7C§’

It could be achieved analytically by means of rigorous
inequalities for double sums contained in the relation (4.6)
and by using the properties of Riemann’s § —functions. This
rather complicated calculation with 7=3 leads to the estima-

tion
(Y] 4198
x® < 0.979
(4.9)
It is more convennient to investigate numerically the maximum
of X% . The results of such investigation for z.5sqs10 are
illustrated in PFig, ' 1. It is obvious that in the given
region the inequality (4.7) could be satisfied, what is
necessary for the proof. In such a way the estimate obtained
for 9 allows one to conclude that the power series (5.7)

absolutely and uniformly converge in the circle with the

radius
191
41— X
Reg = =0 (4.10)
[
Q)
where K, is determined from Equ. (4.8). For X one

can utilize either analytical upper limit estimate of
the type (4.9), or numerical results Fig.l).

The theoretical estimate of the radius of convergence
appears to be very crude and repreéents only the lower limit
estimate for the actual radius of convergence. Hence, the
main goal of the above considerations is not to express the
most rigorous estimate for the radius, but to express the

rigorous proof of the principal fact that the power series
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(3.7) can represent the solution of Equ. (2.7)

in a circle with a non-zero radius. Starting from the recurrence
relations '(4.1), for arbitrary g" a numerical analysis

of iamd/la..l and of \"]EITI has been performed for an exact

determination of the ralius of convergence. Due to that it

is very suitable to use Cauchy’ss) convergence criterion, by

means of which the value of the radius of convergence

ETRY

Rigyn =[langnl] " = p>1 (4.11)
has been obtained. This value changes very slightly with the
increase of /1 . As the final vaiue of the radius of conver-
gence the numerical value of (4.11) corresponding to /7-«103

has been taken. We notice that as /7 changes from 5 -10* to
105 three decimal places remain stable. The calculations have
been performed for @.=7 and 3"&(0,7(3] and results are illustra-
ted in Fig.2, , showing the dependence R(§%7) on ly‘ . The
radius of convergence of the power series for an arbitrary a.

can be easily expressed by the already obtained function
R(g’,"” :

R(g%aq = a3 R{g:1) (4.12)

The finite radius of convergence of the power series
(3.7) points out to the existence of singular points for the
function A,§*) at the circle /x/=R . The questions on
positions of these singular points in the complex plane, as

well as the questions concerning their nature (branch points



INVESTIGATIONOF . .. 67

or poles), naturally arise. Inspite of not having the defi-

nite answers to these questions let us consider now some

interesting results, which are obtained analysing the deve-

lopment oL(x g ) for small values of 7
For small values of g one can inductively obtain
a stronger estimate for the coefficients cf the

power series (3.7):

g" .
lan] & QW)— ) n=7123- (4.13)

In order that the inequality (4.13) be satisfied for a few
first coefficients (see (3.7), for example nsn.'—-’:','l.,?},...) it is

necessary that the corresponding g satisfies an inequality
o> .= T~sn g* + 03 (4.18)

where An. can be easily obtained from the solutions of the
corresponding inequalities (see (4.13) and explicite expre-
ssions for a few first coefficients in (3.7)) A.,—O’J%;’ ,ﬁ ’b' eee
It can easily be shown that if the inequality (4.14) is

satisfied for some /o , it will be satisfied for ali N</..
Using the recurrence relations (4.1) it is possible to democu-
strate, through the estimate of the upper limits of the

double sums contained in the relations (4.l1), that from the
validity of the inequality (4.13) for arbitrary N (h>0.)
follows its validity for N+7 under the following condi-

tion

Q> =T7— Pa g+ 03" (4.15)
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where. B can be easily obtained from the corresponding
uppe]i'me‘ais%imates and it depends only on /1, , i.e. on the
initial step of induction. In such a way, the

estimate (4.13) is proved, provided the inequalities (4.14)
and' (4.15) are both satisfied, i.e. under the condition

that

¢> 17— g+ o) (4.16)

where Y:o=f"¢"{ﬂ"°:g;"°}. From the inequality (4.16) we obtain
the lower limit estimate for the radius of convergence of

the power series (3.7) for smali. values of 37‘ :
RGN > 1+ 8. 5%+ 0(g") (4.17)

This estimate appears to be verjr realistic because it proves
the previously numerically obtained fact {i”om?’ﬂ)‘—‘1 (Fig.2.).
With the increase of A, , dm also increages and for /7.<3

it follows that dn,<Z . Therefore, we do not write them
because we have obtained a stronger estimate starting from

other considerations, as shown below (see (4.21)).

The result we have obtained (4.17) means that the
solution o((x,g" ) 1is analytic in a unit circle and that singu-
larities can reach the unit circle for 92'—)0. Let us try to
determine more precisely positions of these singular points
in the complex plane. The most natural way is to solve

Equ. (3.4) by a perturbation method, i.e. by looking for

the representation of ol(x, 93) in 32‘ powers by an iteration
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method. The first iteration step leads to the function

gy =1 + §[1— 5 Aerx)] (5.18)

having a branch point at x = -1. In connection with this
fact, it is interesting to investigate the behaviour of the
solutions around this point. This can be ‘done by means of

the double inequalities for. J-(X,j") :

-1

Aix,§") < [1 —f'{// - 1%—’5 /n(ﬂx)}] (4.19)

dxg > 7+ ja[f + Lf;_%ﬁi.jn('l -—jfggij] (4.20)

which one obtains from the integral equation (5.4). They are
valid for Xe (—R(g‘ﬂ), 0_7 and appear to be the consequence of
analyticity of £(9°) within the circle of the radius (4.17),
i.e. they are valid for 5z—> 0 « For x = -1 from the inequa-
lities (4.19) and (4.20), we get 0‘"7.3‘)= '/'*fz-f 0’3”) whose
substitution in the initial nonlinear equation leads to the
conclusion on the existence of a logarithmic branch point on
the real axis: X =-7-2§'+ §") (for small values of ?" ).
Hence, the double inequalities estimate allows: first, to
describe more exactly the behaviour of the radius of conver-

gence (see (4.17))

Regs1) = 1+2g*+0(g“)‘ (4.21)
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and second, to predict the positions and character of at
least one singular .point (the question of the existence and
positions of other singular points on the circle remains an
open one). Taking into account the inequalities (4.19) ana

(4.20) it is also possible to obtain interesting inequalities

for O(Ix("’,jl) ) (3"—-)0) :

L 147 3 LT Enizgl1— L)} = 1) _—
Ty NI "-)Iln{zg*(ﬂ-'g'z‘)y‘*"“’”{)

A1) gHxe1g B (4.23)

from which it follows that 0('*("-3‘)9:032 lng * « The latter

fact means that the standard perturbation theory (expansion
into powers in g" ) is not applicable as a method of solving
Equ. . (3.4.) and that it is necessary to use a modified
variant7). Such a situation turns out to be customary for
unrenormalized field theories but in the case of quantum

electrodynamics this result seems to be somehow unexpected.

5. Conclusion

In the present paper a successive investigation of

the solutions of the electron propagator equation in the

"finite" electrodynamics of Johnson et a1.2) is initiated.

The final goal of such investigation is an explanation of
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the electron mass generating problem as well as of the possi-
bilities for setting up approximate solutions in quantum
electrodynamics without divergences. The first step in this

programme appears to be a complete investigation of the nonli-
near equation (2.6) for the electron propagator. If a solut-

ion has singularities only on the real axis of Pz ; then the
closest to zero singularity determines the unrenormalized
electron mass. If there are. singularities only for the

the
compl ex fz' values thenV approach in Ret.2)

to the comnstruc-
tion of finite quantum electrodynamics is perspectiveless
because in such a case the basic requirements for a "good"

quantum field theory are not fulfilled.

We have shown that the solution of the nonlinear
boundary value problem (if it exists) is necessarily a

holomorfic one in a certain circle of the complex plane ff',

and we have found the radius of this circle numerically for

various values of the bare electron charge e: . We notice
the existence of two essentially different regions of er .
for the small enough values of €2 the radius of the circle

. . . 2
increases with the increase of €, , but for greater values

of €3 this radius decreases. If the singularity determining
this radius is on the real axis it means that in the former
case the physical mass increases with the increase of er
and that in the latter case it decreases. It is possible to

call the corresponding soiutions "the different phases": a
normal phase for small €. and an anomalous one for larger

a
€. . The point where ;’—eﬁ(&l_—_o is a point of "phase
-]
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transition". This fact deserves further investigation. Still,
it is necessary to check once more whether the singularities
lie on the reai axis. For small values of e} approximate
solutions have a branch point for real values of f’ , but we
have not as yet succeeded to prove that this branch point is
a singularity of the exact solution. The difficulties in
investigating the analytical properties of the solutions are
stressed by the obtained singularity of the exact solution in
e: tan exact solution cannot be expanded into a power

. . 2
series in €, .,

In the subsequent papers we wish to pursue the investi-
gation initiated here,first of all considering the behaviour
of the solutions at the infinity (fl*°° ) and the positions
of singularities in the complex F‘ plane. That investigation
should give an answer on the existence, uniqueness and analy-
tical properties of the solutioﬁs of the problem (2.6), (2.7),
(2.8).
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ISPITIVANJE RESENJA DYSON-SCHWINGEROVE JEDNACINE ZA
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SadriZaj

U ovom radu razmatra se Dyson-Schwingerova jednadina
za elektronski propagator u "konadnoj" kvantnoj elektrodina-
mici Johnson-Baker-Willeya. Problem je formulisan u formi
l-dimenzione integralne jednadine i u ekvivalentnoj formi
graniénog problema sa diferencijalnom jednadinom drugoga re-
da. OpsSta svojstva reSenja dobijena su analizom integralne
jednadine. Granilni problem .je ispitivan detaljno. ReSenja su
predstavljena u obliku stepenih redova po p2, za koje je ana-
litidki pokazano da su konvergentni unutar nekog konaénog ra-
dijusa konvergencije. Iz konadnosti radijusa konvergencije
sledi da elektronski propagator ima singularitete u kompleks-
noj p2 ravni, pa je u vezi sa tim razmatrano pitanje mogué-
nosti elektromagnetnog porekla mase elektrona.





