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ABSTRACT

Desargues’s theorem plays an essential role at the ax-
iomatic foundations of Projective Geometry. The configu-
ration behind this theorem contains ten lines, the sides of
two triangles, three lines through the center and the axis.
We focus on the ordered sextuple of intersection points
with the axis and call it Desarguesian. A permutation of
this sextuple is called admissible if it preserves the property
of being Desarguesian. Some permutations are admissible
only if Pappus’s theorem holds in the plane. Under this
assumption we can prove that for each permutation there
exist particular Desarguesian sextuples which remain De-
sarguesian under the permutation.

Key words: Desargues’s theorem, Pappus’s theorem, De-
sarguesian sextuple, involution
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O permutacijama Desarguesovih šestorki

SAŽETAK

Desarguesov teorem ima bitnu ulogu u aksiomatskim
temeljima projektivne geometrije. Konfiguracija iz ovog
teorema sastoji se od deset pravaca: šest stranica dvaju
trokuta, triju pravaca kroz sredǐste i od osi. Usre-
dotočujemo se na ure�enu šestorku sjecǐsta s osi koju
nazivamo Desarguesovom. Permutacija ove šestorke se
naziva dopustivom ako čuva svojstvo “biti Desarguesov”.
Neke su permutacije dopustive samo ako u ravnini vrijedi
Pappusov teorem. Pod ovom pretpostavkom dokazujemo
da za svaku permutaciju postoje odre�ene Desarguesove
šestorke koje ostaju Desarguesove nakon djelovanja te per-
mutacije.

Ključne riječi: Desarguesov teorem, Pappusov teorem,
Desarguesova šestorka, involucija

1 Introduction

At the beginning of the twentieth century, Gerhard Hes-
senberg proved in a synthetic way that Pappus’s theorem
implies Desargues’s theorem [11]. A number of relevant
papers has been created since then, all in the context of
using Pappus’s Theorem for proving Desargues’s Theo-
rem (note [6], [15, p. 35], and in particular [18] and [13]
with comments on Hessenberg’s proofs). The converse is
not true. The main result in this direction dates already
back to David Hilbert’s ‘Grundlagen der Geometrie’ [12]
in 1899 (see [20, p. 78–168]). Hilbert defined an addition
and a multiplication of points on a line and proved that
each Desarguesian projective plane is isomorphic to a pro-
jective coordinate plane over a (not necessarily commuta-
tive) field. Moreover, the Desarguesian plane is Pappian if
and only if this field is commutative. More about the alge-
braization of Desarguesian projective planes can be found,
e.g., in [16, 10, 2, 4, 13], the latter even with many de-
tails on Pappus’s theorem. An extensive survey on results
obtained during the last about hundred years around the

theorems of Desargues and Pappus together with a wealth
of references has been provided in [14].

Our work focusses on the Desargues configuration and the
ordered sextuple of points on the axis (Fig. 1). We call
this sextuple ‘Desarguesian’ and study permutations that
preserve the property of being Desarguesian. We con-
firm that a Desarguesian projective plane is Pappian if and
only if Desarguesian sextuples remain Desarguesian under
a certain transposition (Theorem 1) thus rephrasing a re-
sult from [9]. Our main result (Theorem 3) states that in
Pappian planes for each permutation there exist Desargue-
sian sextuples which remain Desarguesian under the per-
mutation. However, in the majority of cases the sextuple
has to satisfy one particular condition in terms of cross ra-
tios. Our paper concludes with analytic characterizations
of Desarguesian sextuples in Desarguesian and in Pappian
planes.

The included figures shall illustrate the underlying ideas.
In general they cannot not serve as proofs since the real
projective plane is Pappian.
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2 Desarguesian sextuples

Definition 1 In a Desarguesian projective plane, a sex-
tuple (S1,S2,S3,T1,T2,T3) of mutually different collinear
points is called Desarguesian if there exists a Desargues
configuration with center Z, axis a and two Z-perspective
triangles P1P2P3 and Q1Q2Q3 such that for i = 1,2,3 the
point Ti is the intersection between a and the line passing
through Z, Pi and Qi, while for each permutation (i, j,k) of
(1,2,3) the point Si ∈ a is common to the sides [Pj,Pk] and
[Q j,Qk].1

T1 T2 T3S1 S2S3

P1

P2
P3

a

Z

Figure 1: Desarguesian sextuple (S1, . . . ,T3) on the line
a together with the center Z and one triangle P1P2P3 of
a Desargues configuration. Any Z-perspective triangle
Q1Q2Q3 is not shown.

Fig. 1, hyppar13_Canalfl,105mm
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Figure 1: Desarguesian sextuple (S1, . . . ,T3) on the line
a together with the center Z and one triangle P1P2P3 of
a Desargues configuration. Any Z-perspective triangle
Q1Q2Q3 is not shown.

Below we only pay attention to one of the two Z-
perspective triangles, namely to P1P2P3 (see Fig. 1). The
existence of six mutually different points of a Desargue-
sian sextuple implies that ZP1P2P3 is a quadrangle and for
each i the points Si and Ti belong to opposite sides of this
quadrangle. Moreover, the axis a does not contain any ver-
tex of this quadrangle. In finite projective planes Desar-
guesian sextuples exist only if the order is at least five. It
is wellknown that the axiom of Desargues guarantees the
existence of perspective collineations for any given center,
axis and pair of corresponding points.

Lemma 1 In Desarguesian projective planes, a Desar-
guesian sextuple (S1, . . . ,T3) on the axis a of a Desargues
configuration does not depend on the choice of the center
Z 6∈ a and of the vertex P1 ∈ [Z,T1]\{Z,T1}.

Proof. Beside a configuration with Z,P1,P2,P3 let another
center Z′ 6∈ a and a first vertex P′1 ∈ [Z′,T1] \ {Z′,T1} of
another triangle P′1P′2P′3 be given. Then we obtain the re-
maining vertices as P′2 = [Z′,T2]∩ [P′1S3] and P′3 = [Z′,T3]∩
[P′1S2]. If Z,Z′,P1,P′1 is a quadrangle, then exists in the De-
sarguesian plane a unique perspective collineation κ with
the axis a and the center C := [Z,Z′]∩ [P1,P′1] which sends
P1 to P′1 (Fig. 2). Since κ maps also P2 to P′2 and P3 to P′3,
the side [P′2,P

′
3] must pass through S1.

If three of the four points Z,Z′,P1,P′1 are collinear, then we
choose other points Z′′ 6∈ a and P′′1 ∈ [Z′′,T1]\{Z′′,T1} such
that Z,Z′′,P1,P′′1 as well as Z′,Z′′,P′1,P

′′
1 form quadrangles.

Now we can conclude as before using two collineations,
one with Z 7→ Z′′ and the other with Z′′ 7→ Z′. This con-
firms the claim. �
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Figure 2: There is a perspective collineation κ with cen-
ter C and axis a that sends Z,P1,P2,P3 respectively to
Z′,P′

1,P
′
2,P

′
3.

Fig. 2, hyppar13_Canalfl,105mm
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Figure 2: There is a perspective collineation κ with cen-
ter C and axis a that sends Z,P1,P2,P3 respectively to
Z′,P′1,P

′
2,P
′
3.

Lemma 2 If the sextuple (S1,S2,S3,T1,T2,T3) is Desar-
guesian, then for each permutation (i, j,k) of the indices
(1,2,3) the sextuple (Si,S j,Sk,Ti,Tj,Tk) is Desarguesian,
too.

Proof. This is trivial since we only need to renumber the
vertices in the triangle P1P2P3. �

Lemma 3 If the sextuple (S1,S2,S3,T1,T2,T3) is Desar-
guesian, then the sextuple (S1,T2,T3,T1,S2,S3) is Desar-
guesian, too.

Proof. Exchange in a corresponding configuration the
points Z and P1, while P2 and P3 and the axis a remain
unchanged. This implies S2 7→ T3, S3 7→ T2, T2 7→ S3, and
T3 7→ S2 and means that (S1,T3,T2,T1,S3,S2) is Desargue-
sian. Finally we exchange the indices 2 and 3 in the sense
of Lemma 2. Similarly, we can replace Z with P2 or P3 and
obtain two other Desarguesian sextuples. �

Remark 1 The statements of the Lemmas 2 and 3 can al-
ready be found in [16, p. 128]. The triples (S1,S2,S3)
and (T1,T2,T3) are respectively called triangle triple and
point triple (German: Dreieckstripel and Sterntripel),
and the sextuple (S1, . . . ,T3) has the name quadrangu-
lar set of points (German: Viereckschnitt). The English
notation dates back to [19, p. 49], where the symbol
Q(T1T2T3;S1,S2,S3) is used for Desarguesian sextuples. In
[5, p. vii], this symbol is replaced by (S1T1)(S2T2)(S3T3).
In [17, p. 129], the name quadrilateral set stands for a
Desarguesian sextuple. In [8], a ’quadrangular section’ is
axiomatically introduced as a ternary relation on the pairs

1Throughout the paper we use the symbol [X ,Y ] for the line connecting the two points X and Y .

4



KoG•28–2024 K. Myrianthis, H. Stachel: On Permutations of Desarguesian Sextuples

of a set called ’line’, and the line is called Desarguian if
the statements of Lemma 2 and Lemma 3 hold. The Lem-
mas 2 and 3 are also subject of [9, Lemma 5.6], where the
symbol (S1,T1;S2,T2;S3,T3) stands for the Desarguesian
sextuple (S1, . . . ,T3).

Definition 2 A permutation of the six points of a Desar-
guesian sextuple is called admissible if the permuted sex-
tupel is still Desarguesian.

In view of Desarguesian sextuples, we call the pair con-
sisting of the first and the fourth point of a sextuple the
first pair. Similarly, the second pair consist of the second
and the fifth point, and the third pair of the third and sixth
point of the sextuple.

2.1 Characterizations of Pappian planes

In order to illustrate the role of admissible permutations,
we present and prove two pertinent results that can already
be found in the literature. The first is hidden in the state-
ment of [9, Theorem 5.12].

Theorem 1 A Desarguesian projective plane is Pap-
pian if and only if for each Desarguesian sextuple
(S1,S2,S3,T1,T2,T3) the exchange of (S1,T1) in the first
pair is admissible.
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Fig. 3, fig 3
Figure 3: Illustrating the statement of Theorem 1.

Proof. Let Z, . . . ,P3 and Z′, . . . ,P′3 be two Desargues con-
figurations which share the axis a and on a the points
Si = S′i and Ti = T ′i for i = 2,3. In both cases, the six
points S1, . . . ,T3 and S′1, . . . ,T

′
3 are supposed to be mutu-

ally different. Then, without loss of generality, we can ap-
ply Lemma 1 and replace Z′ by Z and P′3 by P3 while the
Desarguesian sextuples on a remain unchanged.
Suppose that for the second configuration holds S′1 = T1
and T ′1 = S1 (see Fig. 3). Then a Pappus configuration is in-
cluded: there are two triples of collinear points (A,B,C) :=
(Z,P′2,P2) and (A′,B′,C′) := (P3,P1,P′1), and the intersec-
tion points T1 = [A,B′]∩ [A′,B], S1 = [A,C′]∩ [A′,C] and

S3 = [B,C′]∩ [B′,C] are collinear, too. This is the basis for
confirming the stated characterization of Pappian projec-
tive planes.
(i) If the projective plane is Pappian, then T ′1 = S1
implies that a = [S1,S3] is the Pappus axis. Conse-
quently, the line [A′,B] = [P′3,P

′
2] must intersect the axis

a at the point S′1 = T1 on [A,B′]. This means that
both sextuples (S1,S2,S3,T1,T2,T3) and (S′1, . . . ,T

′
3) =

(T1,S2,S3,S1,T2,T3) are Desarguesian, i.e., the switch
S1↔ T1 preserves Desarguesian sextuples.
If in the Pappian plane the Fano axiom holds, then this is
an immediate consequence of Desargues’s involution the-
orem: pairs of opposite sides of the quadrangle ZP1P2P3
intersect the line a in pairs (Si,Ti) of an involution (note,
e.g., [1, 5] or [7, Sect. 7.4]).

(ii) Conversely, let two collinear triples of points (A,B,C)
and (A′,B′,C′) on different lines be given such that no
point coincides with the intersection of the two lines. Then
we recognize two triangles (P1,P2,P3) := (B′,C,A′) and
(P′1,P

′
2,P
′
3) := (C′,B,A′) in the figure as well as the cen-

ter Z = Z′ := A of two Desargues configurations. We
define the axis a as the connection of the two points
[A,C′]∩ [A′,C] and [B,C′]∩ [B′,C]. Thus, these points co-
incide respectively with S1 = T ′1 and S3 = S′3. Moreover
holds S2 = S′2, T2 = T ′2 and T3 = T ′3 per definition. Now we
can state: If the switch S1↔ T1 preserves a sextuple of be-
ing Desarguesian, then follows S′1 = T1, which means that
also the point [A,B′]∩ [A′,B] lies on the axis a. This con-
firms the validity of Pappus’s theorem for the given points
A, . . . ,C′. �

According to Theorem 1, only in Pappian planes all De-
sarguesian sextuples (S1, . . . ,T3) remain Desarguesian if
we commute the points in one pair (Si,Ti). Note that by
Lemma 2 a simultaneous switch in two pairs is already
possible in Desarguesian planes. The corollary below ad-
dresses the simultaneous switch in all three pairs. The
respective statement can already be found in [16, p. 140,
no. 5].

Corollary 1 A Desarguesian projective plane is Pap-
pian if and only if each Desarguesian sextuple
(S1,S2,S3,T1,T2,T3) remains Desarguesian after exchang-
ing Si with Ti for all i = 1,2,3.

Proof. We apply at first Lemma 3 and replace (S1, . . . ,T3)
by (S1,T2,T3,T1,S2,S3). Then the claim (note Fig. 4) fol-
lows directly from Theorem 1. �

Another characterization of Pappian planes among the De-
sarguesian projective planes can, e.g., be found in [3].
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Figure 4: Illustrating the statement of Corollary 1.

3 Permutations in Desarguesian and in
Pappian projective planes

The goal of this section is to determine for a given De-
sarguesian sextuple all permutations which are admissible,
i.e., which preserve the property of being Desarguesian.

3.1 Non-Pappian case

Theorem 2 If in a Desarguesian projective plane the sex-
tuple (S1, . . . ,T3) is Desarguesian, then there exist at least
24 admissible permutations. In Pappian projective planes
there exist at least 48 admissible permutations.

Proof. In Desarguesian planes we can combine each per-
mutation of the indices 1,2,3 according to Lemm 2 with
each of the permutations mentioned in Lemma 3 or with
the identity.
In Pappian planes we proceed in the following way: The
first three points in the sextuple define the last three since
the sequence of subscripts is the same but the symbols S
and T are exchanged. There are six possibilities for the se-
quence of indices. By virtue of Theorem 1 follows that for
each symbol in the first triple we have the choice between S
and T . This results in 6 ·23 = 48 admissible permutations.
In non-Pappian planes only those permutations are admis-
sible where the first triple contains either no or exactly two
T -points. �

3.2 Three instructive examples

As demonstrated in the following examples, under special
conditions the number of admissible permutations can be
higher than those mentioned in Theorem 2. These exam-
ples will be of fundamental importance for the proof of
Theorem 3.

Example 1 Let (S1, . . . ,T3) be a Desarguesian sextuple in
a Pappian Fano-plane where S3 and T2 are harmonic with

respect to (w.r.t., for short) S1 and T1. What are the conse-
quences?
The Desarguesian involution ι1 : Si 7→ Ti for i = 1,2,3
transforms the harmonic quadruple (S1T1,S3T2) into
(T1S1,T3S2). This means that the pairs (S2,T3) and (S3,T2)
are corresponding under the involution ι2 with the fixed
points S1 and T1. The product ι2 ◦ ι1 commutes the points
in the pairs (S1,T1), (S2,S3), and (T2,T3). Therefore,
ι3 := ι2 ◦ ι1 = ι1 ◦ ι2 is again an involution and shows that
the sextuple (S1,S2,T2,T1,S3,T3) is again Desarguesian as
well as (S′1, . . . ,T

′
3) = (S1,T2,S3,T1,T3,S2) (Fig. 5). These

permutations are different from the 48 as mentioned in
Theorem 2, since the resulting sextuples contain a pair with
two S-points.
By exchanging the elements in the first pair or in the sec-
ond pair, as well as by exchanging the subscripts 2 and 3,
we obtain eight additional admissible permutations. On the
other hand, the given harmonic position allows a simulta-
neous change S2↔ T3 and S3↔ T2. Thus, we end up with
16 additional admissible permutations, where (S1,T1) or
(T1,S1) remains as the first pair:

(S1,S2,T2,T1,S3,T3), (S1,S3,T3,T1,S2,T2), (T1,S2,T2,S1,S3,T3),
(T1,S3,T3,S1,S2,T2), (S1,S3,T2,T1,S2,T3), (S1,S2,T3,T1,S3,T2),
(T1,S3,T2,S1,S2,T3), (T1,S2,T3,S1,S3,T2), (S1,T3,S3,T1,T2,S2),
(S1,T2,S2,T1,T3,S3), (T1,T3,S3,S1,T2,S2), (T1,T2,S2,S1,T3,S3),
(S1,T2,S3,T1,T3,S2), (S1,T3,S2,T1,T2,S3), (T1,T2,S3,S1,T3,S2),
(T1,T3,S2,S1,T2,S3).
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Z Z′=Z′′

T1T2 T3 S1S2 S3

Figure 5: A Desarguesian sextuple according to Ex-
ample ?? with (S′1, . . . ,T

′
3) = (S1,T2,S3,T1,T3,S2) and

the harmonic quadruples (S1T1,S2T3) and (S1T1,S3T2)
(Type Ib in Theorem ??). After exchanging T ′

2 and T ′
3 , we

obtain a Desarguesian sextuple according to Example ??
with (S′′1 , . . . ,T

′′
3 ) = (S′1,S

′
2,S

′
3,T

′
1 ,T

′
3 ,T

′
2) (Type Ia).

Fig. 5, hyppar13_Canalfl,105mm
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Figure 5: A Desarguesian sextuple according to Exam-
ple 1 with (S′1, . . . ,T

′
3) = (S1,T2,S3,T1,T3,S2) and the har-

monic quadruples (S1T1,S2T3) and (S1T1,S3T2) (Type Ib
in Theorem 3). After exchanging T ′2 and T ′3 , we ob-
tain a Desarguesian sextuple according to Example 2 with
(S′′1 , . . . ,T

′′
3 ) = (S′1,S

′
2,S
′
3,T

′
1 ,T

′
3 ,T

′
2) (Type Ia).

Example 2 Suppose that with the Desarguesian sextuple
(S1, . . . ,T3) also (S1,S2,S3,T1,T3,T2) is Desarguesian.
Then in a Pappian Fano-plane there are two involutions, the
involution ι1 with Si ↔ Ti and ι2 with S1 ↔ T1, S2 ↔ T3,
and S3 ↔ T2. The product of these involutions sends, in-
dependent of the order, S1 7→ S1, S2 ↔ S3, T1 7→ T1, and
T2↔ T3. Therefore this product is the involution ι3 which
keeps the points S1 and T1 fixed. Consequently, the pairs
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(S2,S3) and (T2,T3) are in harmonic position w.r.t. (S1,T1)
(note (S′1, . . . ,T

′
3) and (S′′1 , . . . ,T

′′
3 ) in Fig. 5). This is suffi-

cient, because ι2 is the product of ι1 and ι3.
We have again three mutually commuting involutions like
in Example 1. Indeed, we obtain the harmonic quadruples
here from those in the Example 1 by exchanging the points
S2 and T2. This can also be used to transfer the 16 addi-
tional admissible permutations from Example 1 to those of
Example 2.

Example 3 Can it happen that with (S1, . . . ,T3) also
(S1,S2,S3,T3,T1,T2)

2 is Desarguesian?
If both sextuples are Desarguesian, then there are two in-
volutions involved, ι1 : Si↔ Ti and ι2 : S1↔ T3, S2↔ T1,
S3↔ T2. The product ι1 ◦ ι2 with Si 7→ Si−1 and Tj 7→ Tj+1
(subscripts modulo 3) is a cyclic projectivity with (ι1 ◦
ι2)

3 = id and ι2 ◦ ι1 = (ι1 ◦ ι2)
−1. On the other hand, there

is a third involution involved: ι3 := ι1 ◦ ι2 ◦ ι1 = ι2 ◦ ι1 ◦ ι2
with S1↔ T2, S2↔ T3, S3↔ T1 satisfies ι2

3 =(ι1◦ι2)
3 = id.

These three involutions are symmetric in the sense that for
each permutation (i, j,k) of (1,2,3) the transformation of
ιi by ι j equals ιk, i.e., ιk = ι j ◦ ιi ◦ ι j.
Necessary and sufficient for such Desarguesian sextuples

in a Pappian Fano-plane is, for example, that the cross ra-
tios cr(S1S2S3T1) and cr(S3S1S2T2) are equal3 (see Fig. 7).
The necessity follows from the projectivity ι1 ◦ ι2. Con-
versely, in the case of equal cross ratios there exists the
projectivity π : Si 7→ Si−1, T1 7→ T2. If ι1 : Si↔ Ti is an in-
volution, then ι1 ◦π maps S1 7→ T3, S2 7→ T1, S3 7→ T2, and
T1 7→ S2. Therefore ι1 ◦π is an involution and equal to ι2
which guarantees the requested Desarguesian sextuple.
Due to ι3 = ι1 ◦ ι2 ◦ ι1, also (S1,S2,S3,T2,T3,T1) is Desar-

guesian (Fig. 7). By virtue of Lemma 2 and Theorem 1,
there exist at least 96 additional admissible permutations.

T1

T2

T3

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1

S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3 I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1

I2

I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3I3
T1T1T1T1T1T1T1T1T1T1T1T1T1T1T1T1T1

T2

T3

S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1

S2

S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3S3

I1 I2 I3

Figure 6: Suppose that the axis a as carrier of the De-
sarguesian sextuple (S1, . . . ,T3) is stereographically pro-
jected on a conic. Then the points I1, I2, I3 are the respec-
tive centers of the involutions ι1, ι2, ι3 as used in Exam-
ple 1 (left, Type Ib) and in Example 3 (right, Type IIa).

Fig. 6, hyppar13_Canalfl,105mm

6

Figure 6: Suppose that the axis a as carrier of the Desar-
guesian sextuple (S1, . . . ,T3) is stereographically projected
on a conic. Then the points I1, I2, I3 are the respective cen-
ters of the involutions ι1, ι2, ι3 as used in Example 1 (left,
Type Ib) and in Example 3 (right, Type IIa).

At the examples above, the involutions ι1, ι2 and ι3 act
on the points S1, . . . ,T3 of the axis a. If the involutions
are shown in an isomorphic model on a conic, then each
involution ι j is represented by a center of involution I j,
the common point of the chords connecting corresponding
points (see, e.g., [7, p. 251]). Figure 6 shows the involved
centers I1, I2, I3 in the Examples 1 and 2 on the left and that
of Example 3 on the right.

3.3 Conditional cases in Pappian planes

Theorem 3 Given a Pappian Fano-plane, then for each
permutation of six elements there exist Desarguesian sex-
tuples which remain Desarguesian under the permutation.
Beside the 48 admissible permutations of the Desargue-
sian sextuple (S1, . . . ,T3) according to Theorem 2 we dis-
tinguish two types of permutations which are admissible
under special conditions.
Type I, the permutation fixes one unordered pair of the
given Desarguesian sextuple (S1, . . . ,T3): Then, in the per-
muted sextuple the remaining pairs are either (a) of the
form (Si,Tj) in any order, or (b) they contain a pair (Si,S j).
After appropriate relabeling this yields either
Type Ia: (S1,S2,S3,T1,T3,T2) (note Example 2) or
Type Ib: (S1,T2,S3,T1,T3,S2) (Example 1, Fig. 6).
Referring to the first case Ia, (S1,S2,S3,T1,T3,T2) is De-
sarguesian if and only if (S1,T1) separates the pairs
(S2,S3) and (T2,T3) harmonically. On the other hand,
the sextuple Ib (S1,T2,S3,T1,T3,S2) is Desarguesian if and
only if (S1,T1) separates (S2,T3) and (S3,T2) harmoni-
cally. The latter sextuple can be converted into the first
one by exchanging S2 with T2.
Type II, no unordered pair of the given Desarguesian sex-
tuple (S1, . . . ,T3) remains fixed under the permutation:
Then, in the permuted sextuple the pairs are either (a) of
the form (Si,Tj), or (b) they contain a pair (Si,S j). There
is a numbering such that we obtain either
Type IIa: (S1,S2,S3,T3,T1,T2) (Example 3) or
Type IIb: (S1,T2,S3,T3,T1,S2).
Necessary and sufficient for the first sextuple IIa be-
ing Desarguesian is that there are equal cross ratios
cr(S1S2S3T1) = cr(S3S1S2T2). In the second case IIb the
permutation is admissible if and only if cr(S1T2S3T1) =
cr(S3S1T2S2). Again, the second sextuple arises from the
first one by exchanging S2 with T2.

Proof. Due to Lemma 1 and Theorem 1, in Pappian planes
the Desarguesian sextuples remain Desarguesian if the or-
der of the included pairs or the order in the pairs changes.
For each permutation of the six points (S1, . . . ,T3) which
keeps one pair fixed we can assume that this pair is (S1,T1).

2Note that here the permutation (3,1,2) of the subscripts at the T -points is even. In comparison, the permutation (1,3,2) in Example 2 is odd.
3This condition is not unique. It is easy to find other point quadruples with the property that the equality of their cross ratios guarantees that the

requested permutation is admissible.
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Figure 7: Particular case according to Example ??
with (S′1, . . . ,T

′
3) = (S1,S2,S3,T3,T1,T2) (Type IIa) and

(S′′1 , . . . ,T
′′

3 ) = (S1,S2,S3,T2,T3,T1) where S1 is a point at
infinity. The depicted sextuple (S1, . . . ,T3) satisfies also
the conditions for Type Ia from Theorem ??, for example
with the triangle P′

2P′
1P2.

Fig. 7,
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Figure 7: Particular case according to Example 3
with (S′1, . . . ,T

′
3) = (S1,S2,S3,T3,T1,T2) (Type IIa) and

(S′′1 , . . . ,T
′′

3 ) = (S1,S2,S3,T2,T3,T1) where S1 is a point at
infinity. The depicted sextuple (S1, . . . ,T3) satisfies also the
conditions for Type Ia from Theorem 3, for example with
the triangle P′2P′1P2.

If the other pairs in the permuted sextuple are of the form
(Si,Tj) with i 6= j (Type Ia), then they can be assumed
as (S2,T3) and (S3,T2). The sextuple (S1,S2,S3,T1,T3,T2)
was analyzed in Example 2 under the condition that the
Fano axiom holds. If one pair in the permuted sextuple
is of the form (Si,S j) (Type Ib), then there is a particular
numbering which yields (S1,T2,S3,T1,T3,S2) as treated in
Example 1.
The permutations of Type II are characterized by the condi-
tion that no unordered pair (Si,Ti) is preserved. In the case
(a) all pairs are supposed to be of the form (Si,Tj) with
i 6= j. Then there is a particular numbering such that the
permuted sextuple is (S1,S2,S3,T3,T1,T2) as analyzed in
Example 3. If the permuted sextuple contains a pair of two
S-points, then it contains also a pair of two T -points and a
mixed pair (Type IIb). Hence, we can assume a numbering
such that the permuted sextuple is (S1,T2,S3,T3,T1,S2),
which arises from Type IIa by exchanging S2 and T2. �

Remark 2 A count in Pappian Fano-planes reveals: For
sextuples of Type I there exist at least 64 additional admis-
sible permutations. Sextuples of Type II have at least 144
additional admissible permutations.
Beside the 48 admissible permutations for generic Desar-
guesian sextuples, there exist 144 admissible permutations
for Desarguesian sextuples which satisfy the harmonic po-
sitions of the Type Ia and as many for the Type Ib. There
are 96 permutations corresponding to Desarguesian sextu-
ples of Type IIa and 288 of Type IIb.

The sextuple depicted in Fig. 7 satisfies simultaneously
the conditions for Type IIa (Example 3) and Ia (Exam-
ple 2). This means that cr(S1S2S3T1) = cr(S3S1S2T2) and
(S1T1,S2S3) as well as (S1T1,T2T3) are harmonic quadru-
ples.
For sextuples which are simultaneously of the Types IIa
and Ib, the cross ratio δ := cr(S1S2S3T1) = cr(S3S1S2T2)
has to satisfy cr(S1T1S3T2) = −1, hence cr(S1S3T1T2) =

2 and cr(S1S3S2T1) = 1 − δ, and as the product
cr(S1S3S2T2) = 2(1−δ) = 1

δ . This results in the quadratic
condition 2δ2− 2δ+ 1 = 0 which has no solution in the
real projective plane.
Since exchanging S2 and T2 means a switch between the
Types Ia and Ib as well as between IIa and IIb, Fig. 7
can easily be converted into an example which satisfies the
conditions of the Types Ib and IIb. On the other hand, no
real sextuple can simultaneously satisfy the conditions of
the Types Ia and IIb.

4 Analytic characterizations of Desargue-
sian sextuples

4.1 Non-Pappian plane

In Desarguesian projective coordinate planes the points X
are one-dimensional subspaces xF of a three-dimensional
right vector space over a (not necessarily commutative)
field F. The question arises what replaces the Desargue-
sian involution in non-Pappian planes?

Theorem 4 The sextuple (s1F, . . . , t3F) of mutually differ-
ent points in a Desarguesian projective plane is Desargue-
sian if and only if there is a representation which satisfies
s1 + s2 + s3 = 0 and

t1 = s2λ3− s3λ2, t2 = s3λ1− s1λ3, t3 = s1λ2− s2λ1 (1)

for some λ1,λ2,λ2 ∈ F\{0}.

Proof. (i) We begin with an analytic standard proof of
Desargues’s theorem: If the triangles p1Fp2Fp3F and
q1Fq2Fq3F are perspective w.r.t. the point zF, then we
can assume

p1 +q1 = p2 +q2 = p3 +q3 = z.

Hence, the intersection points between corresponding
sides have coordinate vectors

s1 = p2−p3 = q3−q2, s2 = p3−p1 = q1−q3,
s3 = p1−p2 = q2−q1.

They satisfy s1 + s2 + s3 = 0, which expresses their
collinearity.
The three vectors (p1,p2,p3) form a basis of our vector
space. Hence, there are scalars λ1,λ2,λ3 ∈ F such that

z = p1λ1 +p2λ2 +p3λ3.

Since zFp1Fp2Fp3F is supposed to form a quadrangle, we
have λ1λ2λ3 6= 0. This representation of z implies for the
intersection point t1F between the lines [Z,P1] and [S2,S3]
a solution

t1 = s2λ3− s3λ2,
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since t1 is a linear combination of s2 and s3, and on the
other hand

t1 = z−p1(λ1 +λ2 +λ3)
= (p2−p1)λ2 +(p3−p1)λ3 = s2λ3− s3λ2.

(ii) For proving the converse, we follow the computa-
tion in the reverse order: Let the vectors s1, . . . , t3 with
s1 + s2 + s3 = 0 be given according to (1). We specify any
point p1F outside the line [S2,S3] and define p2 := p1− s3
and p3 := s2+p1. This implies p2−p3 =−s3−s2 = s1 and
defines a triangle p1F p2F p3F with sides passing through
the respective points siF for i = 1,2,3. We can verify that
the point zF with z := p1λ1+p2λ2+p3λ3 lies aligned with
tiF and piF for each i, thus confirming that the sextuple
(s1F, . . . , t3F) is Desarguesian. �

4.2 Pappian plane

In Pappian planes the underlying field F is commutative.
Then, in the representations (1) of the three vectors t1, t2
and t3 as linear combinations of respectively two s-vectors,
the product λ3λ1λ2 of the coefficients of the first terms
equals the negative product of those of the second terms.
This can be generalized.

Lemma 4 In a Pappian projective plane, let (s1F, . . . , t3F)
be a sextuple of mutually different collinear points. Then
this sextuple is Desarguesian if and only if for the repre-
sentation

t1 = s2µ12 + s3µ13, t2 = s3µ23 + s1µ21,
t3 = s1µ31 + s2µ32

(2)

holds

µ12µ23µ31 =−µ13µ21µ32. (3)

Proof. The equality (3) of the products of coefficients re-
mains valid when the vectors si or t j are replaced by mul-
tiples s∗i := siαi or t∗j := t jβ j with αi,β j ∈ F\{0}. Hence,
it means no restriction to assume a representation with
s1+ s2+ s3 = 0. Then, the representation (1) in Theorem 4
implies the equation (3) for Desarguesian sextuples. Since
the six points are supposed to be mutually different, the
products in (3) cannot vanish.
Conversely, we replace in (2) t2 by t∗2 :=−t2µ−1

21 µ12 and t3

by t∗3 :=−t3µ−1
31 µ13 while t∗1 := t1. Moreover, let µ∗i j denote

the coefficients in the representations of t∗1, t∗2 and t∗3 ana-
logue to (2). Then holds µ∗21 + µ∗12 = µ∗31 + µ∗13 = 0 and
therefore, as a consequence of µ∗12µ∗23µ∗31 = −µ∗13µ∗21µ∗32,
also µ∗32 +µ∗23 = 0. Thus, the representation of the t∗i satis-
fies the conditions in (1), and Theorem 4 confirms that the
sextuple is Desarguesian. �

How can Desarguesian sextuples be characterized in terms
of coordinates on the axis a? For this purpose we introduce
homogeneous coordinates on a in the form ti := (τi0,τi1)

T

and s j := (σ j0,σ j1)
T . Note that from now on ti and s j

stand for two-dimensional vectors over F. In order to ob-
tain a representation ti = s jµi j + skµik for all cyclic permu-
tations (i, j,k) of (1,2,3), we use Cramer’s rule and solve
the system

µi j

(
σ j0
σ j1

)
+µik

(
σk0
σk1

)
=

(
τi0
τi1

)
by

µi j =
det(ti sk)

det(s j sk)
, µik =

det(s j ti)

det(s j sk)
.

From (3) follows the characterization

det(t1 s2) det(t2 s3) det(t3 s1)
= det(t1 s3) det(t2 s1) det(t3 s2).

(4)

For the sake of simplicity, let us assume that neither any τi1
nor any σ j1 vanishes. Then we can use inhomogeneous co-
ordinates ti = τi0/τi1 for Ti and s j := σ j0/σ j1 for S j so that
det(ti s j) = ti− s j. Thus we can rewrite (4) as a product of
affine ratios

ar(S2,S3,T1) · ar(S3,S1,T2) · ar(S1,S2,T3) = 1, (5)

where ar(Si,S j,Tk) = (si − tk)/(s j − tk). The equation
(5) reminds on Menelaos’s theorem characterizing the
collinearity of three points T1,T2,T3 on the respective side
lines of the triangle S1S2S3.
Finally, equation (5) is equivalent to4

(s1 + t1)(s2t2− s3t3)+(s2 + t2)(s3t3− s1t1)
+(s3 + t3)(s1t1− s2t2) = 0. (6)

By the way, in (5) we may exchange Si with Ti for some
i ∈ {1,2,3}. This yields three other equivalent equations

ar(S2,S3,S1) · ar(S3,T1,T2) · ar(T1,S2,T3)
= ar(T2,S3,T1) · ar(S3,S1,S2) · ar(S1,T2,T3)
= ar(S2,T3,T1) · ar(T3,S1,T2) · ar(S1,S2,S3) = 1.

If the underlying plane is a Fano-plane, then the existence
of an involution with Si 7→ Ti for i = 1,2,3 and a corre-
sponding nontrivial symmetric bilinear form are equivalent
to the condition

det

 1 s1 + t1 s1t1
1 s2 + t2 s2t2
1 s3 + t3 s3t3

= 0. (7)

At the same token, the characterizations in (4), (5) or (6)
could also be used to deduce the particular cases with ad-
ditional admissible permutations as listed in Theorem 3.

4Desarguesian sextuples are a refinement of quadrangular sets (note Remark 1) due to the distinction between S- and T -points. By virtue of Theorem 1,
this distinction becomes obsolete in Pappian planes. Therefore the equations (4), (5) and (6) can already be found in the literature as characterizations of
quadrangular sets in Pappian Fano-planes, e.g., in [17, Sect. 8]. However, our approach is different.
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