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Abstract—The quality of source code is negatively impacted by 

code smells. Since the term "code smell" originated, numerous 

attempts have been made to comprehend it by identifying it using 

various techniques, such as metric-based, heuristic-based, 

optimization-based, machine learning (ML)-based, etc. Among 

these, supervised machine learning (SML) has shown 

effectiveness in detecting code smells. However, SML techniques 

have significant limitations, including the dependency on 

expensive and high-quality labeled data, the need for 

representative training datasets, and the risk of introducing 

biases in labeled examples that lead to skewed predictions. To 

overcome these challenges, this study introduces a method that 

leverages unsupervised machine learning (UnML) along with 

feature engineering. Unlike SML, UnML does not require labeled 

data and minimizes potential biases. The proposed method was 

evaluated using four datasets containing different types of code 

smells and was compared with a previous study that used SML 

techniques. The results indicate that the UnML-based method is 

effective, achieving outcomes closely aligned with those from the 

SML approach. This method is especially beneficial in situations 

where labeled data is scarce or unavailable and can be used to 

identify new code smells, generate labeled data for SML and 

detect multiple code smells simultaneously within a codebase. 

  Index terms—code smell, unsupervised machine learning, 

open-source Java projects. 

I. INTRODUCTION

Kent Beck was the first person who invented the phrase 

“code smell” in 1999 [1]. Code smell was defined as “certain 

structures in the code that suggest (or sometimes scream) for 

refactoring.” Code smell refers to any characteristic of a 

source code that could indicate a significant underlying issue. 

The term "smell" is used metaphorically to indicate that there 

might be something wrong with the code, even though it may 

still function correctly. Code smells are not bugs themselves, 

but they often indicate areas of the code that could benefit 

from refactoring or further investigation to improve 

maintainability, readability, or performance. 
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Code smells indicate symptoms present in the source code 

that have an impact on the quality characteristics of the 

software [1], [2]. Code smells are apparent characteristics that 

suggest the existence of design problems or deficiencies in the 

code. These problems or deficiencies have a significant impact 

on crucial aspects of code quality, like maintainability, 

reusability, and understandability [1]. Code smell typically 

refers to underlying problems in a code that degrade its quality 

and can lead to significant issues [3]–[5]. Code smells when 

present in large numbers in software makes it difficult to 

maintain. First, Martin Fowler defined a catalogue of 22 code 

smells [1].  

The first step in dealing with code smell is its detection 

which is followed by refactoring. The process of refactoring 

modifies the internal structure of code without altering its 

external functionality. The main objective of refactoring is 

enhancing the code’s structure to facilitate its comprehension, 

modification, and maintenance while retaining its 

functionality.  

Code smell detection is crucial for several reasons. 

Identifying and addressing code smells helps improve the 

maintainability of software systems. By detecting and 

refactoring these smells, developers can ensure that the 

codebase remains clean, understandable, and easier to 

maintain over time. Code smells can be indicators of potential 

bugs or defects in the code. Addressing code smells at an early 

stage in the development process helps to prevent the 

accumulation of technical debt and reduce the likelihood of 

introducing bugs or errors. This ultimately leads to higher-

quality software products that are more reliable and less prone 

to unexpected issues. Code smells such as duplicated code, 

long methods, or excessive coupling can negatively impact the 

scalability and performance of software systems. Clean, well-

structured code is more reusable than code with numerous 

smells. Working with a codebase riddled with code smells can 

be frustrating and demoralizing for developers. Addressing 

code smells and maintaining a clean, well-structured codebase 

can boost developer morale, leading to a more positive and 

productive work environment.  

Since the inception of the concept of code smell, the 

existing body of literature demonstrates that numerous 

attempts have been undertaken to detect them through diverse 

approaches. Multiple approaches have been employed to 

identify and detect different types of code smells. The 

literature on code smell detection has identified five categories 

of approaches: “metrics-based, rules or heuristic-based, code 

change information-based, machine learning-based, and
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optimization algorithm-based”[6]. The literature review 

conducted by Azeem et al. [7] identified a total of 13 code 

smells (out of 22 code smells from Martin Fowler's catalog) 

that have been targeted for code smell detection using machine 

learning (ML) techniques. Based on a survey conducted by 

Al-Shaaby [8], the existing literature indicates that the 

methods employed in the domain of code smell for their 

detection have been based on SML techniques. Furthermore, 

based on the information available to us, there is no study 

conducted on the utilization of UnML for code smell 

detection. SML has several limitations. SML relies on labelled 

data which can be expensive and time-consuming to obtain. 

Supervised learning learns patterns and makes predictions 

based on input features. SML focuses on minimizing 

prediction errors by learning from labeled examples, which 

may not capture all the nuances of the underlying data 

distribution. In SML, performance relies on the quality and 

representativeness of labeled training data, which may not 

fully encompass the intricacy of real-world situations. Biases 

in the labeled examples can lead to biased model predictions. 

The use of the unsupervised machine learning (UnML) 

technique can offer several advantages over the SML 

technique in for identification of code smells. UnML methods 

don't require labeled examples, enabling them to analyze large 

codebases without the need for manual labeling. They can 

uncover hidden structures and patterns within codebases, 

identifying not only well-known smells but also novel or 

subtle issues that might be missed by manual inspection or 

predefined labels. This capability allows for a more thorough 

comprehension of the overall code quality. UnML approaches 

provide a more objective assessment of code quality by 

learning directly from the data distribution. This reduces the 

risk of bias introduced by labeled examples and allows for a 

more data-driven understanding of code smells. UnML scales 

more effectively to large codebases since they don't require 

manual labeling. UnML methods are more flexible and 

adaptable, capable of detecting various types of code smells 

without explicit guidance or predefined labels. This 

adaptability makes them suitable for detecting both known and 

unknown smells, as well as for exploring new types of code 

quality issues.  

This study represents the utilization of an UnML to detect 

code smells. Based on our current knowledge, it is the first 

study of its kind to explore the feasibility of an UnML 

algorithm for the identification of code smell. Thus, this paper 

outlines the following contributions: 

• This study proposes a method that uses a self-

organizing map (SOM), an UnML algorithm, along

with feature engineering to identify code smells.

• The proposed method is evaluated on 4 popular and

publicly available datasets [9] of 4 different code

smells: Long method, feature envy, god class, and data

class. The proposed method’s performance has been

assessed using commonly used performance measures:

precision, recall, F-measure, accuracy, MCC, and AUC-

ROC. The research findings along with results have

been made accessible to the research community for 

future investigation. 

• The proposed method’s results employing an UnML

algorithm have been contrasted with the results

previous study [9] which has used several (16) SML

algorithms. The study conducted by Fontana [9] is a

crucial and notable advancement in the domain of code

smell through the application of SML algorithms.

The subsequent text outlines the structure of the article. The 

second section of the paper outlines the related work for code 

smell that uses machine learning for their detection. Section III 

elaborates on the proposed method mentioned in this study. 

Section IV provides the details about the experimental datasets 

employed in the study. Section V provides a detail of the 

UnML algorithm used. The performance measures used to 

determine the effectiveness of the proposed method are 

elaborated in Section VI. The results of the conducted 

experiments are analyzed in Section VII. Section VIII 

provides the last thoughts and delineates opportunities for 

future research. 

II. RELATED WORK

  This section summarizes the observed significant literature 

on code smell detection using the ML technique.  

   Kreimer [10] employed a decision tree-based adaptive 

approach to identify long methods and large class code smells, 

integrating object-oriented metrics with machine learning to 

autonomously detect design flaws. This supervised learning 

technique utilized a program dependency graph (PDG) as an 

abstract representation of the program, where specific metric 

values were fed into the trained model to identify design 

flaws. Metrics such as statement count, method complexity, 

parameter count, and local variable count were used to detect 

long methods. 

   Authors [11] utilized a Bayesian approach, a probabilistic 

model, to identify code smells by computing the likelihood of 

a class being associated with a particular smell. This method 

also falls under the category of supervised learning, as it relies 

on known probabilities to predict code smells. 

   Sérgio et al. [12] applied binary logistic regression, a 

supervised learning technique, to identify long methods. They 

used metrics like Method Lines of Code and cyclomatic 

complexity as regressors. The model required an initial 

training phase with expert-labeled data to calibrate the 

classification process. 

   Khomh et al. [13] introduced BDTEX, a Bayesian Decision-

Theoretic model using Bayesian Networks (BBNs), to identify 

antipatterns in software. This supervised learning method and 

modeled symptoms at the operational level to predict the 

likelihood of a class being an antipattern, demonstrating strong 

performance on well-structured programs. 

   Abdou et al. [14]  employed a Support Vector Machine 

(SVM), a supervised learning technique, trained on 60 object-

oriented metrics to detect design smells like blob, feature 

concentration, and spaghetti code. Their novel method, 

SVMDetect, trained the SVM model on a dataset of object-
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oriented metrics and applied it to detect design smells in 

software classes. 

   Fontana et al. [9] used 16 different machine learning 

algorithms, all under the umbrella of supervised learning, to 

detect code smells such as data class, god class, feature envy, 

and long method across 74 systems. Metrics were computed 

using the DFMJ tool, and the performance of these algorithms 

was evaluated on the dataset. 

   Kim [15]  utilized a neural network implemented in 

TensorFlow, a supervised deep learning technique, to predict 

seven different code smells based on the analysis of object-

oriented metrics from 20 open-source Java projects. The 

neural network was trained on these metrics, with calculations 

performed across various epochs and hidden layers to enhance 

detection accuracy. 

   In contrast, a study [16]  introduced a hybrid detection 

approach using a deep autoencoder and Artificial Neural 

Network (ANN). The deep autoencoder, an unsupervised 

learning method, performed dimensionality reduction, which 

was then followed by supervised learning through the ANN to 

detect code smells like God Class and Feature Envy. This 

approach demonstrated improved accuracy by combining 

unsupervised and supervised learning. 

   Another study [17]  proposed a deep learning-based 

approach to detect feature envy code smells using 

Convolutional Neural Networks (CNNs), a supervised 

learning technique. The study also developed an automatic 

method for generating labeled training data, utilizing both 

structural and textual information for training the neural 

network classifier. 

   The study [18] introduced SMAD, an ensemble method 

combining multiple supervised machine learning classifiers, 

including a Multi-layer Perceptron, to detect anti-patterns like 

God Class and Feature Envy. The method aggregated core 

metrics from different detection tools as input for the machine 

learning model, which demonstrated superior performance in 

comparison to other ensemble methods. 

   Gupta et al. [19] investigated the use of six different 

supervised machine learning algorithms, including Naive 

Bayes, KNN, MLP, Decision Tree, Logistic Regression, and 

Random Forest, to detect code smells in four datasets. The 

study highlighted the impact of feature selection and 

parameter optimization on model accuracy, particularly for 

algorithms like Random Forest and Logistic Regression. 

Vatanapakorn et al. [20] employed eight supervised learning 

algorithms to detect code smells in Python programs, 

enhancing performance through correlation-based feature 

selection and forward stepwise selection methods, which 

helped in identifying the most relevant software metrics for 

each code smell category. 

   Two studies [21], [22] explored the use of transfer learning, 

a domain adaptation technique, for code smell detection using 

deep learning models like 1D and 2D CNNs, RNNs, and 

Autoencoders. These models utilized tokenized source code 

sequences as input, demonstrating the potential of both 

supervised learning. 

   Recently, Gupta [23] demonstrated the potential of a 

customized transfer learning method, "MDITKL," for 

detecting code smells in heterogeneous data. This method is a 

variant of domain invariant transfer kernel learning[24], a 

homogeneous transfer learning technique, which adapts to the 

challenges of detecting long methods and temporary field code 

smells in diverse datasets. Another study by [25] identified 

two Python code smells—Large Class and Long Method—

using five ML models. Similarly, [26] employed eight ML 

models, along with preprocessing techniques, to detect four 

code smells Blob, Long Method, Feature Envy, and Data 

Class. Thus, the subsequent observations were derived from 

the literature review. 

• Java has been the most extensively studied language for

detecting code smells utilizing machine learning methods.

• Research has been conducted on the application of

ensemble methods. Ensemble methods were used to

improve the performance of machine learning algorithms.

• Sophisticated machine learning methodologies such as

deep learning and transfer learning, have exhibited their

value in code smell detection and are poised to enhance

their capabilities.

• No empirical study has employed an UnML approach to

detect code smells.

Thus, the literature survey demonstrates that various SML 

methods have been employed for the identification of code 

smell. However, to date, there has been no study conducted 

utilizing UnML technique(s). 

III. THE PROPOSED METHOD

The following section provides a detailed discussion of the 

proposed experimental methodology. It has been kept simple 

as shown in Figure 1. It consists of 5 main steps. 

Step 1 (download code smell datasets). Step 1 is 

collecting/downloading existing considered open-source Java 

project datasets under study from the web for experimentation.  

Step 2 (Clean dataset(s)). Step 2 includes pre-processing the 

dataset through analysis and clean-up steps. The dataset has 

been subjected to a comprehensive examination to identify and 

address duplicate rows and columns, as well as missing 

values, to ensure data accuracy. The dataset has been 

processed to remove any duplicate rows and columns and to 

fill in missing values for completeness. 

Fig. 1.  The proposed method using UnML (SOM) 

Step 3 (Select features). Step 3 selects features that are 

significant using a feature selection technique.  

Features play a crucial role in the development of prediction 

models, including regression and classification models. 

Overfitting can occur in a model with a high feature count, 
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causing it to predict the training dataset only accurately. This 

is an undesired situation. By assigning a meaningful value to 

each feature, one can apply the feature importance technique 

to determine the most and least important features for 

prediction. Step 3 involves identifying the essential features 

when dealing with many features in the dataset(s). The 

significance of the chosen features was subsequently analyzed 

based on the defined code smell criteria. An open-source 

Python package called Featurewiz [27] was utilized in this 

study to identify crucial features due to its simplicity and 

efficiency in feature selection from a dataset.  

Step 4 (Apply SOM). Step 4 applies SOM. The dataset is 

partitioned into training and testing datasets using an 80:20 

ratio. The performance is analyzed using performance metrics 

like MCC, precision, recall, F-measure, accuracy, and AUC. 

Step 5 (Summarize results). Step 5 involves the collection 

of experimental results and the preparation of a summary to 

conclude. 

IV.  EXPERIMENTAL DATASETS 
 

The Java programming language has experienced a surge in 

popularity starting from its inception, largely due to the 

widespread adoption of the Internet. Java is widely regarded as 

the most extensively studied programming language in terms 

of code smells, as evidenced by the literature [6], [28]. The 

study has used 4 extremely popular, manually validated, and 

published datasets over Java projects by Arcelli Fontana et al. 

[9] for 4 different code smells namely long method (LM), 

feature envy (FE), data class (DC), and god class (GC) 

because they were the only publicly accessible datasets with 

several metrics (computed over source code) and types of 

smells, they were judged appropriate for the experimentation 

in this paper.  

   The authors curated a dataset [9] consisting of 74 Java open-

source software projects from varied application fields. These 

projects were picked from the Qualitas Corpus[29]. The 

various project metrics at the class and method level were 

computed using the tool DFMC4J. Subsequently, the authors 

applied smell detection tools namely “iPlasma, PMD1, Fluid 

Tool, AntiPattern Scanner” and rules to label code smells in 

projects followed through a manual check done by 3 trained 

students for the specified task. All these students first 

performed individual evaluations of code smells and then they 

discussed among themselves and came to a consensus. Their 

discussion produced a set of rules to determine each reported 

code smell. Therefore, a total of four datasets were created, 

each corresponding to LM, FE, DC, and GC. Appendix A 

shows the various features used at the class and method level. 

A comprehensive inventory of features and their 

corresponding definitions can be found in the appendix of the 

research paper authored by Arcelli Fontana [9].  

The following steps were performed for the preparation of 

datasets for the experimentation. 

1) The downloaded published datasets were assessed to gain 

insights into the various features employed in the datasets 

along with other properties such as their highest and lowest 

values, the count of total samples present in the datasets, and 

so forth. The study revealed that the datasets for LM and FE 

had the same features. Similarly, the datasets for GC and DC 

also had identical features. Table IV indicates that every 

dataset consisted of approximately 33% smelly samples 

(positive) and 67% non-smelly samples (negative).  

2) The downloaded datasets were found to have several 

instances of missing values. Table I displays the number of 

missing values, the percentage of missing values, and the 

name of each feature together with the matching count of 

missing values for every downloaded dataset. The mean value 

approach is used to calculate missing data because of its 

simplicity and broad use as an imputation tool in research. 

 
TABLE  I 

CODE SMELLS DATASETS CHARACTERISTICS  
(BEFORE FEATURE SELECTION) 
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1 DC 

62 

140 280 

75 0.0028% 

NMO-19,  

NIM -19,  

NOC -9, 

WOC -28 

2 GC 76 0.0029% 

NMO-20, 

NIM-20,  

NOC-8,  

WOC -28 

3 LM 

82 

92 0.0026% 

NOC-3, 

WOC-31 

NIM-29, 

NMO-29 

4 FE 92 0.0026% 

NOC-3,  

WOC-31 

NIM-29, 

NMO-29 

 
TABLE  II 

DATASETS CHARACTERISTICS AFTER FEATURE SELECTION 
 

Dataset 
name 

Number 
of 

features 

Name of features 

DC_n 15 

NOAM_type, ATFD_type, TCC_type, RFC_type, 

WMC_type, LCOM5_type, WOC_type, AMW_type, 

NOI_project, LOC_project, NOPA_type, 

number_public_visibility_methods, 

number_private_visibility_methods, 

number_final_methods, number_static_methods 

GC_n 15 

ATFD_type, RFC_type, LCOM5_type, 

WMCNAMM_type, AMW_type, LOC_package, 
NOPK_project, NOCS_project, num_static_attributes, 

number_private_visibility_methods, 

num_not_final_not_static_attributes, 

number_protected_visibility_methods, 

number_final_methods, number_static_methods, 

number_not_final_not_static_methods  

LM_n 18 

NOP_method, ATFD_method, CM_method, 

LOC_method, CYCLO_method, ATLD_method,   

CINT_method, CDISP_method, NOAM_type, 
NOA_type, LCOM5_type, WMCNAMM_type, 

AMW_type, NOCS_package, LOC_package, 

NOI_project, LOC_project, number_static_methods 

FE_n 20 

NOP_method, CC_method, ATFD_method, 

MAXNESTING_method, LOC_method, 

MaMCL_method, LAA_method, ATLD_method, 

CINT_method, NMO_type, ATFD_type, NOA_type, 

NOPA_type, CBO_type, NOI_project, 

num_final_not_static_attributes, isStatic_method 
number_public_visibility_methods, 

number_package_visibility_methods, 

number_static_methods 
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Following the application of step 3 (select features), which 

is covered in section III (the proposed method), table II shows 

the characteristics of the datasets. Table II shows the different 

features that the Featurewiz technique chose for each of the 

four code smells.  

The shared features between GC and DC are displayed in 

blue, and between FE and LM in red in Appendix C. The 

features that have been mentioned for each of these four code 

smells—especially the common features—should be carefully 

considered by developers. The only feature that is chosen in 

all four code smells is number_static_methods. Therefore, 

when designing the code, due consideration should be paid to 

this feature. 
 

V.  UNML ALGORITHM USED 
 

   The literature shows that self-organizing maps have been 

employed in various applications such as texture classification 

[30], intrusion detection [31], pattern classification [32], image 

database classification [33], classification of dermatologic data 

[34], and water quality classification [35]. The study utilized a 

Self-Organizing Map for conducting the experimentation. A 

Self-Organizing Map (SOM), commonly referred to as a 

Kohonen map, is a form of artificial neural network classified 

under UnML algorithms. It was created by the Finnish 

researcher Teuvo Kohonen in the 1980s. A SOM is designed 

to project high-dimensional data onto a lower-dimensional 

space, typically 1D or 2D, while maintaining the topological 

relationships of the original data. Self-organizing maps do not 

rely on labeled training data for classification. Instead, they 

classify data based on spatial relationships within the input 

space. The steps of the SOM algorithm in the simplified form 

are outlined below:  

Step1) (Initialization)  

SOM is comprised of a grid of nodes organized in a one- or 

two-dimensional lattice. Each node is linked to a weight vector 

that has the same dimensionality as the input data. Weight 

vectors are commonly initialized through randomization or 

methods such as Principal Component Analysis.  

Step 2) (Training) 

During the training phase, a random sample is selected from 

the input data and fed into the Self-Organizing Map (SOM). A 

comparison is made between the weight vector of each node 

and the input vector. The node with the weight vector closest 

to the input vector is referred to as the "winning node" or 

"best-matching unit" (BMU). The BMU is calculated utilizing 

a distance metric, typically the Euclidean distance.  

Step 3) (Neighbourhood Function)  

The SOM utilizes a neighborhood function to determine the 

impact of training on neighboring nodes. Initially, the 

neighborhood function is usually initialized to cover the entire 

Self-Organizing Map (SOM) grid. The neighborhood function 

decreases over time as the SOM learns, usually following a 

decay schedule.  

Step 4) (Weight Update)  

Once the Best Matching Unit (BMU) is identified, the 

weights of both the BMU and its neighboring nodes are 

adjusted to align more closely with the input vector. The 

degree of adjustment is contingent on variables like the 

proximity to the BMU and the learning rate. Nodes in 

proximity to the Best Matching Unit (BMU) undergo more 

significant weight adjustments compared to more distant 

nodes. The learning rate diminishes gradually as training 

progresses, usually in accordance with a predefined decay 

schedule.  

 

Step 5) (Iteration)  

Steps 2-4 are iterated for multiple epochs, enabling the 

SOM to incrementally modify its weights and structure the 

input data in the lower-dimensional space. The number of 

iterations and the decay schedules for the learning rate and 

neighborhood function are dependent on factors such as data 

complexity and desired convergence rate.  

During the training phase, the SOM algorithm learns to map 

the input data onto a lower-dimensional grid while 

maintaining the topological relationships of the original high-

dimensional data. The process leads to the creation of a map in 

which similar input data points are positioned near each other, 

making Self-Organizing Maps (SOMs) suitable for clustering 

and classification.  

Step 6) (Classification) 

After training, the SOM is ready to be used for 

classification. For each input data point, BMU is computed to 

determine the closest neuron in the SOM grid. Input data point 

is assigned to the cluster represented by the BMU's location in 

the grid. 

For the experimentation, the study has used a Python 

package called MiniSom. MiniSom (Mini SOM) [36] is a 
variation of the SOM algorithm, also known as Kohonen 

maps. MiniSom typically offers a more memory-efficient and 

computationally lighter implementation compared to 

traditional SOMs. In MiniSom, like in traditional Self-

Organizing Maps (SOMs), several parameters are adjusted to 

control the behavior of the algorithm and the resulting map. 

Table III displays the values of different parameters used 

during implementation. These parameters provide control over 

the training process and the properties of the resulting SOM. 

Here are some of the most common parameters (given in 

Table III) used in MiniSom:  

a) Grid Size (m, n):  

MiniSom creates a grid of neurons with dimensions m x n. 

This grid represents the layout of the SOM, where each neuron 

corresponds to a specific location in the input space. 

b) Input Data Dimensionality (input_len):  

It specifies the dimensionality of the input data. Each input 

sample should have the same dimensionality, and it should 

match the input_len parameter. Table III shows the 

dimensionality of input data in terms of the number of features 

obtained after feature selection for 4 considered datasets of 4 

code smells. The number of features obtained after feature 

selection is given in Table II of Section IV. 

c) Learning Rate (initial_lr):  

It determines the initial learning rate for updating the 

weights of neurons during training. The learning rate typically 

decreases over time as training progresses, allowing the model 

to converge to a stable state gradually. 

d) Neighborhood Radius (sigma):  

It defines the neighborhood radius around the best-matching 

unit (BMU) during training. Neurons within this radius will 

have their weights updated during each iteration of training. 
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The neighborhood radius typically decreases over time as 

training progresses. 

e) Number of Iterations (iterations):  

It specifies the total number of iterations or epochs for 

which the SOM will be trained. Each iteration involves 

presenting a random input sample to the SOM and updating 

the weights of the neurons accordingly. 

f) Topology (toroidal):  

It specifies whether the SOM grid has a toroidal (circular) 

topology or not. Toroidal topology allows the edges of the grid 

to wrap around, creating a seamless map without borders. 

g) Random Initialization (random_seed):  

It sets the random seed used for initializing the weights of 

the neurons. Setting a fixed random seed ensures 

reproducibility of results across multiple runs. 

 
TABLE  III 

PARAMETERS USED IN MINISOM 
 

SI 

No. 

Tuned 

Parameters 

A brief description of 

the parameter 
Value (s) 

1 (m, n) Grid size 

LM-(97,97), FE-

(90,90), 

GC-(90,90), DC-

(90,90) 

2 initial_lr Learning rate 0.5 

3 iterations Number of Iterations 2000 

4 toroidal Topology rectangular 

5 random_seed Random Initialization None 

6 sigma Neighborhood Radius 0.3 

7 input_len 
Input Data 

Dimensionality 

LM-18, FE-20, 

DC -15, GC- 15 

 

The experiments were conducted on a standalone computer 

system using Keras [37] in Jupyter Notebook. For the 

experimentation, the study has followed the guidelines of the 

MiniSom [36]. The datasets under consideration were 

partitioned into a 70:30 ratio for training and testing purposes. 

 

VI.  PERFORMANCE MEASURES 
 

Performance metrics namely precision, recall, F-measure, 

accuracy, AUC-ROC (Area Under the Receiver Operating 

Characteristic Curve), and MCC (Matthews Correlation 

Coefficient) are frequently employed in the assessment of 

machine learning models [8], including those for identifying 

code smells in software systems. The aforementioned 

performance measures offer valuable insights regarding the 

efficacy of machine learning models in identifying code 

smells. The following paragraphs discuss each of these 

measures.  

1) Precision is a numerical metric that indicates the 

proportion of accurately detected instances of code smells 

out of the total number of occurrences categorized as code 

smells by the model.  

 

2) Recall is a quantitative measure that evaluates the ratio of 

correctly identified instances of code smells to the overall 

number of code smells in the dataset. A high recall value 

indicates that the model effectively detects a substantial 

number of code smells.  

3) F-measure is a quantitative measure used to calculate the 

harmonic mean of precision and recall. Accuracy is a 

statistical measure that calculates the proportion of 

accurately classified instances. In terms of code smell 

detection, accuracy can be defined as the measure of how 

correct the model's predictions are. While accuracy is 

commonly used as a metric, it is not appropriate in the 

case of imbalanced datasets with a low prevalence of code 

smells. 

4) AUC-ROC metric measures the performance of a binary 

classification model. The ROC curve plots the true 

positive rate against the false positive rate at various 

thresholds. The AUC represents the area under this curve, 

with values ranging from 0 to 1. A higher AUC indicates 

better model performance, with 1.0 being perfect and 0.5 

representing random guessing.  

5) MCC is a quantitative metric that assesses the 

performance of a binary classification. It is calculated 

based on the confusion matrix and it ranges between -1 

and 1.  The value of 1 denotes a prediction that perfectly 

aligns with the observation, while 0 signifies a prediction 

made at random. On the other hand, MCC = -1 indicates 

complete disagreement between the prediction and the 

observation. An MCC score greater than 0.70 is 

commonly considered to be statistically significant. 

 

VII.  RESULTS AND DISCUSSIONS   
 

This section presents the results of the undertaken study in 

the paper. Subsection A specifies the results when feature 

selection is not used. Subsection B gives the results where 

feature selection is employed first before applying SOM. 

Subsection C presents a comparison of the results of our study 

with the existing results of the previous study.  

 

A. Results without feature selection 
 

Table IV provides the results for code smell detection for 4 

different code smells using six performance measures where 

no feature selection technique has been used. It is observed 

that precision is very good (> = 0.79) for all four code smells. 

Also, since AUC is greater than 0.70 for all considered code 

smells hence SOM can differentiate well between smelly and 

non-smelly instances. Similarly, other performance measures 

are also very good (> = 0.70) indicating the feasibility of code 

smell detection using SOM. Figure 3 below shows a bar chart 

representing the performance of SOM for 4 code smells. 

It is observed that precision is very good (> = 0.79) for all 

four code smells. Also, since AUC is greater than 0.70 for all 

considered code smells hence SOM can differentiate well 

between smelly and non-smelly instances. Similarly, other 

performance measures are also very good (> = 0.70) indicating 

the feasibility of code smell detection using SOM. Figure 3 

below shows a bar chart representing the performance of SOM 

for 4 code smells. 
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B. Results of the proposed method (using feature selection) 
 

Table V below shows the results for 4 considered code 

smells when a technique of feature selection was employed 

before applying SOM. Results show that precision is much 

better than the precision in 7.1 for all four code smells. In this 

case, precision is greater than or equal to 0.89 for all 4 code 

smells. Also, the same is true concerning other performance 

measures. Table V also shows the range of performance 

measures, indicating that feature selection plays a significant 

role and enhances the overall performance of SOM for all four 

code smells considered in the study. Figure 4 below shows a 

bar chart representing the performance of SOM for 4 code 

smells using the proposed method. 

 
TABLE  IV 

RESULTS (WITHOUT FEATURE SELECTION) 
 

Performance 

measures 
LM FE DC GC Range 

Precision 0.84 0.88 0.79 0.94 0.79-0.94 

Recall 0.78 0.58 0.93 0.75 0.58-0.93 

F-measure 0.81 0.70 0.85 0.83 0.70-0.85 

MCC 0.72 0.63 0.78 0.77 0.63-0.78 

Accuracy 0.88 0.86 0.90 0.90 0.86-0.90 

AUC 0.85 0.78 0.90 0.86 0.78-0.90 

 

The study has used U -Matrix [38] for visualizing the output 

of  MiniSom after its training on four datasets in figures from 

5 to 8. The U-Matrix is a computational tool used to analyse 

the distribution of nodes in the input space based on their 

spacing. The U-Matrix is represented graphically as a grid cell 

for each node in the lattice space. The chromaticity of each 

node is directly proportional to the mean Euclidean distance in 

the input space to the neighbouring nodes of that node. The U-

Matrix is a mathematical tool that can be utilized to identify 

clusters and outliers within a dataset.  
 

TABLE  V 

RESULTS OF THE PROPOSED METHOD 
 

Performance 
measures 

LM FE DC GC Range 

Precision 0.89 0.94 0.92 0.98 0.89-0.98 

Recall 0.78 0.83 0.88 0.80 0.78-0.88 

F-measure 0.83 0.88 0.90 0.88 0.83-0.90 

MCC 0.76 0.84 0.85 0.83 0.76-0.85 

Accuracy 0.90 0.94 0.94 0.92 0.90-0.94 

AUC 0.87 0.91 0.92 0.90 0.87-0.92 

 

 

In Figures 5 to 8, it is important to observe that lighter 

colors on the U-Matrix correspond to greater distances, while 

darker colors indicate denser nodes in that specific area. 

Observing the U-Matrix depicted in Figures 5 to 8, it is 

evident that there exists a significant gap between the dark 

color region and the light color region. This observation 

suggests that the dark color data points exhibit a significant 

distance from the light color data points. Thus, the SOM 

output helps to verify the map's fidelity to the underlying data.  
 

 
Fig. 3. Results of SOM (without feature selection) 

 

 
Fig.4. Results of the proposed method 

 

C. Comparison with the existing study 

 

The previous study by Fontana [9] used 16 different 

machine learning algorithms to detect 4 code smells using 4 

different datasets. The results in this study [9] have been 

shown in terms of performance measures such as accuracy, F-

measure, and AUC. It is observed that algorithm B -J48 

Pruned produced the best results in terms of all performance 

measures. Similarly, for god class, naïve Bayes gave the best 

results for 3 considered performance measures. For long 

method and feature envy, B -J48 Pruned gave the best results 

in terms of all performance measures. Table VI presents the 

results for the 3 performance measures. Also, a symbol dash (-

) indicates that the scores are not available in the study by 

Fontana [9] . 

To contrast the results of two approaches (the proposed 

approach and the approach of supervised machine learning 

algorithms used in the previous study by Fontana [9]) and to 

ascertain the superior approach, a statistical test was 

employed. The selected statistical test for comparison is the 

Wilcoxon signed rank test as outlined by Hollander et al. [39]. 

The test is non-parametric and allows for pairwise comparison 

of configuration parameters of the algorithms. 
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 Fig. 5. U matrix for LM                           Fig.  6. U matrix for FE 

 

     
   Fig. 7. U matrix for DC                        Fig. 8. U matrix for GC        

 
TABLE  VI 

COMPARISON OF THE PROPOSED METHOD WITH THE PREVIOUS STUDY 

 

 
The proposed approach 

Previous study 

(SML algorithms) 
[9] 

P
er

fo
rm

an
ce

 

m
ea

su
re

s 

LM FE DC GC LM FE DC GC 

Precision 0.89 0.94 0.92 0.98 - - - - 

Recall 0.78 0.83 0.88 0.80 - - - - 

MCC 0.76 0.84 0.85 0.83 - - - - 

Accuracy 0.90 0.94 0.94 0.92 0.99 0.97 0.99 0.97 

AUC 0.87 0.91 0.92 0.90 0.99 0.99 0.99 0.99 

F-

measure 

0.83 0.88 0.90 0.88 0.99 0.97 0.99 0.98 

 

This method can be used to compare the performance of 

two algorithms to ascertain their equality or determine which 

one performs better. When the test results show that one 

algorithm has better performance than another, the former is 

labeled as the winner and the latter as the loser. When the test 

results show that the two performances are indistinguishable, 

it means that the algorithms do not demonstrate a clear 

advantage or disadvantage.  

The test was carried out with a significance level set at 0.05 

using the 2-tailed test. Appendix D displays the data and the 

results of the Wilcoxon signed rank test performed, 

considering all 4 code smells together due to the limited 

number of samples available for each code smell. The results 

demonstrate that the SML algorithms used in the previous 

study were superior to the proposed approach. Nevertheless, 

the results of the proposed approach correspond substantially 

with those of the previous study, suggesting that the proposed 

approach has the potential to identify code smells through 

UnML algorithm(s). Therefore, the presented study 

encourages further investigation by researchers. 

 

D. Threats to validity  
 

Lastly, we consider the possible threats that could 

undermine the legitimacy of our study, as outlined by Runeson 

[40]. Based on Runeson's research, legitimacy can be 

threatened in four distinct categories: external threats, 

construct threats, reliability threats, and internal validity 

threats. External validity encompasses several potential issues 

that could undermine the overall validity of the proposed 

method and its outcomes. The purpose of internal validity is to 

identify and establish causal links, as well as confirm the 

connection between variables and logical results. The study 

does not currently consider construct validity and reliability 

due to their lack of applicability. 

 

D.1 External Validity  
 

   Ultimately, two potential threats have been identified. The 

study was limited to open-source projects of Java; therefore, 

the results cannot be considered useful to other programming 

languages. Moreover, it is crucial to acknowledge that the 

study solely concentrated on open-source Java projects. 

Consequently, the generalizability of the results to industrial 

software necessitates verification through the study's findings.  

 

D.2 Internal Validity  
 

   The factors that influence the results are often internal 

validity threats. The initial factor pertains to the specific 

UnML technique employed in the study. The study has used a 

single technique: SOM for the experimentation but other 

techniques may be further explored. Another contributing 

factor is the study's use of 4 publicly available datasets of 4 

different code smells. Participating in a broader range of 

datasets would surely enhance the feasibility and outcome of 

the research study. The third factor is the choice of feature 

selection technique used in the study. The study has used an 

existing Python package Featurewiz, but other feature 

selection techniques may be employed. 

 

VIII.  CONCLUSION & FUTURE WORK 
 

The study has come up with a proposed method that utilizes 

a Self-Organizing Map (SOM), an UnML algorithm. The 

proposed method was validated on four popular and publicly 

available datasets of four different code smells such as long 

method, feature envy, god class, and data class. The 

performance was evaluated on several performance measures 

namely AUC, precision, recall, F-measure, accuracy, and 

MCC. The results showed that the proposed method 

effectively detected all 4 code smells with high scores for 

precision (0.89-0.98), recall (0.78-0.88), accuracy (0.90-0.94), 

and AUC (0.87-0.92). The results of the proposed method 

were evaluated against a prior study that utilized supervised 
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machine learning algorithms. The comparison revealed that 

the results of the proposed method closely aligned with those 

of the previous study. Therefore, the proposed method shows 

significant potential in identifying code smells. 

UnML methods provide valuable advantages for code smell 

detection. They can identify patterns by detecting common 

code smells by analyzing patterns in code repositories without 

labeled examples. They can offer insights into codebase 

structure, aiding developers in understanding code health and 

areas needing improvement. They can do feature selection by 

automatically extracting meaningful representations of code, 

aiding in the detection of code smells. They can flag 

anomalous code patterns, highlighting potential instances of 

code that smells like dead code or inconsistent naming 

conventions. They provide objective assessments of code 

quality by learning directly from the data distribution, helping 

prioritize refactoring efforts based on data-driven insights. 

Future scope- Exploration of a broader spectrum of open 

source and industrial Java projects will be incorporated into 

future research. Additionally, the simultaneous detection of 

multiple code smells is another potential area for future 

consideration. The recommendation of software metrics 

crucial to detecting code smells using UnML could be 

investigated in future studies. 
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