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Abstract—Uplink massive Multiple-Input Multiple-Output 

(MIMO) systems include huge antennas in the base station (BS) 

that simultaneously serve fewer Users with single-antenna, making 

signal detection a major issue Due to the huge matrix inversion 

requirement.  We propose an iterative detection technique based 

on the enhanced Alternating Direction Method of Multipliers–

Conjugate Gradients (ADMM-CG) to avoid direct matrix 

inversion.  The ADMM is first applied as an initial vector.  Then, 

the CG iteration algorithm terminates the calculations for the rest 

of the iterations.  A low-complexity initial method based on trace 

tridiagonal has been proposed to improve the suggested 

technique’s performance.  This integration is crucial for 

optimizing the tradeoff between performance and complexity.  The 

proposed technique outperforms traditional iterative approaches 

regarding signal detection performance.  Monte Carlo simulations 

show that the proposed detector performs near optimally, 

decreases complexity, and necessitates fewer iterations.

Furthermore, it outperforms existing solutions, which are sensitive 

at high modulation orders and when the number of users 

approaches the entire number of antennas in the base station. 

  Index terms—Alternating Direction Method of Multipliers, 

Conjugate Gradients, Hybrid detection, Massive MIMO. 

I. INTRODUCTION

The next-generation mobile (NGM) system is being 

developed to meet the growing demand for wireless data flow 

and services. The fifth generation of cellular networks (5G) is 

designed to deliver improved spectrum and energy efficiency, 

addressing the need for higher data throughput and reliable 

connectivity. This advancement is crucial for supporting the 

exponential growth in wireless data traffic and enabling new 

services requiring high-performance communication 

capabilities [1]. Massive Multiple-Input Multiple-Output 

(MIMO) exhibits considerable promise as a pivotal technology 

for wireless communications in the post-5th generation and 6th 

generation (6G) due to their remarkable energy efficiency and 

spectrum coverage [2, 3]. These systems have hundreds of 

detecting antennas at each base station (BS) to serve dozens of 

users simultaneously [4, 5].   Massive MIMO systems are used  
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by high-speed millimeter wave (mm-Wave) communications, 

which are critical for 5G/6G systems, to overcome signal 

attenuation issues [6]. The detection methods in the 

development of mm-wave technology include multi-carrier 

modulation techniques and MIMO concepts that affect the 

growth of detection methods for massive MIMO systems. High-

traffic mm-wave massive MIMO uplink communication has 

unique challenges like hardware constraints and channel 

estimation complexity, hence necessitating efficient hybrid 

detection methods to unlock these next-generation wireless 

networks full potential. However, a detector for massive MIMO 

signals is hard to build because it deals with highly complex 

computations caused by a large antenna number of users and 

related BSs.  Maximum likelihood (ML) detectors may work 

perfectly, but as the number of received signals grows, it 

becomes exponentially more complicated (𝒪𝑁𝑇).  Hence, ML

detection is not feasible for this scenario [7, 8].  Linear 

detectors, such as Minimum Mean-Squared Equalizer (MMSE) 

and Zero-Forcing (ZF) detectors, can achieve performance that 

is approximately optimum in massive MIMO systems [2]. 

However, these detectors require directly inverting the matrix, 

which increases the complexity of the number of transmitting 

antennas 𝒪(𝑁𝑇
3) [9].  Therefore, calculating the direct inverse

becomes incredibly costly in the context of massive MIMO 

detection. Recently, to simplify the matrix inversion, iterative 

algorithms such as Jacobi (JI), Successive Over-Relaxation 

(SOR), Gauss-Seidel (GS), and Richardson Iteration (RI) have 

been used to recover the transmitted vector iteratively without 

any division operator [9]. In contrast, the overall complexity 

can be reduced by one magnitude order. These techniques begin 

by choosing a starting vector and then enhance the performance 

through a series of iterations. However, increasing the iteration 

number requires more computation. Moreover, choosing an 

appropriate initial vector can accelerate the convergence, which 

enhances the performance and reduces the required iteration. 

Due to the crucial starting vector for achieving accuracy and 

convergence in the completed vector solution, an iterative 

detection technique based on the enhanced Alternating 

Direction Method of Multipliers (ADMM) is presented as an 

initial stage, followed by Conjugate Gradients (CG) for the 

reminder iterations. The suggested technique combines the 

hybrid iteration method and scaled-diagonal initialization to 

enhance the performance and decrease the computational 

complexity.   
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The following are the key contributions of this paper: 

 • Based on the ADMM and CG iteration, we provide a new 

near-optimum detector for massive MIMO uplink systems that 

are computationally efficient.  The ADMM offers an efficient 

search direction for the CG algorithm in the suggested scheme, 

leading to a faster convergence rate. 

 • Since the MMSE filtering matrix dominates diagonally for 

massive MIMO wireless systems, we suggest using its 

tridiagonal component to initialize the proposed to reduce the 

complexity.   

 • Different detectors are compared regarding the complexity 

of the calculation, and numerical simulations are used to show 

how different they perform.  According to simulation results, 

with growing system dimensions such as BS antennas, users, or 

modulation orders, the suggested detection strategy works 

better than the previously suggested methods with less 

computing complexity. 

Iterative massive MIMO detection algorithms have found 

their way into various corners of modern wireless 

communication systems, revolutionizing how we connect and 

communicate. In the realm of 5G and future cellular networks, 

these algorithms are a cornerstone technology, dramatically 

boosting both capacity and coverage. They're also proving 

invaluable in millimeter-wave systems, where large antenna 

arrays help overcome the inherent challenges of signal path 

loss. The Internet of Things benefits greatly from this 

technology too, as massive MIMO can handle the vast number 

of connected devices that define IoT networks. In urban 

landscapes, these algorithms facilitate wireless backhaul for 

dense small cell deployments, ensuring seamless connectivity 

in complex environments. Crowded spaces like stadiums and 

airports now enjoy high-speed WLANs thanks to this 

technology, keeping thousands of users connected 

simultaneously. Even beyond our planet, satellite 

communications are leveraging large antenna arrays 

empowered by these algorithms to enhance link reliability and 

boost data throughput. From the ground to space, iterative 

massive MIMO detection is quietly powering the wireless 

revolution across a diverse range of applications. 

The remainder of this paper is organized as follows: section 

II gives the related work.  Section III describes the system 

model and massive MIMO channel model. Section IV gives an 

overview of MIMO detection methods. Section V describes the 

new proposed matrix inversion method. Section VI presents 

computational complexity analysis. Section VII introduces 

simulation results. Finally, Section VIII concludes the work. 

Notation: The symbols ℜ(z) and ℑ(z) represent the real and 

imaginary components of the complex number z. Vectors and 

matrices are denoted by lowercase and uppercase boldface 

letters. Furthermore, 𝑰𝑵𝑻
 denotes the 𝑁𝑇 × 𝑁𝑇 identity matrix 

and ‖∙‖ stands for the Euclidean norm of a vector. The set of 

complex numbers is identified as ℂ. 

II. RELATED WORK 

Several studies have proposed multiple approaches to 

mitigate the complexity of inverting high-dimensional matrices 

for massive MIMO applications [9]. The efficiency and 

scalability of iterative approaches have substantially enhanced 

signal detection approaches in massive MIMO systems. 

Moreover, the iterative method can reduce complexity by 

substituting matrix-vector multiplications for matrix-matrix 

operations. However, in contrast to direct matrix inversion, 

many iterations may increase the complexity [10]. Iterative 

techniques commonly utilized in massive MIMO detection 

include the JI [11, 12], Chebyshev technique (Cheby) [13], the 

CG technique (CG) [14], the Neumann-Series Approximation 

(NSA) [15], and many other iteration techniques [9]. The CG 

efficiently solves linear equations for the inverse by iteratively 

searching in conjugate directions. Modified detectors that use 

approximate matrix inversion techniques have proven vital for 

dealing with complexity and noise enhancement challenges. 

The ADMM method, which minimizes the optimization 

problem by breaking it down into smaller issues, is mostly used 

to resolve convex optimization issues [16].  One of its best 

features is that it can handle multiple computations differently.  

Iterative optimization methods can benefit greatly from using 

ADMM as an initial vector.  Wherein this can lead to faster 

convergence and better solution quality.  The results produced 

by ADMM are usually more in line with the optimum solution 

than those of random or zero vectors [17].  Thus, using the 

solution obtained from ADMM as the initial vector for iterative 

optimization methods can effectively seed the iterative process 

with a more informed starting point.  The proposed technique’s 

initial stage utilizes the ADMM to obtain the required detection 

performance with fewer iterations.  These techniques only 

require matrix-vector multiplications, reducing the complexity 

from 𝒪(𝑁𝑇
3) to 𝒪(𝑁𝑇

2).  

Various hybrid iterative algorithms have been suggested to 

enhance performance and convergence rate. The authors 

integrated the JI and GS techniques in [18]. The hybrid 

algorithms employed initialization based on the JI approach. 

The GS approach is then used for estimate. The suggested 

algorithms' computational complexity and bit error rate (BER) 

were compared with traditional 64QAM modulation schemes 

and 16x128 system configuration methods. The suggested 

algorithm achieves a compromise between complexity and 

performance. Joint steepest descent (SD) and non-stationary 

Richardson (NSR) iteration approaches were taken into 

consideration by the authors in [19]. To improve performance, 

the SD obtains an effective search direction for the ensuing 

NSR approach. To greatly accelerate convergence, they merged 

the system and iteration-dependent acceleration mechanism 

with the scaled-diagonal initialization. Compared to current 

iterative methods, the suggested joint detection strategy 

performs better and offers less computing complexity than the 

traditional MMSE detector. To enhance the effectiveness of the 

conventional iterative approaches, the authors in [20] suggested 

three hybrid algorithms: Newton–Schultz–Richardson (NS-RI), 

Newton–Schultz–Chebyshev (NS-Cheby), and Newton–

Schultz–Gauss-Seidel (NS-GS). The likelihood ascent search 

(LAS) step significantly enhances the performance of the 

suggested detectors in terms of computational complexity and 

BER for 16QAM, 64QAM, and 256QAM modulation schemes, 

as well as for a 32x128 system configuration. The suggested 

algorithms' performance was examined and compared with that 

of other existing algorithms. The results showed that the 

complexity of the algorithms was decreased, and the 
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performance was improved. In this work [21] a novel iterative 

method circumvents the matrix inversion computation problem 

by choosing CG and SOR techniques. The combined cascade 

structure of both iterative algorithms is the basis of this 

proposed uplink massive MIMO detection method. In the last 

iterations for terminal calculations, the SOR technique is used 

after the CG method has been used and adjusted for the initial 

answer. 

Several approaches, including approximate inversions, have 

been suggested to balance performance and complexity. The 

objective is to identify the optimal combination of techniques 

customized to the massive MIMO structure. Recent findings 

show remarkable performance-complexity tradeoffs for 

practical implementation. Another issue with matrix inversion 

occurs when the channel matrix is almost singular, resulting in 

an ill-conditioned system. In these situations, matrix inversion 

may not equalize the incoming signal. We suggest using a novel 

hybrid iterative method called ADMM-CG to address these 

difficulties. It combines the advantages of CG and ADMM 

approaches with scaled-diagonal initialization to improve 

efficiency and reduce computational complexity. This method 

has made numerous important advancements, including: 

• A blend of two iteration methods is utilized in this approach: 

ADMM is employed for the initial approximation, while CG is 

used for the final refinement. This approach takes advantage of 

the early iteration stability and efficiency of ADMM, along with 

the subsequent iteration effectiveness of CG. 

• Low Computational Complexity: By merging ADMM with 

CG and using an initial algorithm based on trace tridiagonal, 

this algorithm greatly reduces computational complexity 

compared to traditional linear detectors or standalone iterative 

algorithms. It is important to note that we have many large-scale 

computations in massive MIMO systems. 

• Enhanced Performance and Stability: The ADMM-CG 

algorithm is characterized by strong performance since it can 

provide near-optimal solutions within a few iterations, and it 

remains stable even at low Signal-to-Noise Ratios (SNR). As a 

result, it outperforms other iterative methods like JI, SOR, and 

standalone CG in terms of Bit Error Rate (BER). 

• Numerical Simulation Results: Numerous numerical 

simulations verify the proposed mixed algorithm’s superiority 

to that of CG, which is one among its constituents, and ADMM, 

as well as other conventional detectors in various antenna 

configurations and high-order modulation. This means that the 

algorithm can be quite efficient and effective during massive 

MIMO scenarios. 

These novel contributions make the ADMM-CG algorithm a 

notable step forward in massive MIMO signal detection by 

striking a balance between detection performance and 

computational complexity. 

III. SYSTEM MODEL 

The BS in a huge uplink MIMO system has 𝑁𝑅 antennas and 

simultaneously serves 𝑁𝑇 users with a single antenna. where 𝑁𝑅 

>>𝑁𝑇 [22]. Fig. 1 depicts the uplink of a massive MIMO 

system, including users with  𝑁𝑇 and BS with 𝑁𝑅 transmitting 

and receiving antennas, respectively.  

The received signal vector �̃�  ∈  ℂ𝑁𝑅× 1  can be modeled as 

shown in  

 

�̃� = �̃�𝒙 + �̃�,                                                                          (1) 

 

where 𝒙  ∈  ℂ𝑁𝑇×1 is the transmitted signal vector, �̃�  ∈  ℂ𝑁𝑅×1 

is additive white Gaussian noise, and �̃�  ∈  ℂ𝑁𝑅×𝑁𝑇   is the 

channel matrix. Given knowledge of �̃�, estimating the sent 

signal vector 𝒙 from the received signal is the goal of multiuser 

detection [23]. 

It is possible to transform the complicated equivalent 

model into the real equivalent signal model. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 

Fig. 1. An uplink massive MIMO system 

Using Orthogonal Real-Valued Decomposition (ORVD) 

[20], in which the model of the received signal in real value can 

be expressed as: 

 

𝒚 = 𝑯𝒙 + 𝒏,                                                                        (2) 

the real equivalents of the received signal, transmitted vector, 

and noise vector, denoted as 𝒚, 𝒙, and 𝒏, respectively, are 

expressed below: 

 

𝒚 = [ℜ(�̃�1)  ℑ(�̃�1) ⋯  ℜ(�̃�𝑁𝑅
)  ℑ(�̃�𝑁𝑅

)]𝑻.                          (3) 

𝒙 = [ℜ(�̃�1)  ℑ(�̃�1) ⋯   ℜ(�̃�𝑁𝑇
)  ℑ(�̃�𝑁𝑇

)]𝑻.                           (4) 

𝒏 = [ℜ(�̃�1)  ℑ(�̃�1) ⋯   ℜ(�̃�𝑁𝑅
)  ℑ(�̃�𝑁𝑅

)]𝑻.                         (5) 

In the model, the mean signal energy, 𝐸𝑥, is equal to 0.5�̃�𝑥 

and the noise variance, 𝜎2, which is also equal to 0.5�̃�2.  One 

way to represent the ORVD channel matrix 𝑯 is as a reference. 

 

𝑯 =

[
 
 
 

𝑯𝟏,𝟏 𝑯𝟏,𝟐 ⋯ 𝑯𝟏,𝟐𝑵𝑻−𝟏 𝑯𝟏,𝟐𝑵𝑻

𝑯𝟐,𝟏 𝑯𝟐,𝟐 ⋯ 𝑯𝟏,𝟐𝑵𝑻−𝟏 𝑯𝟏,𝟐𝑵𝑻

⋮ ⋮ ⋱ ⋮ ⋮
𝑯𝟐𝑵𝑹,𝟏 𝑯𝟐𝑵𝑻,𝟐 ⋯ 𝑯𝟐𝑵𝑹,𝟐𝑵𝑻−𝟏 𝑯𝟐𝑵𝑹,𝟐𝑵𝑻]

 
 
 

 .       (6) 
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A submatrix in 𝑯 with dimensions (𝑖, 𝑗) is defined as  

 

𝑯𝒊,𝒋 = [
ℜ(ℎ𝑖,𝑗) −ℑ(ℎ𝑖,𝑗)

ℑ(ℎ𝑖,𝑗) ℜ(ℎ𝑖,𝑗)
],                                                  (7) 

 

where the symbol ℎ𝑖,𝑗 represents the element 𝑯, where i 

represents 1, 2, . . . , 2𝑁𝑅( 2𝑁𝑅 since extending to cover both in-

phase and quadrature components), and j represents 

1, 2, . . . , 2𝑁𝑇 (2𝑁𝑇 for similar reasons). ℎ𝑖,𝑗 represents the real 

model of the complex version ℎ̃𝑛,𝑚 which represents the 

element �̃�, where n represents 1, 2, . . . , 𝑁𝑅, and m represents 

1, 2, . . . , 𝑁𝑇.  

Our work assumes a flat fading channel model so that a single 

coefficient can represent each signal path.  

 

IV. OVERVIEW OF MIMO DETECTION METHODS 

 A. Minimum Mean-Squared Equalizer Detector  

The MMSE detector is expressed as [20] 

𝒙𝑴𝑴𝑺𝑬 = (𝑨)−𝟏�̂�𝐌𝐅 ,                                                            (8) 

 

𝑨 = (𝑯𝑯𝑯 + 𝜌𝑰𝑁𝑇
) ,                                                           (8-a)  

 

𝜌 = 𝑁0/𝐸𝑠 ,                                                                         (8-b) 

 

�̂�𝐌𝐅 = 𝑯𝑯𝒚 ,                                                                        (8-c)  

 

where 𝒙𝑴𝑴𝑺𝑬 is the estimated signal, A is the filtering matrix 

for MMSE, and �̂�𝐌𝐅 is the matched filter output. 

 B. Conjugate Gradients Detection Method 

The CG iteration detected signal is defined by [24]   

 

𝒙𝒌 = 𝒙𝒌−𝟏 + τ𝑘−1�̂�𝒌−𝟏 ,                                                  (15)  

 

where τ𝑘−1 is a scalar parameter and 𝐩(𝐤−𝟏) represents the 

conjugate direction concerning 𝑨, i.e., 

 

(�̂�𝒌−𝟏)
𝐇𝐀�̂�𝒋−𝟏 = 0,       for 𝑘 ≠ 𝑗.                                    (16) 

 

 

Our work assumes a flat fading channel model so that a single 

coefficient can represent each signal path.  

V. THE PROPOSED HYBRID ITERATIVE ALGORITHM 

Our focus here will be hybrid iteration algorithms, which 

enhance detection performance. This study examines three 

familiar iteration methods: JI, Cheby, and CG. The first 

iteration of the ADMM method is used in place of the first 

iteration of each technique.  

The ADMM method minimizes the problem in Eq. (17) by 

breaking it down into smaller issues. One of its best features is 

that it can handle multiple computations in several different 

ways [25] 

𝒙 ≜ ‖𝒏‖𝟐
𝒙∈𝓞𝑵𝑻   

𝒎𝒊𝒏   = 𝐚𝐫𝐠   ‖𝒚 − 𝑯𝒙‖𝟐
𝒙∈𝓞𝑵𝑻      

𝒎𝒊𝒏       ,        (17) 

 

eq. (17) may be rewritten as 

 

𝒙 = arg  𝐠(𝒛) +  ‖𝒚 − 𝑯𝒙‖𝟐
𝑥,𝑧∈𝒪𝑁𝑇      

𝑚𝑖𝑛       ,                (18) 

 

where, function 𝒈(𝒛) is a convex regularizer function. The 

augmented Lagrangian function 𝓛 for Eq. (18) is given as 

follows: 

 

𝓛(𝒙, 𝒛, 𝝀) = 𝒈(𝒛) +
𝟏

𝟐
 ‖𝒚 − 𝑯𝒙‖2 +

𝛽

2
 ‖𝒛 − 𝒙 − 𝝀‖2,         (19) 

where 𝝀 is the Lagrange parameter with the constraint 𝒛 = 𝒙 

and 𝛽 > 0   is a fixed penalty parameter. The ADMM method, 

which minimizes the modified Lagrangian, can be used to solve 

Eq. (18). ADMM is mostly used to resolve convex optimization 

issues, and one of its best features is that it can handle multiple 

computations in several different ways. To get the result, the 

modified Lagrangian's minimum is calculated over 𝒙 and 𝒛 in 

each step of ADMM. The steps in 𝑘 ADMM iterations [23]: 

 

𝒙𝑘 = 𝒂𝒓𝒈𝒎𝒊𝒏{
𝟏

𝟐
 ‖𝒚 − 𝑯𝒙‖2 + 𝜌 ∗ ‖𝒛 − 𝒙 − 𝝀‖2},       (20-a) 

 

�̂�𝑘 = ∏ (𝒙𝑘−1 + �̂�𝑘−1) 𝒄 ,                                                  (20-b) 

 

�̂�𝑘 = �̂�𝑘−1 + (𝒙𝑘−1 − �̂�𝑘−1),                                           (20-c) 

 

where, ∏  𝒄 is the Euclidean projection onto ℂ, and 𝝀 is the dual 

variable. The first step is to fix 𝒛 and 𝝀 and minimize 𝒙 using 

Eq. (20-a). Then, using Eq. (20-b) to fix 𝒙 and 𝝀 and minimize 

the augmented Lagrangian over 𝒛. Finally, the dual variable 𝝀 

is updated by Eq. (20-c). 𝑯 shows asymptotic orthogonality in 

the context of massive MIMO when 𝑁𝑅 ≫ 𝑁𝑇 [2, 26]; 

Consequently, we get 

 

 
ℎ𝑖

𝐻ℎ𝑗

𝑁𝑅
→ 0,   𝑖 ≠ 𝑗,   𝑖, 𝑗 = 1, 2,⋯𝑁𝑇,                                 (21) 

 

where ℎ𝑖 is the 𝑖th column vector of the 𝑯. Thus, the MMSE 

filtering matrix 𝑨 is diagonally dominant for massive MIMO 

uplink systems. Therefore, the diagonal matrix 𝑫's inverse 

approximates 𝑨's inverse. Moreover, the tridiagonal matrix, 

which is a special case of the diagonal matrix with partial 

pivoting, is defined as [27] 

 

𝑺 = 𝑠𝑡𝑎𝑖𝑟(𝑨(𝑁𝑇 , 𝑁𝑇  − 1); 𝑨(𝑁𝑇 , 𝑁𝑇); 𝑨(𝑁𝑇 , 𝑁𝑇  + 1).   (22) 

 

By observing that the number of receive antennas is much 

greater than the number of transmit antennas for large antenna 

arrays, the value of each element in the tridiagonal matrix may 

be estimated as follows:  

𝑠 ≈
𝑡𝑟(𝑺)

𝑁𝑇
,                                                                              (23) 

where 𝑡𝑟(𝑆) is matrix 𝑨's tridiagonal element's trace. Thus, the 

initial vector �̂�𝟏 is used as a first in our proposed work to 

accelerate its convergence rate, can be defined as: 
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�̂�𝟏 = 𝑠�̂�𝐌𝐅.                                                                                     (24) 

 

Observably, Eq. (22) reduced the required computations by 

substituting scalar–vector multiplications for matrix-vector 

multiplications. Then, Eq. (20-a) is modified with k=1 as 

follows. 

 

𝒙1 = 𝛀 ∗ (�̂�𝐌𝐅 + 𝜌 ∗ (�̂�𝟏)),                                                 (25) 

 

where 𝛀 = (𝑳𝑯)−𝟏𝑳−𝟏, where 𝑳 represents the Cholesky 

decomposition of 𝑨, which prevents direct inversion. 

Table I explains the ADMM-CG hybrid iterative algorithm 

in detail. The first iteration uses Eq. (25) in each scenario.  
 

TABLE I 
PROPOSED ADMM-CG ALGORITHM PSEUDO CODE 

1. Input: H, y, 𝑁0, 𝐸𝑠,𝑁𝑇, 𝑁𝑅, s, L 

2. Output: �̂�𝑘 

3. Initialization: 

4. 𝜌 = 𝑁0/𝐸𝑠, �̂�𝐌𝐅 = 𝑯𝑯𝒚, 𝑨 = 𝑯𝑯𝑯 + 𝜌𝑰𝑵𝑻
 

5. 𝛀 = (𝑳𝑯)−𝟏𝑳−𝟏, �̂�𝟏 = �̂�𝐌𝐅/𝑠 

6. First iteration: 
7. �̂�𝟏 = 𝛀(�̂�𝐌𝐅 + 𝜌�̂�𝟏) 

8.   �̂�𝟏 = �̂�𝐌𝐅 − 𝑨�̂�𝟏, �̂�𝟏 = �̂�𝟏 

9. Other iteration: 

10. for k=2 to K do 

11.      �̂�𝑘 = 𝑨 �̂�𝒌−𝟏, τ𝒌−𝟏 = ‖ �̂�𝒌−𝟏‖
2 ( �̂�𝒌−𝟏)′ �̂�𝑘−1⁄ , 

12.     �̂�𝒌 = �̂�𝒌−𝟏 + τ̂𝑘−1�̂�𝒌−𝟏, 
13.     �̂�𝑘 = �̂�𝒌−𝟏 − τ𝒌−𝟏�̂�𝒌−𝟏, 
14.    𝛿 = ‖ �̂�𝑘‖

2 ‖�̂�𝒌−𝟏‖
2⁄ , �̂�𝑘 = �̂�𝑘 + 𝛿�̂�𝒌−𝟏,              

15. end for 

VI. COMPLEXITY ANALYSIS 

Our next step is to assess the current detectors and proposed 

hybrid approaches for their level of complexity. Since 

multiplications provide the majority of complexity, we have 

considered their number while estimating detector complexity.  

Initialization complexity is almost identical since the 

proposed hybrid techniques use Eq. (25) in the first iteration. 

(1) Compute 𝒙𝑴𝑭 : 𝒙𝑴𝑭 requires 4𝑁𝑇𝑁𝑅 multiplications.  

(2) Compute 𝜴 : the computation of 𝜴  requires 4𝑁𝑇
2 + 4𝑁𝑇 

multiplications.   

(3) Compute �̂�𝟏: �̂�𝟏 come from 𝑠 ∗ 𝒙𝑴𝑭,  where 𝑠 is a scalar 

quantity, and the multiplication between 𝑠 and 𝒙𝑴𝑭 

requires 2𝑁𝑇 multiplications. Therefore, the total number 

of multiplications required for �̂�𝟏 is 4𝑁𝑅𝑁𝑇 + 2𝑁𝑇. 

(4)  The multiplication between 𝜌 and 𝒛𝟏 is also 2𝑁𝑇. 

(5) Compute the multiplications between 𝛀 and (�̂�𝐌𝐅 + 𝜌 ∗
𝒛𝟏)): result in 4𝑁𝑇

2.  

While the initial ADMM iteration is essential for improving 

performance, it also involves many multiplications. It takes 

(8𝑁𝑅𝑁𝑇 + 8𝑁𝑇 + 8𝑁𝑇
2) multiplications to compute Eq. (25). 

The rest of the iterations for ADMM-CG are equivalent to the 

CG method. For 𝑁𝑅/𝑁𝑇 = 4  and three iterations.  

Fig. 2 illustrates the number of multiplications used along 

with the number of users. The figure demonstrates that the 

suggested hybrid approach needs more operations than the 

conventional algorithms. However, it requires much less 

multiplication than MMSE. 

 
Fig. 2. Real complexity vs users’ number for the conventional and 

suggested hybrid approaches. 

VII. SIMULATION RESULTS AND DISCUSSION 

This section compares the proposed method's detection 

performance with traditional algorithms to current state-of-the-

art detectors such as NSA [15], CG [9], JI-GS [18], NSR-SD 

[19], NI-SOR [20], CG-SOR [21]. These detection algorithms 

also used a massive MIMO uplink system.  The value of the 

SOR relaxation parameter used in NI-SOR is 1.05, while in CG-

SOR, it is 1.2. The matched filter output is the initial vector for 

CG. Fig. 3 demonstrates the results of comparing the suggested 

hybrid approach and the traditional algorithm for a 𝑁𝑅 × 𝑁𝑇 =
128 × 32 employing a 64-QAM antenna scenario. The BER 

performances of the iterative detectors are evaluated relative to 

the MMSE detection. The suggested hybrid detection technique 

provides near-optimum performance for just two iterations.  

The proposed method outperforms the performance of the 

other algorithms, like JI-GS, NSR-SD, NI-SOR, and CG-SOR, 

for three iterations, as shown in Fig. 4.  

 

 
 

Fig. 3. The BER performance comparison of the proposed algorithm 

and other algorithms for two iterations with 128 × 32 and 64-QAM 

 

294 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024



 
 

a) 

 

b) 

 

c) 

Fig. 4. The BER performance comparison of the proposed algorithm 

and other algorithms for three iterations with the following system 

dimensions: a. 128 × 64 and 256-QAM, b. 128 × 128  and QPSK, c. 

256 × 64 and 256-QAM 

Fig. 4-a shows that the proposed method outperformed the 

other methods in the high-order modulation 256-QAM. Fig. 4-

b shows that it maintained its performance and outperformed 

the rest of the methods when the number of users equaled the 

number of antennas in the BS. Fig. 4-c shows that it 

outperformed the other methods when the modulation order was 

high, and the number of antennas in the BS was 256.  We 

conclude from Fig. 4 that the existing methods are sensitive at 

high modulation order and when the number of users 

approaches the number of antennas in the BS. The proposed 

algorithm showed performance close to optimum in all cases. 

Fig. 5 demonstrates how transmit antenna modifications 

affect BER performance for 𝑁𝑅 = 256 at 𝑆𝑁𝑅 = 20 and 256-

QAM with 𝑘 = 3. The proposed method showed performance 

near to optimum in all user values and at low 𝑁𝑇, the rest of the 

methods approached optimum, but the performance gap became 

clearer as the number of users increased. Compared with the 

mentioned hybrid algorithms, the proposed algorithm performs 

near-optimal with growing system dimensions such as BS 

antennas, users, or modulation orders. 

Table II illustrates the required computation for each 

algorithm's initial and first iteration vectors. It can be observed 

that our proposed method showed performance close to 

optimum with reasonable complexity compared to other 

conventional and hybrid algorithms 

Fig. 6 demonstrates the complexity comparison regarding 

the number of multiplications performed with every 

iteration.The CG method has the least number of 

multiplications among all algorithms, followed by CG-SOR and 

then the proposed ADMM-CG method. However, they require 

more iterations than the proposed ADMM-CG with high SNR 

to obtain the best BER performance, which is still lower than 

the proposed method performance 

 
 

Fig. 5. The BER performance against the user number comparison of the 
proposed algorithm and other algorithms for three iterations when the 

BS is equipped with 256 antennas using 256-QAM, at SNR=20dB 
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TABLE II 

COMPLEXITY OF THE INITIAL VECTOR FOR VARIOUS ALGORITHMS 

Algorithms The initial and first stage Complexity of the 

initial vector 

NI-SOR �̂�𝟎 = (𝛼 + 𝜙𝜌)�̂�𝐌𝐅 + 𝜙𝑯𝑯𝑯�̂�𝐌𝐅  

�̅�𝟎 = 𝑯𝑯𝑯�̂�𝟎  

�̂�𝟏 = (2 − 𝛼𝜌 + 𝜙𝜌2)�̂�𝟎 ⋯  

+(2𝜙𝜌 − 𝛼)�̅�𝟎 + 𝜙𝑯𝑯𝑯�̅�𝟎  

Where 𝛼, 𝜙 are scalars 

16𝑁𝑅𝑁𝑇 + 8𝑁𝑇 

NSR-SD 
𝜆𝑚𝑖𝑛 = 𝑁𝑅 (1 − √

𝑁𝑇

𝑁𝑅
)
2

, 

 𝜆𝑚𝑎𝑥 = 𝑁𝑅 (1 + √
𝑁𝑇

𝑁𝑅
)

2

 

𝑐 =
𝑁𝑇

𝑁𝑅
+

1

√𝜆𝑚𝑖𝑛
 �̂�𝟎 = (𝑐𝑫)−1�̂�𝐌𝐅, 

 �̂�𝟎 = �̂�𝐌𝐅 − 𝑨�̂�𝟎,  
 𝑎 = ‖ �̂�𝟎‖

2 (𝐀�̂�𝟎)
𝐻 ∙ �̂�𝟎⁄   

�̂�𝟏 = �̂�𝟎 + 𝒂𝒓𝟎  

3𝑁𝑇
2𝑁𝑅 + 4𝑁𝑅𝑁𝑇 +

2𝑁𝑇  

JI-GS �̂�𝟏

= 𝑫−𝟏(�̂�𝐌𝐅 + (𝐃 − 𝐀)(𝑫−𝟏�̂�𝐌𝐅)) 
2𝑁𝑇

2𝑁𝑅 + 4𝑁𝑅𝑁𝑇 +
8𝑁𝑇

2  

CG-SOR �̂�𝟏 = (‖ �̂�𝐌𝐅‖
2 �̂�𝐌𝐅

′ ∙ 𝑨�̂�𝐌𝐅⁄ )�̂�𝐌𝐅  4𝑁𝑇𝑁𝑅 + 4𝑁𝑇
2 +

10𝑁𝑇  

Proposed 

ADMM-
CG 

�̂�𝟏 = (𝑳𝑯𝐋)−1(�̂�𝐌𝐅 + 𝜌�̂�𝟏)  8𝑁𝑅𝑁𝑇 + 8𝑁𝑇 +
8𝑁𝑇

2  

 

 
Fig. 6. Complexity comparison of the proposed hybrid and the 

conventional approaches for a 128 × 32 scenario 

 

VIII. CONCLUSION 

This paper proposes a hybrid iterative algorithm-based 

uplink massive MIMO system detection to meet the next-

generation demand in increasing the number of users and high 

data rate requirements. The proposed algorithm incorporates the 

ADMM technique with the CG algorithm and integrates with 

the trace tridiagonal initial method to achieve a complexity-

performance tradeoff for uplink massive MIMO. Its initial 

iteration utilizes the ADMM to improve the convergence of the 

CG technique. The Monte Carlo simulation results show 

significant performance improvement compared to the current 

techniques. The proposed algorithm performs near-optimal 

with growing system dimensions such as BS antennas, users, or 

modulation orders. Moreover, the suggested method performs 

near optimum for only two iterations. Despite its increased 

complexity compared to conventional iterative algorithms, the 

ADMM-CG algorithm offers a compelling solution by reducing 

the overall computational burden compared to MMSE 

detection. 

REFERENCES 

 

[1]  A. Z. Yonis, A. Nawaf, "Investigation of Evolving Multiple Access 

Technologies for 5G Wireless System," in 8th International Engineering 
Conference on Sustainable Technology and Development (IEC), Erbil, 

Iraq, 2022.  

https://doi.org/10.1109/IEC54822.2022.9807471 

[2]  F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, 

and F. Tufvesson, "Scaling Up MIMO: Opportunities and Challenges 

with Very Large Arrays," IEEE Signal Processing Magazine, vol. 30, no. 
1, pp. 40 - 60, 2012. https://doi.org/10.1109/MSP.2011.2178495 

[3]  N. Shlezinger,  G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. 

R. Smith, "Dynamic Metasurface Antennas for 6G Extreme Massive 
MIMO Communications," IEEE Wireless Communications, vol. 28, no. 

2, pp. 106 - 113, 2021. https://doi.org/10.1109/MWC.001.2000267 

[4]  E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive 
MIMO for next generation wireless systems," IEEE Communications 

Magazine, vol. 52, no. 2, pp. 186 - 195, 2014.   

https://doi.org/10.1109/MCOM.2014.6736761 

[5]  L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, "An 

Overview of Massive MIMO: Benefits and Challenges," IEEE Journal 

of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742 - 758, 2014. 
https://doi.org/10.1109/JSTSP.2014.2317671  

[6]  A. Z. Yonis, "Evolution of millimeter-wave communications toward next 

generation in wireless technologies," TELKOMNIKA 
(Telecommunication Computing Electronics and Control), vol. 17, no. 6, 

pp. 3161-3167, 2019. http://doi.org/10.12928/telkomnika.v17i6.13060 

[7]  H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, "Energy and Spectral 

Efficiency of Very Large Multiuser MIMO Systems," IEEE Transactions 

on Communications, vol. 61, no. 4, pp. 1436 - 1449, 2013.  

https://doi.org/10.1109/TCOMM.2013.020413.110848 

[8]  C. Thrampoulidis, W. Xu, and B. Hassibi, "Symbol Error Rate 

Performance of Box-Relaxation Decoders in Massive MIMO," IEEE 

Transactions on Signal Processing, vol. 66, no. 13, pp. 3377 - 3392, 
2018. https://doi.org/10.1109/TSP.2018.2831622 

[9]  M. A. Albreem, M. Juntti, and S.  Shahabuddin, "Massive MIMO 

detection techniques: A survey," IEEE Communications Surveys & 
Tutorials, vol. 21, no. 4, pp. 3109 - 3132, 2019.  

https://doi.org/10.1109/COMST.2019.2935810 

[10]  M. Wu, B. Yin, G. Wang, C. Dick, and J. R. Cavallaro, "Large-scale 
MIMO detection for 3GPP LTE: Algorithms and FPGA 

implementations," IEEE Journal of Selected Topics in Signal Processing, 

vol. 8, no. 5, pp. 916 - 929, 2014.  
https://doi.org/10.1109/JSTSP.2014.2313021 

[11]  L. Dai, X. Gao, X. Su, S. Han, C. -L. I and Z. Wang, "Low-Complexity 

Soft-Output Signal Detection Based on Gauss–Seidel Method for Uplink 
Multiuser Large-Scale MIMO Systems," in IEEE Transactions on 

Vehicular Technology, vol. 64, no. 10, pp. 4839-4845, Oct. 2015. 

https://doi.org/10.1109/TVT.2014.2370106 

[12]  X. Gao, L. Dai, Y. Hu, Z. Wang and Z. Wang, "Matrix inversion-less 

signal detection using SOR method for uplink large-scale MIMO 
systems," 2014 IEEE Global Communications Conference, Austin, TX, 

USA, 2014, pp. 3291-3295. 

https://doi.org/10.1109/GLOCOM.2014.7037314 

[13]  S. Hashima, and O. Muta, "Fast matrix inversion methods based on 

Chebyshev and Newton iterations for zero forcing precoding in massive 

MIMO systems," EURASIP Journal on Wireless Communications and 
Networking, vol. 2020, pp. 1-12, 2020.  

https://doi.org/10.1186/s13638-019-1631-x 

[14]  B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, "Conjugate gradient-based 
soft-output detection and precoding in massive MIMO systems," in IEEE 

Global Communications Conference, Austin, TX, 2014. 

https://doi.org/10.1109/GLOCOM.2014.7037382  

[15]  K. Khurshid, M. Imran, A. A. Khan, I. Rashid, and H. Siddiqui, "Efficient 

hybrid Neumann series based MMSE assisted detection for 5G and 

beyond massive MIMO systems," IET Communications, vol. 14, no. 22, 
pp. 4142-4151, 2020. https://doi.org/10.1049/iet-com.2020.0670 

[16]  S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed 

optimization and statistical learning ia the alternating direction method 

MMSE NSE CG NI-SOR NSR-SD JI-GS CG-SOR
ADMM-

CG

k=2 755840 140416 25216 70016 410720 290816 25024 45632

k=3 755840 173184 29632 74240 411712 294912 29248 50048

k=4 755840 205952 34048 78464 412768 299008 33472 54464

0

100000

200000

300000

400000

500000

600000

700000

800000

N
u

m
b

er
 o

f 
m

u
lip

lic
at

io
n

296 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024



of multipliers," Foundations and Trends® in Machine Learning, vol. 3, 

no. 1, p. 1–122, 2011. https://doi.org/10.1561/2200000016 

[17]  B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, "An ADMM 
algorithm for a class of total variation regularized estimation problems," 

IFAC Proceedings Volumes, pp. 83-88, 2012.  

https://doi.org/10.3182/20120711-3-BE-2027.00310 

[18]  M. A. M. Albreem, A. A. El-Saleh, and M. Juntti,, "Linear massive 

MIMO uplink detector based on joint Jacobi and Gauss-Seidel methods," 

in 16th International Conference on the Design of Reliable 
Communication Networks DRCN 2020, Milan, Italy, 2020. 

https://doi.org/10.1109/DRCN48652.2020.1570610672 

[19]  I. A. Khoso, X. Zhang, X. Dai, A. Ahmed, and Z. A. Dayo, "Joint steepest 

descent and non‐stationary Richardson method for low‐complexity 

detection in massive MIMO systems," Transactions on Emerging 
Telecommunications Technologies, vol. 33, no. 9, p. e4566, 2022. 

https://doi.org/10.1002/ett.4566 

[20]  S. Chakraborty, N. B. Sinha, and M. Mitra, "Likelihood ascent search-
aided low complexity improved performance massive MIMO detection 

in perfect and imperfect channel state information," International 

Journal of Communication Systems, vol. 35, no. 8, p. e5113, 2022. 
https://doi.org/10.1002/dac.5113 

[21]  S. Labed, and N. Aounallah, "Efficient Iterative Detection Based on 

Conjugate Gradient and Successive Over-Relaxation Methods for Uplink 
Massive MIMO Systems," Journal of Telecommunications and 

Information Technology, 2023.  

 https://doi.org/10.26636/jtit.2023.169023 

[22]  Y. Zhang, J. Sun, J. Xue, L. Han, and Z. Xu, "Improving Signal Detector 

by Precoding in Uplink Multiuser MIMO System," IEEE Transactions 

on Vehicular Technology, vol. 73, no. 1, pp. 938 - 951, 2023.  
https://doi.org/10.1109/TVT.2023.3307449 

[23]  M. Juntti, M. A. Albreem, A. H. Alhabbash, and S. Shahabuddin, "Deep 

Learning for Massive MIMO Uplink Detectors," IEEE Communications 
Surveys & Tutorials, vol. 24, no. 1, pp. 741 - 766, 2021.  

https://doi.org/10.1109/COMST.2021.3135542 

[24]  L. Liu, G. Peng, P. Wang, S. Zhou, Q. Wei, S. Yin, and S. Wei, "Energy- 
and Area-Efficient Recursive-Conjugate-Gradient-Based MMSE 

Detector for Massive MIMO Systems," IEEE Transactions on Signal 

Processing, vol. 68, pp. 573 - 588, 06 January 2020.  
https://doi.org/10.1109/TSP.2020.2964234 

[25]  R. Chataut, and R. Akl, "Huber fitting based ADMM detection for uplink 
5G massive MIMO systems," in 9th IEEE Annual Ubiquitous 

Computing, Electronics & Mobile Communication Conference, New 

York, NY, USA, 2019.  
https://doi.org/10.1109/UEMCON.2018.8796735 

[26]  C. Zhang, Z. Wu, C. Studer, Z. Zhang, and X. You, "Efficient Soft-

Output Gauss–Seidel Data Detector for Massive MIMO Systems," IEEE 
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 12, 

pp. 5049 - 5060, 2021. https://doi.org/10.1109/TCSI.2018.2875741 

[27]  F. Jiang, C. Li, Z. Gong, and R. Su, "Stair Matrix and its Applications to 
Massive MIMO Uplink Data Detection," IEEE Transactions on 

Communications, vol. 66, no. 6, pp. 2437-2455, 2018. 

 https://doi.org/10.1109/TCOMM.2017.2789211 

 
Azhar Hussein Neama received an M.Sc. degree in 

Electronic and Communication Engineering from 

Baghdad University, Baghdad, Iraq, in 2018. 
Currently, she is working as a lecturer in the 

Department of Computer Network Engineering, 
College of Information Engineering, Al-Nahrain 

University, Baghdad, Iraq. She is also a PhD. 

Candidate at the Department of Electrical 
Engineering, College of Engineering, Al-

Mustansiriyah University, Baghdad, Iraq. Her 

research interests include wireless communication, 
MIMO systems, fading channels, and Optimization techniques. 

 

 
Ghanim Abdulkareem Mughir received a Ph.D. 

degree from the School of Electrical and Electronics 

Engineering, Newcastle University, Newcastle Upon 

Tyne, UK, in 2017. He received an M.Sc. degree in 

Electronics and Communications from Al-

Mustansiriyah University, Baghdad, Iraq, in 1999. He 
is currently a professor in the Electrical Engineering 

Department, Faculty of Engineering, Mustansiriyah 

University, Baghdad, Iraq. His research interests 
include wireless communications on coded systems, 

OFDM systems, fading and power line 

communication channels, channel modelling, and receiver design. 

 

A. H. NEAMA et al.: ENHANCED HYBRID DETECTION TECHNIQUE FOR MINIMUM MEAN SQUARE EQUALIZER 297




