
Unsupervised Machine Learning for Effective Code

Smell Detection: A Novel Method

Ruchin Gupta, Narendra Kumar, Sunil Kumar, and Jitendra Kumar Seth

Abstract—The quality of source code is negatively impacted by

code smells. Since the term "code smell" originated, numerous

attempts have been made to comprehend it by identifying it using

various techniques, such as metric-based, heuristic-based,

optimization-based, machine learning (ML)-based, etc. Among

these, supervised machine learning (SML) has shown

effectiveness in detecting code smells. However, SML techniques

have significant limitations, including the dependency on

expensive and high-quality labeled data, the need for

representative training datasets, and the risk of introducing

biases in labeled examples that lead to skewed predictions. To

overcome these challenges, this study introduces a method that

leverages unsupervised machine learning (UnML) along with

feature engineering. Unlike SML, UnML does not require labeled

data and minimizes potential biases. The proposed method was

evaluated using four datasets containing different types of code

smells and was compared with a previous study that used SML

techniques. The results indicate that the UnML-based method is

effective, achieving outcomes closely aligned with those from the

SML approach. This method is especially beneficial in situations

where labeled data is scarce or unavailable and can be used to

identify new code smells, generate labeled data for SML and

detect multiple code smells simultaneously within a codebase.

 Index terms—code smell, unsupervised machine learning,

open-source Java projects.

I. INTRODUCTION

Kent Beck was the first person who invented the phrase

“code smell” in 1999 [1]. Code smell was defined as “certain

structures in the code that suggest (or sometimes scream) for

refactoring.” Code smell refers to any characteristic of a

source code that could indicate a significant underlying issue.

The term "smell" is used metaphorically to indicate that there

might be something wrong with the code, even though it may

still function correctly. Code smells are not bugs themselves,

but they often indicate areas of the code that could benefit

from refactoring or further investigation to improve

maintainability, readability, or performance.

Manuscript received October 18, 2024; revised November 6, 2024. Date of

publication December 9, 2024. Date of current version December 9, 2024. The

associate editor prof. Renata Lopes Rosa has been coordinating the review of

this manuscript and approved it for publication.

R. Gupta and J. K. Seth are with the Department of Information
Technology, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.(e-

mails: skg11in@yahoo.co.in, drjkseth@gmail.com).
N. Kumar and S. Kumar are with the Galgotias College of Engineering and

Technology (e-mails: nkteotia2004@gmail.com, skkiet@gmail.com).

Digital Object Identifier (DOI): 10.24138/jcomss-2024-0083

Code smells indicate symptoms present in the source code

that have an impact on the quality characteristics of the

software [1], [2]. Code smells are apparent characteristics that

suggest the existence of design problems or deficiencies in the

code. These problems or deficiencies have a significant impact

on crucial aspects of code quality, like maintainability,

reusability, and understandability [1]. Code smell typically

refers to underlying problems in a code that degrade its quality

and can lead to significant issues [3]–[5]. Code smells when

present in large numbers in software makes it difficult to

maintain. First, Martin Fowler defined a catalogue of 22 code

smells [1].

The first step in dealing with code smell is its detection

which is followed by refactoring. The process of refactoring

modifies the internal structure of code without altering its

external functionality. The main objective of refactoring is

enhancing the code’s structure to facilitate its comprehension,

modification, and maintenance while retaining its

functionality.

Code smell detection is crucial for several reasons.

Identifying and addressing code smells helps improve the

maintainability of software systems. By detecting and

refactoring these smells, developers can ensure that the

codebase remains clean, understandable, and easier to

maintain over time. Code smells can be indicators of potential

bugs or defects in the code. Addressing code smells at an early

stage in the development process helps to prevent the

accumulation of technical debt and reduce the likelihood of

introducing bugs or errors. This ultimately leads to higher-

quality software products that are more reliable and less prone

to unexpected issues. Code smells such as duplicated code,

long methods, or excessive coupling can negatively impact the

scalability and performance of software systems. Clean, well-

structured code is more reusable than code with numerous

smells. Working with a codebase riddled with code smells can

be frustrating and demoralizing for developers. Addressing

code smells and maintaining a clean, well-structured codebase

can boost developer morale, leading to a more positive and

productive work environment.

Since the inception of the concept of code smell, the

existing body of literature demonstrates that numerous

attempts have been undertaken to detect them through diverse

approaches. Multiple approaches have been employed to

identify and detect different types of code smells. The

literature on code smell detection has identified five categories

of approaches: “metrics-based, rules or heuristic-based, code

change information-based, machine learning-based, and

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024 307

1845-6421/12/2024-0083 © 2024 CCIS

Original scientific article

mailto:skg11in@yahoo.co.in
mailto:nkteotia2004@gmail.com

optimization algorithm-based”[6]. The literature review

conducted by Azeem et al. [7] identified a total of 13 code

smells (out of 22 code smells from Martin Fowler's catalog)

that have been targeted for code smell detection using machine

learning (ML) techniques. Based on a survey conducted by

Al-Shaaby [8], the existing literature indicates that the

methods employed in the domain of code smell for their

detection have been based on SML techniques. Furthermore,

based on the information available to us, there is no study

conducted on the utilization of UnML for code smell

detection. SML has several limitations. SML relies on labelled

data which can be expensive and time-consuming to obtain.

Supervised learning learns patterns and makes predictions

based on input features. SML focuses on minimizing

prediction errors by learning from labeled examples, which

may not capture all the nuances of the underlying data

distribution. In SML, performance relies on the quality and

representativeness of labeled training data, which may not

fully encompass the intricacy of real-world situations. Biases

in the labeled examples can lead to biased model predictions.

The use of the unsupervised machine learning (UnML)

technique can offer several advantages over the SML

technique in for identification of code smells. UnML methods

don't require labeled examples, enabling them to analyze large

codebases without the need for manual labeling. They can

uncover hidden structures and patterns within codebases,

identifying not only well-known smells but also novel or

subtle issues that might be missed by manual inspection or

predefined labels. This capability allows for a more thorough

comprehension of the overall code quality. UnML approaches

provide a more objective assessment of code quality by

learning directly from the data distribution. This reduces the

risk of bias introduced by labeled examples and allows for a

more data-driven understanding of code smells. UnML scales

more effectively to large codebases since they don't require

manual labeling. UnML methods are more flexible and

adaptable, capable of detecting various types of code smells

without explicit guidance or predefined labels. This

adaptability makes them suitable for detecting both known and

unknown smells, as well as for exploring new types of code

quality issues.

This study represents the utilization of an UnML to detect

code smells. Based on our current knowledge, it is the first

study of its kind to explore the feasibility of an UnML

algorithm for the identification of code smell. Thus, this paper

outlines the following contributions:

• This study proposes a method that uses a self-

organizing map (SOM), an UnML algorithm, along

with feature engineering to identify code smells.

• The proposed method is evaluated on 4 popular and

publicly available datasets [9] of 4 different code

smells: Long method, feature envy, god class, and data

class. The proposed method’s performance has been

assessed using commonly used performance measures:

precision, recall, F-measure, accuracy, MCC, and AUC-

ROC. The research findings along with results have

been made accessible to the research community for

future investigation.

• The proposed method’s results employing an UnML

algorithm have been contrasted with the results

previous study [9] which has used several (16) SML

algorithms. The study conducted by Fontana [9] is a

crucial and notable advancement in the domain of code

smell through the application of SML algorithms.

The subsequent text outlines the structure of the article. The

second section of the paper outlines the related work for code

smell that uses machine learning for their detection. Section III

elaborates on the proposed method mentioned in this study.

Section IV provides the details about the experimental datasets

employed in the study. Section V provides a detail of the

UnML algorithm used. The performance measures used to

determine the effectiveness of the proposed method are

elaborated in Section VI. The results of the conducted

experiments are analyzed in Section VII. Section VIII

provides the last thoughts and delineates opportunities for

future research.

II. RELATED WORK

 This section summarizes the observed significant literature

on code smell detection using the ML technique.

 Kreimer [10] employed a decision tree-based adaptive

approach to identify long methods and large class code smells,

integrating object-oriented metrics with machine learning to

autonomously detect design flaws. This supervised learning

technique utilized a program dependency graph (PDG) as an

abstract representation of the program, where specific metric

values were fed into the trained model to identify design

flaws. Metrics such as statement count, method complexity,

parameter count, and local variable count were used to detect

long methods.

 Authors [11] utilized a Bayesian approach, a probabilistic

model, to identify code smells by computing the likelihood of

a class being associated with a particular smell. This method

also falls under the category of supervised learning, as it relies

on known probabilities to predict code smells.

 Sérgio et al. [12] applied binary logistic regression, a

supervised learning technique, to identify long methods. They

used metrics like Method Lines of Code and cyclomatic

complexity as regressors. The model required an initial

training phase with expert-labeled data to calibrate the

classification process.

 Khomh et al. [13] introduced BDTEX, a Bayesian Decision-

Theoretic model using Bayesian Networks (BBNs), to identify

antipatterns in software. This supervised learning method and

modeled symptoms at the operational level to predict the

likelihood of a class being an antipattern, demonstrating strong

performance on well-structured programs.

 Abdou et al. [14] employed a Support Vector Machine

(SVM), a supervised learning technique, trained on 60 object-

oriented metrics to detect design smells like blob, feature

concentration, and spaghetti code. Their novel method,

SVMDetect, trained the SVM model on a dataset of object-

308 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

oriented metrics and applied it to detect design smells in

software classes.

 Fontana et al. [9] used 16 different machine learning

algorithms, all under the umbrella of supervised learning, to

detect code smells such as data class, god class, feature envy,

and long method across 74 systems. Metrics were computed

using the DFMJ tool, and the performance of these algorithms

was evaluated on the dataset.

 Kim [15] utilized a neural network implemented in

TensorFlow, a supervised deep learning technique, to predict

seven different code smells based on the analysis of object-

oriented metrics from 20 open-source Java projects. The

neural network was trained on these metrics, with calculations

performed across various epochs and hidden layers to enhance

detection accuracy.

 In contrast, a study [16] introduced a hybrid detection

approach using a deep autoencoder and Artificial Neural

Network (ANN). The deep autoencoder, an unsupervised

learning method, performed dimensionality reduction, which

was then followed by supervised learning through the ANN to

detect code smells like God Class and Feature Envy. This

approach demonstrated improved accuracy by combining

unsupervised and supervised learning.

 Another study [17] proposed a deep learning-based

approach to detect feature envy code smells using

Convolutional Neural Networks (CNNs), a supervised

learning technique. The study also developed an automatic

method for generating labeled training data, utilizing both

structural and textual information for training the neural

network classifier.

 The study [18] introduced SMAD, an ensemble method

combining multiple supervised machine learning classifiers,

including a Multi-layer Perceptron, to detect anti-patterns like

God Class and Feature Envy. The method aggregated core

metrics from different detection tools as input for the machine

learning model, which demonstrated superior performance in

comparison to other ensemble methods.

 Gupta et al. [19] investigated the use of six different

supervised machine learning algorithms, including Naive

Bayes, KNN, MLP, Decision Tree, Logistic Regression, and

Random Forest, to detect code smells in four datasets. The

study highlighted the impact of feature selection and

parameter optimization on model accuracy, particularly for

algorithms like Random Forest and Logistic Regression.

Vatanapakorn et al. [20] employed eight supervised learning

algorithms to detect code smells in Python programs,

enhancing performance through correlation-based feature

selection and forward stepwise selection methods, which

helped in identifying the most relevant software metrics for

each code smell category.

 Two studies [21], [22] explored the use of transfer learning,

a domain adaptation technique, for code smell detection using

deep learning models like 1D and 2D CNNs, RNNs, and

Autoencoders. These models utilized tokenized source code

sequences as input, demonstrating the potential of both

supervised learning.

 Recently, Gupta [23] demonstrated the potential of a

customized transfer learning method, "MDITKL," for

detecting code smells in heterogeneous data. This method is a

variant of domain invariant transfer kernel learning[24], a

homogeneous transfer learning technique, which adapts to the

challenges of detecting long methods and temporary field code

smells in diverse datasets. Another study by [25] identified

two Python code smells—Large Class and Long Method—

using five ML models. Similarly, [26] employed eight ML

models, along with preprocessing techniques, to detect four

code smells Blob, Long Method, Feature Envy, and Data

Class. Thus, the subsequent observations were derived from

the literature review.

• Java has been the most extensively studied language for

detecting code smells utilizing machine learning methods.

• Research has been conducted on the application of

ensemble methods. Ensemble methods were used to

improve the performance of machine learning algorithms.

• Sophisticated machine learning methodologies such as

deep learning and transfer learning, have exhibited their

value in code smell detection and are poised to enhance

their capabilities.

• No empirical study has employed an UnML approach to

detect code smells.

Thus, the literature survey demonstrates that various SML

methods have been employed for the identification of code

smell. However, to date, there has been no study conducted

utilizing UnML technique(s).

III. THE PROPOSED METHOD

The following section provides a detailed discussion of the

proposed experimental methodology. It has been kept simple

as shown in Figure 1. It consists of 5 main steps.

Step 1 (download code smell datasets). Step 1 is

collecting/downloading existing considered open-source Java

project datasets under study from the web for experimentation.

Step 2 (Clean dataset(s)). Step 2 includes pre-processing the

dataset through analysis and clean-up steps. The dataset has

been subjected to a comprehensive examination to identify and

address duplicate rows and columns, as well as missing

values, to ensure data accuracy. The dataset has been

processed to remove any duplicate rows and columns and to

fill in missing values for completeness.

Fig. 1. The proposed method using UnML (SOM)

Step 3 (Select features). Step 3 selects features that are

significant using a feature selection technique.

Features play a crucial role in the development of prediction

models, including regression and classification models.

Overfitting can occur in a model with a high feature count,

R. GUPTA et al.: UNSUPERVISED MACHINE LEARNING FOR EFFECTIVE CODE SMELL DETECTION 309

causing it to predict the training dataset only accurately. This

is an undesired situation. By assigning a meaningful value to

each feature, one can apply the feature importance technique

to determine the most and least important features for

prediction. Step 3 involves identifying the essential features

when dealing with many features in the dataset(s). The

significance of the chosen features was subsequently analyzed

based on the defined code smell criteria. An open-source

Python package called Featurewiz [27] was utilized in this

study to identify crucial features due to its simplicity and

efficiency in feature selection from a dataset.

Step 4 (Apply SOM). Step 4 applies SOM. The dataset is

partitioned into training and testing datasets using an 80:20

ratio. The performance is analyzed using performance metrics

like MCC, precision, recall, F-measure, accuracy, and AUC.

Step 5 (Summarize results). Step 5 involves the collection

of experimental results and the preparation of a summary to

conclude.

IV. EXPERIMENTAL DATASETS

The Java programming language has experienced a surge in

popularity starting from its inception, largely due to the

widespread adoption of the Internet. Java is widely regarded as

the most extensively studied programming language in terms

of code smells, as evidenced by the literature [6], [28]. The

study has used 4 extremely popular, manually validated, and

published datasets over Java projects by Arcelli Fontana et al.

[9] for 4 different code smells namely long method (LM),

feature envy (FE), data class (DC), and god class (GC)

because they were the only publicly accessible datasets with

several metrics (computed over source code) and types of

smells, they were judged appropriate for the experimentation

in this paper.

 The authors curated a dataset [9] consisting of 74 Java open-

source software projects from varied application fields. These

projects were picked from the Qualitas Corpus[29]. The

various project metrics at the class and method level were

computed using the tool DFMC4J. Subsequently, the authors

applied smell detection tools namely “iPlasma, PMD1, Fluid

Tool, AntiPattern Scanner” and rules to label code smells in

projects followed through a manual check done by 3 trained

students for the specified task. All these students first

performed individual evaluations of code smells and then they

discussed among themselves and came to a consensus. Their

discussion produced a set of rules to determine each reported

code smell. Therefore, a total of four datasets were created,

each corresponding to LM, FE, DC, and GC. Appendix A

shows the various features used at the class and method level.

A comprehensive inventory of features and their

corresponding definitions can be found in the appendix of the

research paper authored by Arcelli Fontana [9].

The following steps were performed for the preparation of

datasets for the experimentation.

1) The downloaded published datasets were assessed to gain

insights into the various features employed in the datasets

along with other properties such as their highest and lowest

values, the count of total samples present in the datasets, and

so forth. The study revealed that the datasets for LM and FE

had the same features. Similarly, the datasets for GC and DC

also had identical features. Table IV indicates that every

dataset consisted of approximately 33% smelly samples

(positive) and 67% non-smelly samples (negative).

2) The downloaded datasets were found to have several

instances of missing values. Table I displays the number of

missing values, the percentage of missing values, and the

name of each feature together with the matching count of

missing values for every downloaded dataset. The mean value

approach is used to calculate missing data because of its

simplicity and broad use as an imputation tool in research.

TABLE I

CODE SMELLS DATASETS CHARACTERISTICS
(BEFORE FEATURE SELECTION)

S
I

N
o
.

D
at

as
et

 n
am

e

N
u

m
b

er
 o

f
fe

at
u

re
s

N
o

.
o

f
sm

el
ly

sa
m

p
le

s

N
o

.
o

f
–
n
o
n

-s
m

el
ly

sa
m

p
le

s

C
o
u
n

t
o

f
m

is
si

n
g

v
al

u
es

M
is

si
n
g

 v
al

u
es

 %

F
ea

tu
re

 -
 c

o
u
n
t

o
f

m
is

si
n

g
 v

al
u
es

1 DC

62

140 280

75 0.0028%

NMO-19,

NIM -19,

NOC -9,

WOC -28

2 GC 76 0.0029%

NMO-20,

NIM-20,

NOC-8,

WOC -28

3 LM

82

92 0.0026%

NOC-3,

WOC-31

NIM-29,

NMO-29

4 FE 92 0.0026%

NOC-3,

WOC-31

NIM-29,

NMO-29

TABLE II

DATASETS CHARACTERISTICS AFTER FEATURE SELECTION

Dataset
name

Number
of

features

Name of features

DC_n 15

NOAM_type, ATFD_type, TCC_type, RFC_type,

WMC_type, LCOM5_type, WOC_type, AMW_type,

NOI_project, LOC_project, NOPA_type,

number_public_visibility_methods,

number_private_visibility_methods,

number_final_methods, number_static_methods

GC_n 15

ATFD_type, RFC_type, LCOM5_type,

WMCNAMM_type, AMW_type, LOC_package,
NOPK_project, NOCS_project, num_static_attributes,

number_private_visibility_methods,

num_not_final_not_static_attributes,

number_protected_visibility_methods,

number_final_methods, number_static_methods,

number_not_final_not_static_methods

LM_n 18

NOP_method, ATFD_method, CM_method,

LOC_method, CYCLO_method, ATLD_method,

CINT_method, CDISP_method, NOAM_type,
NOA_type, LCOM5_type, WMCNAMM_type,

AMW_type, NOCS_package, LOC_package,

NOI_project, LOC_project, number_static_methods

FE_n 20

NOP_method, CC_method, ATFD_method,

MAXNESTING_method, LOC_method,

MaMCL_method, LAA_method, ATLD_method,

CINT_method, NMO_type, ATFD_type, NOA_type,

NOPA_type, CBO_type, NOI_project,

num_final_not_static_attributes, isStatic_method
number_public_visibility_methods,

number_package_visibility_methods,

number_static_methods

310 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

Following the application of step 3 (select features), which

is covered in section III (the proposed method), table II shows

the characteristics of the datasets. Table II shows the different

features that the Featurewiz technique chose for each of the

four code smells.

The shared features between GC and DC are displayed in

blue, and between FE and LM in red in Appendix C. The

features that have been mentioned for each of these four code

smells—especially the common features—should be carefully

considered by developers. The only feature that is chosen in

all four code smells is number_static_methods. Therefore,

when designing the code, due consideration should be paid to

this feature.

V. UNML ALGORITHM USED

 The literature shows that self-organizing maps have been

employed in various applications such as texture classification

[30], intrusion detection [31], pattern classification [32], image

database classification [33], classification of dermatologic data

[34], and water quality classification [35]. The study utilized a

Self-Organizing Map for conducting the experimentation. A

Self-Organizing Map (SOM), commonly referred to as a

Kohonen map, is a form of artificial neural network classified

under UnML algorithms. It was created by the Finnish

researcher Teuvo Kohonen in the 1980s. A SOM is designed

to project high-dimensional data onto a lower-dimensional

space, typically 1D or 2D, while maintaining the topological

relationships of the original data. Self-organizing maps do not

rely on labeled training data for classification. Instead, they

classify data based on spatial relationships within the input

space. The steps of the SOM algorithm in the simplified form

are outlined below:

Step1) (Initialization)

SOM is comprised of a grid of nodes organized in a one- or

two-dimensional lattice. Each node is linked to a weight vector

that has the same dimensionality as the input data. Weight

vectors are commonly initialized through randomization or

methods such as Principal Component Analysis.

Step 2) (Training)

During the training phase, a random sample is selected from

the input data and fed into the Self-Organizing Map (SOM). A

comparison is made between the weight vector of each node

and the input vector. The node with the weight vector closest

to the input vector is referred to as the "winning node" or

"best-matching unit" (BMU). The BMU is calculated utilizing

a distance metric, typically the Euclidean distance.

Step 3) (Neighbourhood Function)

The SOM utilizes a neighborhood function to determine the

impact of training on neighboring nodes. Initially, the

neighborhood function is usually initialized to cover the entire

Self-Organizing Map (SOM) grid. The neighborhood function

decreases over time as the SOM learns, usually following a

decay schedule.

Step 4) (Weight Update)

Once the Best Matching Unit (BMU) is identified, the

weights of both the BMU and its neighboring nodes are

adjusted to align more closely with the input vector. The

degree of adjustment is contingent on variables like the

proximity to the BMU and the learning rate. Nodes in

proximity to the Best Matching Unit (BMU) undergo more

significant weight adjustments compared to more distant

nodes. The learning rate diminishes gradually as training

progresses, usually in accordance with a predefined decay

schedule.

Step 5) (Iteration)

Steps 2-4 are iterated for multiple epochs, enabling the

SOM to incrementally modify its weights and structure the

input data in the lower-dimensional space. The number of

iterations and the decay schedules for the learning rate and

neighborhood function are dependent on factors such as data

complexity and desired convergence rate.

During the training phase, the SOM algorithm learns to map

the input data onto a lower-dimensional grid while

maintaining the topological relationships of the original high-

dimensional data. The process leads to the creation of a map in

which similar input data points are positioned near each other,

making Self-Organizing Maps (SOMs) suitable for clustering

and classification.

Step 6) (Classification)

After training, the SOM is ready to be used for

classification. For each input data point, BMU is computed to

determine the closest neuron in the SOM grid. Input data point

is assigned to the cluster represented by the BMU's location in

the grid.

For the experimentation, the study has used a Python

package called MiniSom. MiniSom (Mini SOM) [36] is a
variation of the SOM algorithm, also known as Kohonen

maps. MiniSom typically offers a more memory-efficient and

computationally lighter implementation compared to

traditional SOMs. In MiniSom, like in traditional Self-

Organizing Maps (SOMs), several parameters are adjusted to

control the behavior of the algorithm and the resulting map.

Table III displays the values of different parameters used

during implementation. These parameters provide control over

the training process and the properties of the resulting SOM.

Here are some of the most common parameters (given in

Table III) used in MiniSom:

a) Grid Size (m, n):

MiniSom creates a grid of neurons with dimensions m x n.

This grid represents the layout of the SOM, where each neuron

corresponds to a specific location in the input space.

b) Input Data Dimensionality (input_len):

It specifies the dimensionality of the input data. Each input

sample should have the same dimensionality, and it should

match the input_len parameter. Table III shows the

dimensionality of input data in terms of the number of features

obtained after feature selection for 4 considered datasets of 4

code smells. The number of features obtained after feature

selection is given in Table II of Section IV.

c) Learning Rate (initial_lr):

It determines the initial learning rate for updating the

weights of neurons during training. The learning rate typically

decreases over time as training progresses, allowing the model

to converge to a stable state gradually.

d) Neighborhood Radius (sigma):

It defines the neighborhood radius around the best-matching

unit (BMU) during training. Neurons within this radius will

have their weights updated during each iteration of training.

R. GUPTA et al.: UNSUPERVISED MACHINE LEARNING FOR EFFECTIVE CODE SMELL DETECTION 311

The neighborhood radius typically decreases over time as

training progresses.

e) Number of Iterations (iterations):

It specifies the total number of iterations or epochs for

which the SOM will be trained. Each iteration involves

presenting a random input sample to the SOM and updating

the weights of the neurons accordingly.

f) Topology (toroidal):

It specifies whether the SOM grid has a toroidal (circular)

topology or not. Toroidal topology allows the edges of the grid

to wrap around, creating a seamless map without borders.

g) Random Initialization (random_seed):

It sets the random seed used for initializing the weights of

the neurons. Setting a fixed random seed ensures

reproducibility of results across multiple runs.

TABLE III

PARAMETERS USED IN MINISOM

SI

No.

Tuned

Parameters

A brief description of

the parameter
Value (s)

1 (m, n) Grid size

LM-(97,97), FE-

(90,90),

GC-(90,90), DC-

(90,90)

2 initial_lr Learning rate 0.5

3 iterations Number of Iterations 2000

4 toroidal Topology rectangular

5 random_seed Random Initialization None

6 sigma Neighborhood Radius 0.3

7 input_len
Input Data

Dimensionality

LM-18, FE-20,

DC -15, GC- 15

The experiments were conducted on a standalone computer

system using Keras [37] in Jupyter Notebook. For the

experimentation, the study has followed the guidelines of the

MiniSom [36]. The datasets under consideration were

partitioned into a 70:30 ratio for training and testing purposes.

VI. PERFORMANCE MEASURES

Performance metrics namely precision, recall, F-measure,

accuracy, AUC-ROC (Area Under the Receiver Operating

Characteristic Curve), and MCC (Matthews Correlation

Coefficient) are frequently employed in the assessment of

machine learning models [8], including those for identifying

code smells in software systems. The aforementioned

performance measures offer valuable insights regarding the

efficacy of machine learning models in identifying code

smells. The following paragraphs discuss each of these

measures.

1) Precision is a numerical metric that indicates the

proportion of accurately detected instances of code smells

out of the total number of occurrences categorized as code

smells by the model.

2) Recall is a quantitative measure that evaluates the ratio of

correctly identified instances of code smells to the overall

number of code smells in the dataset. A high recall value

indicates that the model effectively detects a substantial

number of code smells.

3) F-measure is a quantitative measure used to calculate the

harmonic mean of precision and recall. Accuracy is a

statistical measure that calculates the proportion of

accurately classified instances. In terms of code smell

detection, accuracy can be defined as the measure of how

correct the model's predictions are. While accuracy is

commonly used as a metric, it is not appropriate in the

case of imbalanced datasets with a low prevalence of code

smells.

4) AUC-ROC metric measures the performance of a binary

classification model. The ROC curve plots the true

positive rate against the false positive rate at various

thresholds. The AUC represents the area under this curve,

with values ranging from 0 to 1. A higher AUC indicates

better model performance, with 1.0 being perfect and 0.5

representing random guessing.

5) MCC is a quantitative metric that assesses the

performance of a binary classification. It is calculated

based on the confusion matrix and it ranges between -1

and 1. The value of 1 denotes a prediction that perfectly

aligns with the observation, while 0 signifies a prediction

made at random. On the other hand, MCC = -1 indicates

complete disagreement between the prediction and the

observation. An MCC score greater than 0.70 is

commonly considered to be statistically significant.

VII. RESULTS AND DISCUSSIONS

This section presents the results of the undertaken study in

the paper. Subsection A specifies the results when feature

selection is not used. Subsection B gives the results where

feature selection is employed first before applying SOM.

Subsection C presents a comparison of the results of our study

with the existing results of the previous study.

A. Results without feature selection

Table IV provides the results for code smell detection for 4

different code smells using six performance measures where

no feature selection technique has been used. It is observed

that precision is very good (> = 0.79) for all four code smells.

Also, since AUC is greater than 0.70 for all considered code

smells hence SOM can differentiate well between smelly and

non-smelly instances. Similarly, other performance measures

are also very good (> = 0.70) indicating the feasibility of code

smell detection using SOM. Figure 3 below shows a bar chart

representing the performance of SOM for 4 code smells.

It is observed that precision is very good (> = 0.79) for all

four code smells. Also, since AUC is greater than 0.70 for all

considered code smells hence SOM can differentiate well

between smelly and non-smelly instances. Similarly, other

performance measures are also very good (> = 0.70) indicating

the feasibility of code smell detection using SOM. Figure 3

below shows a bar chart representing the performance of SOM

for 4 code smells.

312 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

B. Results of the proposed method (using feature selection)

Table V below shows the results for 4 considered code

smells when a technique of feature selection was employed

before applying SOM. Results show that precision is much

better than the precision in 7.1 for all four code smells. In this

case, precision is greater than or equal to 0.89 for all 4 code

smells. Also, the same is true concerning other performance

measures. Table V also shows the range of performance

measures, indicating that feature selection plays a significant

role and enhances the overall performance of SOM for all four

code smells considered in the study. Figure 4 below shows a

bar chart representing the performance of SOM for 4 code

smells using the proposed method.

TABLE IV

RESULTS (WITHOUT FEATURE SELECTION)

Performance

measures
LM FE DC GC Range

Precision 0.84 0.88 0.79 0.94 0.79-0.94

Recall 0.78 0.58 0.93 0.75 0.58-0.93

F-measure 0.81 0.70 0.85 0.83 0.70-0.85

MCC 0.72 0.63 0.78 0.77 0.63-0.78

Accuracy 0.88 0.86 0.90 0.90 0.86-0.90

AUC 0.85 0.78 0.90 0.86 0.78-0.90

The study has used U -Matrix [38] for visualizing the output

of MiniSom after its training on four datasets in figures from

5 to 8. The U-Matrix is a computational tool used to analyse

the distribution of nodes in the input space based on their

spacing. The U-Matrix is represented graphically as a grid cell

for each node in the lattice space. The chromaticity of each

node is directly proportional to the mean Euclidean distance in

the input space to the neighbouring nodes of that node. The U-

Matrix is a mathematical tool that can be utilized to identify

clusters and outliers within a dataset.

TABLE V

RESULTS OF THE PROPOSED METHOD

Performance
measures

LM FE DC GC Range

Precision 0.89 0.94 0.92 0.98 0.89-0.98

Recall 0.78 0.83 0.88 0.80 0.78-0.88

F-measure 0.83 0.88 0.90 0.88 0.83-0.90

MCC 0.76 0.84 0.85 0.83 0.76-0.85

Accuracy 0.90 0.94 0.94 0.92 0.90-0.94

AUC 0.87 0.91 0.92 0.90 0.87-0.92

In Figures 5 to 8, it is important to observe that lighter

colors on the U-Matrix correspond to greater distances, while

darker colors indicate denser nodes in that specific area.

Observing the U-Matrix depicted in Figures 5 to 8, it is

evident that there exists a significant gap between the dark

color region and the light color region. This observation

suggests that the dark color data points exhibit a significant

distance from the light color data points. Thus, the SOM

output helps to verify the map's fidelity to the underlying data.

Fig. 3. Results of SOM (without feature selection)

Fig.4. Results of the proposed method

C. Comparison with the existing study

The previous study by Fontana [9] used 16 different

machine learning algorithms to detect 4 code smells using 4

different datasets. The results in this study [9] have been

shown in terms of performance measures such as accuracy, F-

measure, and AUC. It is observed that algorithm B -J48

Pruned produced the best results in terms of all performance

measures. Similarly, for god class, naïve Bayes gave the best

results for 3 considered performance measures. For long

method and feature envy, B -J48 Pruned gave the best results

in terms of all performance measures. Table VI presents the

results for the 3 performance measures. Also, a symbol dash (-

) indicates that the scores are not available in the study by

Fontana [9] .

To contrast the results of two approaches (the proposed

approach and the approach of supervised machine learning

algorithms used in the previous study by Fontana [9]) and to

ascertain the superior approach, a statistical test was

employed. The selected statistical test for comparison is the

Wilcoxon signed rank test as outlined by Hollander et al. [39].

The test is non-parametric and allows for pairwise comparison

of configuration parameters of the algorithms.

R. GUPTA et al.: UNSUPERVISED MACHINE LEARNING FOR EFFECTIVE CODE SMELL DETECTION 313

 Fig. 5. U matrix for LM Fig. 6. U matrix for FE

 Fig. 7. U matrix for DC Fig. 8. U matrix for GC

TABLE VI

COMPARISON OF THE PROPOSED METHOD WITH THE PREVIOUS STUDY

The proposed approach

Previous study

(SML algorithms)
[9]

P
er

fo
rm

an
ce

m
ea

su
re

s

LM FE DC GC LM FE DC GC

Precision 0.89 0.94 0.92 0.98 - - - -

Recall 0.78 0.83 0.88 0.80 - - - -

MCC 0.76 0.84 0.85 0.83 - - - -

Accuracy 0.90 0.94 0.94 0.92 0.99 0.97 0.99 0.97

AUC 0.87 0.91 0.92 0.90 0.99 0.99 0.99 0.99

F-

measure

0.83 0.88 0.90 0.88 0.99 0.97 0.99 0.98

This method can be used to compare the performance of

two algorithms to ascertain their equality or determine which

one performs better. When the test results show that one

algorithm has better performance than another, the former is

labeled as the winner and the latter as the loser. When the test

results show that the two performances are indistinguishable,

it means that the algorithms do not demonstrate a clear

advantage or disadvantage.

The test was carried out with a significance level set at 0.05

using the 2-tailed test. Appendix D displays the data and the

results of the Wilcoxon signed rank test performed,

considering all 4 code smells together due to the limited

number of samples available for each code smell. The results

demonstrate that the SML algorithms used in the previous

study were superior to the proposed approach. Nevertheless,

the results of the proposed approach correspond substantially

with those of the previous study, suggesting that the proposed

approach has the potential to identify code smells through

UnML algorithm(s). Therefore, the presented study

encourages further investigation by researchers.

D. Threats to validity

Lastly, we consider the possible threats that could

undermine the legitimacy of our study, as outlined by Runeson

[40]. Based on Runeson's research, legitimacy can be

threatened in four distinct categories: external threats,

construct threats, reliability threats, and internal validity

threats. External validity encompasses several potential issues

that could undermine the overall validity of the proposed

method and its outcomes. The purpose of internal validity is to

identify and establish causal links, as well as confirm the

connection between variables and logical results. The study

does not currently consider construct validity and reliability

due to their lack of applicability.

D.1 External Validity

 Ultimately, two potential threats have been identified. The

study was limited to open-source projects of Java; therefore,

the results cannot be considered useful to other programming

languages. Moreover, it is crucial to acknowledge that the

study solely concentrated on open-source Java projects.

Consequently, the generalizability of the results to industrial

software necessitates verification through the study's findings.

D.2 Internal Validity

 The factors that influence the results are often internal

validity threats. The initial factor pertains to the specific

UnML technique employed in the study. The study has used a

single technique: SOM for the experimentation but other

techniques may be further explored. Another contributing

factor is the study's use of 4 publicly available datasets of 4

different code smells. Participating in a broader range of

datasets would surely enhance the feasibility and outcome of

the research study. The third factor is the choice of feature

selection technique used in the study. The study has used an

existing Python package Featurewiz, but other feature

selection techniques may be employed.

VIII. CONCLUSION & FUTURE WORK

The study has come up with a proposed method that utilizes

a Self-Organizing Map (SOM), an UnML algorithm. The

proposed method was validated on four popular and publicly

available datasets of four different code smells such as long

method, feature envy, god class, and data class. The

performance was evaluated on several performance measures

namely AUC, precision, recall, F-measure, accuracy, and

MCC. The results showed that the proposed method

effectively detected all 4 code smells with high scores for

precision (0.89-0.98), recall (0.78-0.88), accuracy (0.90-0.94),

and AUC (0.87-0.92). The results of the proposed method

were evaluated against a prior study that utilized supervised

314 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

machine learning algorithms. The comparison revealed that

the results of the proposed method closely aligned with those

of the previous study. Therefore, the proposed method shows

significant potential in identifying code smells.

UnML methods provide valuable advantages for code smell

detection. They can identify patterns by detecting common

code smells by analyzing patterns in code repositories without

labeled examples. They can offer insights into codebase

structure, aiding developers in understanding code health and

areas needing improvement. They can do feature selection by

automatically extracting meaningful representations of code,

aiding in the detection of code smells. They can flag

anomalous code patterns, highlighting potential instances of

code that smells like dead code or inconsistent naming

conventions. They provide objective assessments of code

quality by learning directly from the data distribution, helping

prioritize refactoring efforts based on data-driven insights.

Future scope- Exploration of a broader spectrum of open

source and industrial Java projects will be incorporated into

future research. Additionally, the simultaneous detection of

multiple code smells is another potential area for future

consideration. The recommendation of software metrics

crucial to detecting code smells using UnML could be

investigated in future studies.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts: "Refactoring:
Improving the Design of Existing Code". 2002.

[2] T. Sharma and D. Spinellis: A survey on software smells, J. Syst. Softw.,

vol. 138, pp. 158–173, 2018.
[3] L. Da Silva Sousa: Spotting design problems with smell agglomerations,

in Proceedings - International Conference on Software Engineering, May

2016, pp. 863–866.
[4] Y. A. Khan and M. El-Attar: Using model transformation to refactor use

case models based on antipatterns, Inf. Syst. Front., vol. 18, no. 1, pp.

171–204, Aug. 2016.
[5] T. Sharma, M. Fragkoulis, and D. Spinellis: Does your configuration code

smell?, in Proceedings - 13th Working Conference on Mining Software

Repositories, MSR 2016, May 2016, pp. 189–200.
[6] T. Sharma and D. Spinellis: A survey on software smells, J. Syst. Softw.,

vol. 138, no. December 2017, pp. 158–173, 2018.

[7] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang: Machine learning
techniques for code smell detection: A systematic literature review and

meta-analysis, Inf. Softw. Technol., vol. 108, no. 4, pp. 115–138, 2019.

[8] A. Al-Shaaby, H. Aljamaan, and M. Alshayeb: Bad Smell Detection
Using Machine Learning Techniques: A Systematic Literature Review,

Arab. J. Sci. Eng., no. 0123456789, 2020.

[9] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino:
Comparing and experimenting machine learning techniques for code

smell detection, Empir. Softw. Eng., vol. 21, no. 3, pp. 1143–1191, 2016.

[10] J. Kreimer: Adaptive detection of design flaws, Electron. Notes Theor.
Comput. Sci., vol. 141, no. 4 SPEC. ISS., pp. 117–136, 2005.

[11] F. Khomh, S. Vaucher, Y. G. Guéehéeneuc, and H. Sahraoui: A bayesian

approach for the detection of code and design smells, in Proceedings -
International Conference on Quality Software, 2009, pp. 305–314.

[12] S. Bryton, F. Brito E Abreu, and M. Monteiro: Reducing subjectivity in
code smells detection: Experimenting with the Long Method, in

Proceedings - 7th International Conference on the Quality of Information

and Communications Technology, QUATIC 2010, 2010, pp. 337–342.
[13] F. Khomh, S. Vaucher, Y. G. Guéhéneuc, and H. Sahraoui: BDTEX: A

GQM-based Bayesian approach for the detection of antipatterns, J. Syst.

Softw., vol. 84, no. 4, pp. 559–572, 2011.
[14] Svmd. Maiga et al.: Support Vector Machines for Anti-pattern Detection,

2012, Accessed: Feb. 17, 2020. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6494935/.
[15] D. K. Kim: Finding bad code smells with neural network models, Int. J.

Electr. Comput. Eng., vol. 7, no. 6, pp. 3613–3621, 2017.

[16] M. Hadj-Kacem and N. Bouassida: A hybrid approach to detect code

smells using deep learning, ENASE 2018 - Proc. 13th Int. Conf. Eval.
Nov. Approaches to Softw. Eng., vol. 2018-March, no. Enase 2018, pp.

137–146, 2018.

[17] H. Liu, Z. Xu, and Y. Zou: Deep learning based feature envy detection,
Proc. 33rd ACM/IEEE Int. Conf. Autom. Softw. Eng. - ASE 2018, pp.

385–396, 2018.

[18] A. Barbez, F. Khomh, and Y. G. Guéhéneuc: A machine-learning based
ensemble method for anti-patterns detection, J. Syst. Softw., vol. 161,

2020.

[19] M. Gupta: A Novel Approach for Code Smell Detection : An Empirical
Study, IEEE Access, vol. 9, pp. 162869–162883, 2021.

[20] N. Vatanapakorn, C. Soomlek, and P. Seresangtakul: Python Code Smell

Detection Using Machine Learning, ICSEC 2022 - Int. Comput. Sci. Eng.
Conf. 2022, no. April 2023, pp. 128–133, 2022.

[21] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis: Code smell

detection by deep direct-learning and transfer-learning, J. Syst. Softw.,
vol. 176, p. 110936, 2021.

[22] T. Sharma: On the Feasibility of Transfer-learning Code Smells using

Deep Learning, ACM Trans. Softw. Eng. Methodol., vol. 1, no. 1, pp.
1281–1284, 2019.

[23] R. Gupta and S. K. Singh: A Novel Transfer Learning Method for Code

Smell Detection on Heterogeneous Data: A Feasibility Study, SN
Comput. Sci., vol. 4, no. 6, pp. 1–21, Nov. 2023.

[24] M. Long, J. Wang, J. Sun, and P. S. Yu: Domain invariant transfer kernel

learning, IEEE Trans. Knowl. Data Eng., vol. 27, no. 6, pp. 1519–1532,
2015.

[25] R. Sandouka and H. Aljamaan: Python code smells detection using

conventional machine learning models, PeerJ Comput. Sci., vol. 9, 2023.
[26] L. Madeyski and T. Lewowski: Detecting code smells using industry-

relevant data, Inf. Softw. Technol., vol. 155, 2023.

[27] “Featurewitz · PyPI.” https://pypi.org/project/featurewiz/ (accessed Jun.
02, 2023).

[28] A. AbuHassan, M. Alshayeb, and L. Ghouti: Software smell detection

techniques: A systematic literature review, J. Softw. Evol. Process, no.
September 2019, pp. 1–48, 2020.

[29] E. Tempero et al.: The Qualitas Corpus: A curated collection of Java

code for empirical studies, in Proceedings - Asia-Pacific Software
Engineering Conference, APSEC, 2010, pp. 336–345, doi:

10.1109/APSEC.2010.46.
[30] N. Petrov, A. Georgieva, and I. Jordanov: Self-organizing maps for

texture classification, Neural Comput. Appl., vol. 22, no. 7–8, pp. 1499–

1508, 2013.
[31] X. Qu et al.: A Survey on the Development of Self-Organizing Maps for

Unsupervised Intrusion Detection, Mob. Networks Appl., vol. 26, no. 2,

pp. 808–829, 2021.
[32] I. Jammoussi and M. Ben Nasr: A hybrid method based on extreme

learning machine and self organizing map for pattern classification,

Comput. Intell. Neurosci., vol. 2020, 2020.
[33] D. Pratiwi: “The Use of Self Organizing Map Method and Feature

Selection in Image Database Classification System,” 2012, [Online].

Available: http://arxiv.org/abs/1206.0104.
[34] U. Fidan, N. Ozkan, and I. Calikusu: Clustering and classification of

dermatologic data with Self Organization Map (SOM) method, in 2016

Medical Technologies National Conference, TIPTEKNO 2016, 2017, no.
June, pp. 1–4, doi: 10.1109/TIPTEKNO.2016.7863075.

[35] T. Li, G. Sun, C. Yang, K. Liang, S. Ma, and L. Huang: Using self-

organizing map for coastal water quality classification: Towards a better
understanding of patterns and processes, Sci. Total Environ., vol. 628–

629, pp. 1446–1459, 2018.

[36] “GitHub - JustGlowing/minisom: MiniSom is a minimalistic
implementation of the Self Organizing Maps.”

https://github.com/JustGlowing/minisom (accessed Mar. 13, 2024).

[37] “Keras: The high-level API for TensorFlow.”
https://www.tensorflow.org/guide/keras.

[38] A. Ultsch: “U * Matrix : a Tool to visualize Clusters in high dimensional

Data,” 2014.
[39] E. C. Hollander, Myles, Douglas A. Wolfe: "Nonparametric statistical

methods", vol. 102. 2013.

[40] P. Runeson, M. Höst, A. Rainer, and B. Regnell: "Case Study Research in
Software Engineering", 2012.

R. GUPTA et al.: UNSUPERVISED MACHINE LEARNING FOR EFFECTIVE CODE SMELL DETECTION 315

 APPENDIX

https://docs.google.com/document/d/1POrGZwV1ZpWiiMr8rXpYYWf1kXq

Hxgad/edit?usp=sharing&ouid=102221464989892511063&rtpof=true&sd=tr

ue

Ruchin Gupta is an accomplished academic and

researcher with over 23 years of experience,
currently serving as an Assistant Professor at KIET

Group of Institutions, Delhi-NCR, Ghaziabad. He

is an active member of several prestigious
engineering societies and has contributed

extensively to the field through his roles as a

reviewer for top-tier journals and as a technical
chair at international conferences. His research

spans machine learning, code smell detection, and

blockchain technology, with numerous publications
in high-impact journals. Ruchin has also been recognized with awards for his

scholarly contributions and holds patents in AI, ML, and IoT.

Dr. Narendra Kumar is working as Dean-

Incubation and professor in CSE department,
GCET. He has worked as co-founder and President

at Innotekverse Pvt Limited (Vorphy). He has more

than 18 years of national and international
academic experience and 3 years of experience in

corporate. He has done BTech (IT), MTech (CSE),

and Ph.D. in Computer Science and Engineering
(CSE). He has been an entrepreneur also and has

established many incubation centers. He has been

the team lead for many E-Learning projects. His
current domain is Blockchain and XR technologies. He has been in leading

positions in many universities and handled international accreditations. He has

established many centers of excellence in the latest technologies. He is IBM
certified Blockchain Developer.

Dr. Sunil Kumar is working as an Associate

Professor in Gagotias College of Engineering and

Technology Greater Noida, Uttar Pradesh. He has
more than 17 years of teaching experience. He

pursued his Ph.D degree (2022) in Computer

Science and Engineering from SRM Institute of
Science and Technology, Delhi NCR Campus

Modinagar, Ghaziabad, Uttar Pradesh and

master’s degree in computer engineering from
Shobhit University Meerut in 2012, and received

the bachelor’s degree in information technology

from Krishna Institute of Engineering and Technology, Ghaziabad, U.P. in
2006,. He has published more than 20 research papers in journals and

conferences. His fields of interest are Artificial Intelligence, Machine

Learning and Computer Networks. He is a member of IAENG, IEEE and
ISTE professional societies.

Dr. Jitendra Kumar Seth is working as an

Associate Professor in KIET Group of Institutions

Ghaziabad. He has completed his PhD degree from
Jaypee Institute of Information Technology, Noida

in 2019. He obtained his M.Tech degree from

Shobhit University Meerut in 2009 and B.Tech
degree from Radha Govind Engineering College

Meerut in 2004. During his teaching career of more

than 19 years, he has taught courses such as Cloud
Computing, Big Data, Distributed System, OOP,

Web Technology, Principle of programming

languages etc. Dr. Jitendra has participated in many National and International
conferences and has published more than 20 research papers in reputed

International Journals and Conferences. He has guided more than 50 graduate

projects and supervising PhD scholars. He has expertise on programming
languages like Java, Python, PHP and XML. His research area includes Cloud

Computing, Big Data, Cyber Security, Machine Learning and Search Engines.

316 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 4, DECEMBER 2024

https://docs.google.com/document/d/1POrGZwV1ZpWiiMr8rXpYYWf1kXqHxgad/edit?usp=sharing&ouid=102221464989892511063&rtpof=true&sd=true
https://docs.google.com/document/d/1POrGZwV1ZpWiiMr8rXpYYWf1kXqHxgad/edit?usp=sharing&ouid=102221464989892511063&rtpof=true&sd=true
https://docs.google.com/document/d/1POrGZwV1ZpWiiMr8rXpYYWf1kXqHxgad/edit?usp=sharing&ouid=102221464989892511063&rtpof=true&sd=true

