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Abstract: The Hartree-Fock equations for the lowest excited state of a N-body problem are derived, using the orthogonality of the trial function to the appro­ximate ground state and the diagonalization of the Hamiltonian between these states as constraints. It is shown that the exact eigenvalue of the excited states is a lower bound to the approximate energy values. The·method is illustrated for the para-state of a two-electron problem in a Coulomb field. 
1. Introduction

The calculation of the energies and the wave functions of excited atomic and molecular states is a formidable problem. Not only is the computational lahor requi­red much greater than for the ground state, which has to be known with some accuracy, but the mi?thematical formulation of the Hartree-Fock method for excited states is less satisfactory. lt may be helpful to relate the Hartree-Fock formalism to the Rayleigh-Ritz method of the calculus of variations. For a one-dimensional action principle, trial functions depending on one or several parameters are used and the minimum of the action under variation of these parameters is calculated. If one admits infinitely many parameters, i. e. an arbitrary analytic function, one regains the Euler-Lagrange equation of the action principle. For more-dimensional problems, one has the option, as noted by Hartree, of specifying the more-dimensi­onal wave function only to the extent that it be expressed in terms of arbitrary one­-dimensional wave functions; instead of either a finite number of parameters orooN parameters as the extreme choices, one leaves N. oo parameters free. The speci­fication of the many-particle wave function in terms of one-particle wave function is very convenient for the application to quantum physics, since it allows one to 
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incorporate easily the required symmetry property under permutations of the indis­tinguishable particles. This has been đone by Slater and Fock. Unfortunately, the mathematical foundation for the calculation of excitedstates, as given by Courant in the Maximum-Minimum PrincipleO is not easilyapplicable to the Hartree-Fock equation, and in any case would require an excessive amount of lahor. One is therefore content to apply the minimum principle as for the ground state with the additional requirement that the state should be orthogonal to the ground state2>. If </) is the ground state and 'P the excited state, oneassumes E<0> = < </) I H I </J > = Min, < <P I 'P > = l
E0> = < 'P J H I 'P > = Min, < 'P I 'P > = 1

< 'P I <P >=o.
Expansion in the exact eigenfunctions U k 

gives, assuming 
< <P I HI <P > = � Ek I Ak 1 2 

� Eo
< tp IH I tp > = � Ek I Bk 1 2 

� E1 - (E1 - Eo) J Bo 12 , 

(I) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

The action principle (2) has not the exact eigenvalue as a lower bound. However, the condition (3) ensures that the last term in (7) will have an upper bound, depen­ding on the equality of the ground state approximation. With the help of the con­dition (3) 
(8) 

and, using Schwarz 's inequality 
(9) 

hence, 
(10) 

but there is no easy method for finding A0• A generalization of the Rayleigh-Ritzwhich gives an approximate energy eigenvalue with the exact value as a lower bound, was proposed by Hylleraas and Undheim5> and by MacDonald6> . We consi­der the expectation value of H for a state which is a linear combination of two functi­ons f O andf1, with coefficients c0 and c1• The roots of the secular equation are 
2 FIZIKA 11 (1979) 1, 1-9 



RAYCHOWDHURY: N-BODY EXCITED STATES.,, 

E<0>' = Hoo - � (H11 - Hoo) [ ( l + 41 Ho1 l 2/(H11 - Hoo)2
) 

112 

- 1] ( 11)

where H01 = </0 I H  l/1 >. The coefficients c0 and c1 corresponding to thetwo eigenvalues can easily be found, and we get for the ground state and the first excited state the wave functions 
<p = N [/o - /1 H 10/(H11 - E<0>1)]
"P = N [/ 1 +/o Ho1/(E< 0• - Hoo)].

(13) 

(14) 

The approximate ground state energy E<0>1 will obviously be smaller than H 00,i.e. the approximation obtained with /0 alone. It has been shown by the authorsquoted5
,

6> that both (11) and (12) are larger than the corresponding exact eigenva­lues E0 and E1 ,In a more recent paper by Perkins9> it was pointed out that the above applica­tion of the Rayleigh-Ritz method can be combined with the Hartree-Fock proce­dure. We may ask for those functions f O and f 1 which make the approximate energy values (11) and (12) as small as possible. It will be sufficient in many cases to calcu­late the best f 1 only, since the energy of the ground state ( 11) will in any case be an improvement over the lowest approximation. It should be kept in mind, however, that the variation of / 1 has to be performed in (12): it would be incorrect to vary 
/1 in the expectation value of H with the coefficients c0 nad c 1 kept constant, and to insert their appropriate values in the final Hartree-Fock equation. The energy calculated from the Hartree-Fock equation will not have the form (12) if such a procedure is carried out. Unfortunately the variation of / 1 in (12) will in general lead to a very complicated equation. We propose here another approach which also has the exact energy E 1 as a lower bound. We will supplement the principle (2) not only with (3), but will demand additionally 

(15) 

We will show that the so-obtained approximate eigenvalue E< 0 has also E1 as alower bound, if the approximate ground state energy E<0) is smaller than E 1• Withthe notation of ( 4) and ( 5), ( 15) has the form 
(16) 

and together with (8) 

(17) or 
(18) 
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and, using Schwarz's inequality 
(E1 - Eo)2 I Ao 12 I Bo 12 

� (l: (Ek - E1) I Ak 12 (l: (Ek - Bi) I Bk 12). (19)
2 2 On the other hand, we have assumed 

O < E1 - E<0> = (E1 - Eo) I Ao 1 2 - L (Ek - E1 ) J Ak 1 2 (20) 
2 and therefore 

O <  L (Ek - E1) I Ak 12 < (E1 - Eo) I Ao 12 

2 

(21) 
and we can now rewrite (19) 

or 
(E1 - Eo)2 1 Ao 12 I Bo 1 2 � (E1 - Eo) I Ao 12 I L (Ek - E1) I Bk 12 = 

2 (22) 
(23) 

The latter assumption will usually be satisfied, unless the energy levels are very closely spaced. A trial function •p for the first excited state must contain at least four free para­meters in order to have one param eter free to minimize the energy E< 1 >. The otherthree parameters will be needed to satisfy the conditions (3), ( 15) and the normali­zation. Comparing this with the usual method ( 11 ), ( 12), we observe that the number of free parameters is the same in both cases. We need there two parameters to nor­malize /0 and / 1 while the other two parameters c0 and c 1 could be eliminated. This elimination was possible because the trial function depended linearly on the free parameters and this linear dependence is crucial in the usual method. Our method does not rely on any special functional dependence of the trial function on the free parameters. The main advantage of the usual method lies in the fact thatit gives not only an approximation to Em, but supplies also an improvement ofthe ground state energy. Since the Rayleigh-Ritz method gives usually a very good approximation to the ground state, this improvement will not be important in many problems. The main advantage of our method becomes clear when we discuss the Hartree-Fock equations for the excited state. We can here minimize linear functionals as distinct from ( 11) and ( 12). 
2. First excited state

We assume now that the ground state, described by a single Slater determinant '1> formed from N spin-orbitals <p1, <p2 . . .  , is known. These orbitals satisfy the Har­tree-Fock equations 
T1 'Pk + V2l: J d3 r2 <p; (2) V12 { <pk (1), 'Pi (2)} = L ii�) 'P1 (1) (24) 
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where { <pk ( 1 ), <p1 (2)} denotes the two by two determinant formed from <pk (1) and<p1 (2) and multiplied with (2)- 112 to preserve normalization. We note that the setof equations (24) remains invariant under transformations 
'Pn = L Cnm 'P'm 

m 
(25) 

with constant coefficients Cnm, which form a unitary matrix. The first excited state 'JI will also be formed from single-particle spin-orbitals 1P 1, 1fJ2 ••• , although it will not be possible to use a single Slater-determinant. The requirement that the state corresponds to a definite angular momentum, will lead to a description in terms of a sum of Slater determinants with each term describing a particular distribution of spin and orbital angular momenta over the particles. We will nevertheless use a single determinant for the general formalism, and point out the necessary modi­fications at the appropriate places. We may assume of course 
(26) 

but we can also satisfy the condition (3) easily if we mak.e one spin-orbital, say "Pf, orthogonal to all spin-orbitals of the ground state 
< 1/lf I 'Pk > = O k = 1 ,  2, 3, ... N. (27) 

This is certainly a sufficient condition for (3) to hold. If 'JI is a single Slater deter­minant., (27) can be assumed without loss of generality. Since the action principle (2) is invariant under transformations (25) for the set of functions "Pk, and sincethe determinant formed of the elements < "Pk I <p1 > will vanish because of (3), nontrivial solutions Cnm will exist, such that a 1P'f will satisfy (27) even if none of the "Pk satisfy (27). lf the trial function is a sum of determinants, this transformation cannot be carried out in every case and one would have to rely on special symmetry properties of the system to find one and the same 1P f in each determinant. 
We reduce now the expectation value (2) to matrix elements for the individual particles 

and the variation of 1P; will give a contribution identical with the left hand side of (24), the usual Hartree-Fock operator. However, for k = J, we have to add -?'}k'Pkbecause of (27). The new quantities 'YJ k are Lagrange multipliers. According to the general discussion in the first section, we must include the subsidiary condition ( 1 5). The reduction of ( 1 1 ) in terms of one-particle functions requires some well known expansions of determinants, e.g. 
(29) 
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and 
(30) 

where the subscripts of N and M indicate the rows and columns of the originaldeterminants which are omitted. Similar expansion hold for <P and the corre­sponding subdeterminants wilJ be denoted with JI and % . The kinetic energy matrix element in ( 15) is then 
< 'P I L Ta, I(/) > = L < "Pf' T1 I <p, > < Mf,1 1..11, .• > (31) 

o:=1 

and the potential energy is 
< 'P I l: LI <P > = L L L < {<pr, <p,} I V12 J {<p,, <pk} > < Nr,,12 I .Ar,k,12 >· (32) 

a <{J i< ki 

We can now derive the equation for "Pr and we use (24) to eliminate the kinetic energy in (31) 

(33) 

The equations for 'Pa with a =/:- f is more complicated because the scalar products of subdeterminants will also contribute. We need the additional expansion
(34) 

and get from ( 1 5) : 
< 'P J L Ta I(/) >= l: < "Pf I T I <p, > L < "Pol <pp > < Nfa,12 I.Ar,11,12 > (35) 

a l p 

which allows usto find the coefficient of lJ ,;. The contributions from the potential energy (32) consist of two parts. First, for l = a we get
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but there is an additional contribution from N1z, 12 which requires the expansion 

1 n 
N1z, 12 = -V N2 L 1Pa (a) Par,, 12« - a=3 

(37) 

and we get then the equation 

+ A [l; <1P1 I TI <pz> L <p,, < N1a,12 IY1p,l2 > -
l p 

+ L L L < {1JJ1,1P1} I V12 I {<p,, <pk} > L <p,, < Pafl,1231 &',.,ik, 123 >]. (38)
i< k I P 

It may be desirable to bave the Lagrange parameters eliminated. This can
be đone in the following way, but we will show in the next section that this method
fails for a two-body problem. We multiply now (38) with q,: and integrate over r,
and subtract from the ensueing equation the conjugate complex of (24) after con­
traction with "Pa· We multiply then with <"Pa I <pn) and sum over a, with a =/: !,
and n, noting 

and 

L L (Nfa, 12 IY,n, 12) (1Pa I <pn) = (M1,1 J J/1, 1) (N - 1) (39) 
a n 

L L <Pa1·1,123 I fJl>nlk,123> <'Pa I 'Pn>= <N,,,12 IY,k,12> (N - 2). (40)
a n 

Now we use (11) in the reduced form (31) and (32) and obtain 

= L L L [A�P (<pn J <pi) (1Pa I 'Pn) - A}�) < <pz I 'Pa) (1Pa I cpn)] -
l a " 

- A [E L L L <{1Pn, 1P1} J V12 I { 9"1, <pk}) (Nfa,12 !Ytk, 12) (% I <pn) -
i<k n a 

(41) 

which is the desired equation for A. The same procedure can be carried out starting
from the equation for 'P

r
· We will get then equations for the 1/k· 
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The total energy of the excited state is given by (2) and (28). With the help 
of (33) and (38), we find

1 (I' 

l;: (tp, I TI tp,) + T �<Lk ( {tp,, V'k} I V12 I {V',, 1/Jk}) = � A;l, (42) 
l I l 

and hence 

or 
E0> = -2 L iw - L <,, , TI v,,>.

i i 

3. Application to helium

(43) 

We will sketch the method presented in the preceding section for the two-elec­tron problem in helium, when both electrons are in a para-states and we write now 
1 lJf = --:= [V,a (1) V'f (2) + 1/'a (2) V'f (I)] = {V,"' 1/'1}�2 

and similarly for the ground state with <p1 and <p2• The equations for V'a and v,1 are simply 
2e2 

-f * Ttpa - -V'a + J, 2 d3 
T2 V'! V12 {V,n, V'f} = Aaa V'a + Aaf 1/'f +r 

+ A [ <p2 < {V',, 'P2} I V12 I { <pi, 'P2}> + 'P1 < {,,, <p1} I V1 2  I { <pi, <p2}> -
- V2 f d3 r2 v,; Vi i { <p1, <p2}],

while ( 1 5) can be written in the form 

(44) 

(46) 
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W e see at once that the process of elimination of A which we discussed in the last section will not work here, because ( 46) is bi-linear in the only two functions 1Pa and 1P f· We can, however, modify the process and get explicite forms for .A and the two multipliers 'T/k· The equations (44) and (45), which should be compared to the approximate theory presented in ref. 2, p. 226, will be discussed in a paper in preparation. 
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N-ČESTIČNA POBUĐENA STANJA : EGZAKTNE SVOJSTVENE VRIJED­NOSTI STANJA KAO DONJA GRANICA ENERGETSKIH VRIJEDNOSTI
PRATIP N. RAYCHOWDHURY 
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Sadržaj 

Izvedene su Hartree-Fockove jednadžbe za najniže pobuđeno stanje N-čestič­nog problema upotrebljavajući kao uvjet ortogonalnost probne funkcije na aprok­simativno osnovno stanje sistema i dijagonalizaciju hamiltonijana između tih stanja. Pokazano je da je točna vlastita vrijednost pobuđenih stanja donja granica aproksi­mativnim vrijednostima energije. Metoda je ilustrirana primjenom na para-stanje dvoelektronskog problema u Coulombovom polju. 
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