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ABSTRACT

The elementary geometric Miquel theorem concerns a tri-
angle 4ABC and points R, S, T on its sides, and it states
that the circles k(ART ), k(BRS), k(CST ) have a common
point M, the Miquel point to these givens. Choosing R, S,
T in special ways one receives the so-called beermat theo-
rem, the Brocard theorems, and the Steiner Simson-Wallace
theorem as special cases of Miquel’s theorem. Hereby facts
connected with Brocard’s theorem follow from properties
of Miquel’s theorem. If e.g. R, S, T fulfill the Ceva condi-
tion, Miquel’s construction induces a mapping of the Ceva
point to the Miquel point. We discuss this and other map-
pings, which are natural consequences of Miquel’s theorem.
Furthermore, if the points R, S, T run through the sides
of 4 such that e.g. the affine ratios ar(ARB), ar(BSC),
ar(CTA) are equal, then the corresponding Miquel points
M run through the circumcircle of the triangle formed by
the Brocard points and the circumcenter of 4. Besides
these three remarkable points of 4, this circle contains
several other triangle centers. Even though most of the
presented topics are well-known, their mutual connections
seem to be not yet considered in standard references on
triangle geometry and therefore might justify an additional
treatment.

Key words: Miquel’s theorem, Brocard’s theorems, theo-
rems of Steiner and Simson-Wallace
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Miquelov teorem i njegovi elementarnogeometrij-
ski srodnici

SAŽETAK

Elementarnogeometrijski Miquelov teorem odnosi se na
trokut 4ABC i točke R, S, T na njegovim stranicama,
i kaže da kružnice k(ART ), k(BRS), k(CST ) imaju jednu
zajedničku točku M, Miquelovu točku zadane figure. Poseb-
nim odabirom točaka R, S, T dobivaju se takozvani beermat
teorem, Brocardovi teoremi i Steinerov Simson-Wallaceov teo-
rem kao specijalni slučajevi Miquelovog teorema. Stoga,
činjenice vezane za Brocardov teorem slijede iz svojstava
Miquelovog teorema. Ako npr. R, S, T zadavoljavaju Cevin
uvjet, Miquelova konstrucija inducira preslikavanje Cevine
točke u Miquelovu točku. Proučavamo ovo i druga pre-
slikavanja koja su direktna posljedica Miquelovog teorem.
Nadalje, kreću li se točke R, S, T stranicama trokuta tako
da su npr. afini omjeri ar(ARB), ar(BSC), ar(CTA) jednaki,
Miquelove točke M opisuju kružnicu opisanu trokutu čiji su
vrhovi dvije Brocardove točke i sredǐste opisane kružnice
trokuta. Osim spomenutih triju posebnih točaka trokuta,
na ovoj kružnici leži još nekoliko osobitih točaka trokuta.
Iako je većina predstavljenih tema dobro poznata, čini se da
njihove me�usobne veze još nisu razmatrane u standardnoj
literaturi iz geometrije trokuta i stoga bi mogle opravdati
dodatnu obradu.

Ključne riječi: Miquelov teorem, Brocardovi teoremi,
Steinerovi Simson-Wallaceovi teoremi

1 Introduction

In 1838 Auguste Miquel (1816-1851) published a theorem
(see [10]), which later on was called after him and got the
meaning of an important axiom in circle geometries, see
e.g. [2]. (In [11] it is mentioned, that this remarkable in-
cidence was known already since 1804.) The elementary
geometric version of Miquel’s theorem concerns a triangle
4ABC and an inscribed triangle 4RST , and it states that

the circles k(ART ), k(BRS), k(CST ) have a common point
M, the Miquel point to these givens, see Fig. 1. For M there
exists a two-parametric set of possibilities, such that there is
a one-parameter family of triplets R, S, T to a given point M.
The consequences of this fact are properties of the Miquel
configuration and Miquel mappings, which seemingly are
not yet considered. This will be treated in Chapter 2.
Obviously, when choosing R, S, T dependent (e.g. collinear
or infinitesimally close to the vertices A, B, C), the cor-
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responding Miquel point M will get special meanings and
connect Miquel’s theorem to e.g. that of Steiner and Simson-
Wallace resp. to Brocard’s theorems. The well-known beer-
mat theorem and it’s reverse, the three circle theorem, is a
relative of Miquel’s theorem, too. We dedicate Chapter 3 to
these rather well-known 2-dimensional cases.

Figure 1: Elementary geometric version of Miquel’s theo-
rem

If the points R, S, T run through the sides of 4 such that
e.g. the affine ratios ar(ARB), ar(BSC), ar(CTA) are equal,
then the corresponding Miquel points M run through the
circumcircle of the triangle formed by the Brocard points
and the circumcenter of4. Besides these three remarkable
points of4, this circle contains several other triangle cen-
ters. This will be the content of Chapter 4. Here, we refrain
from presenting further generalizations, as, for example, us-
ing congruent point series on the sides of4 or cross ratios
instead of the affine ratios. This will be treated at another
occasion.

Finally, it is well-known that the theorem of Miquel holds in
classical circle geometries, but it also holds in affine normed
planes, while it is not true in an elliptic or hyperbolic plane.
We show some examples in Chapter 5.

2 Properties of elementary geometric
Miquel figures

2.1 Miquel stars to a given triangle

To an arbitrarily chosen point M, we construct the feet R,
S, T on the sides of 4ABC. The Miquel circles k(ART ),
k(BRS), k(CST ) then are the Thales circles over segments
[MA], [MB], [MC], and M is indeed their common intersec-
tion. Therewith, as the lines RM, SM, T M are parallel to
the altitudes of4ABC, they include angles ∠RMT = π−α,
∠RMS = π− β, ∠SMT = π− γ, see Fig. 2. Choosing
another point R′ ∈ AB leads to Miquel circles k(AR′M),
k(BR′M), which intersect BC in S′ and CA in T ′, see Fig. 2.

Figure 2: The triples (R,S,T ), (R′,S′,T ′), belonging to a
fixed Miquel point M define congruent Miquel stars.

For quadrangles inscribed into these circles, opposite an-
gles must sum up to π, and therefore ^RMR′ = ^SMS′ =
^T MT ′. In the following we use

Definition 1 Let M be the Miquel point of a triangle4ABC
to R′, S′, T ′. The triplet of half-lines (MR′,MS′,MT ′) is
called the Miquel star associated with the point M.

For Miquel stars the following holds

Theorem 1 If R′ runs through AB, the Miquel star rotates
about M with angle ε. The Miquel stars to different Miquel
points are congruent, i.e. the angles enclosed by any pair
of half-lines are equal.

The content of Theorem 1 relates to generalizations of Wal-
lace’s theorem, see [11]. The vertex triplets R′, S′, T ′,
belonging to a given Miquel-point M, form triangles, the
sides of which envelop three parabolas with common fo-
cus M. (This follows from the projectivity between e.g.
R′ ∈ AB 7→ S′ ∈ BC.) The trilateral of vertex-tangents of the
parabolas has the pedal points R, S, T of M for its vertices,
and the directrices pass through the reflection images R′′,
S′′, T ′′ of M in the sides of 4ABC, see Fig. 3. Therewith
follows

Theorem 2 Let M be given and let R′ run through AB.
Then the sides of 4R′S′T ′ envelop three parabolas with
common focus M. Their common chords form a complete
quadrangle consisting of the incenter I and the excenters of
4R′′S′′T ′′. (R′′, S′′, T ′′ are the images of reflections of M in
the sides of4ABC, and4R′′S′′T ′′ consists of the directrix
lines of the above mentioned parabolas.)
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Figure 3: The sides of 4R′S′T ′ envelop three parabolas
with common focus M. Their common cords form a com-
plete quadrangle.

2.2 A first Miquel mapping

The chords through the real intersection points of pairs of
parabolas turn out to be the interior angle bisectors of trian-
gle R′′S′′T ′′. Therefore, the common intersection point I of
the three cords is the incenter of R′′S′′T ′′. As two parabolas
intersect (in algebraic sense) in 4 points, there must exist,
for our three parabolas, a complete quadrangle formed by
six chords, see Fig. 3. It is near laying that the outer chords
then must be the second angle bisectors of R′′S′′T ′′ and
deliver the excenters. It makes sense to define a first Miquel
mapping:

Definition 2 Given a triangle 4ABC and an arbitrarily
given point M. Reflecting M in the sides of4ABC delivers
a triangle R′′S′′T ′′ =:4′′. The first Miquel mapping µ1 to
4ABC maps the point M to the incenter I of the reflection
triangle4′′ of M.

Remark 1 When we choose R, T , S as (collinear) ideal
points, then the three degenerate Miquel circles consist of
a side of 4ABC together with the ideal line. The ideal
line is therefore a common one-dimensional component
and a Miquel point M is not defined. But when we choose
an ideal point as Miquel point, points R′′, S′′, T ′′ are con-
structible, as reflections, extended to ideal points, act as
harmonic homologies. Incenter and excenters to this de-
generate ideal triangle 4′′ are not defined. The triangle
4′′ collapses, too, if M is a point of the circumcircle c of
4ABC. Let M ∈ c\{A,B,C}, then R′′ 6= S′′ 6= T ′′ 6= R′′ are

collinear and define a segment bounded by two of the points
R′′,S′′,T ′′, while the third, inner point, can act as limit of
the incenter I of 4′′. (The limits of the excenters Ei are
the other two vertices plus the ideal point of the direction
orthogonal to line R′′S′′. Therefore, the exceptional set for
the first Miquel mapping µ1 consist of {A,B,C} alone.

Without calculation, by arguments of elementary geometry
and chains of projectivities, we find that

- the orthocenter O and the vertices A, B, C are fixed
points of the first Miquel mapping µ1,

- a point M at the circumcircle c of 4 is mapped to
a point I on one of the circular arcs (AOB), (BOC),
(COA) of circles congruent to c, (obviously, the trian-
gles4′′ then collapse to lines through O), see Fig. 4,

- if M traverses through a side of4, e.g. through AC,
then I runs along conic arcs through A and C, see
Fig. 5a. Here I and one excenter Ei swap their mean-
ing for inner resp. outer points M of the segment
[A,C]. The pairs (I,E1), (E2,E3) run through two
conics.

Figure 4: The first Miquel-mapping µ1 maps a point M on
the circumcircle c to a point I on one of the circular arcs
AOB, BOC, COA of circles congruent to c. The “excenters”
trace the remaining arcs of these circles plus the ideal line.
The orthocenter O and A, B, C are mapped to themselves.
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Figure 5a: If M runs through a side of4ABC, e.g. through
AC, then the incenters and excenters of4′′ run through a
pair of conics through A and C. The line R′′S′′ envelops
a parabola p with focus B and touching the altitudes of
4ABC through A, C.

The following figures Fig. 5b and Fig. 5c show general
cases of the mapping µ1. It seems that, when M traces a
line I, the orbits of I and Ei are parts of one algebraic curve.

Figure 5b: If M runs through a line l through A, then I and
Ei to 4′′ run in pairs through two parts of an algebraic
curve.

Figure 5c: If M runs through a line l not passing through
a vertex of 4ABC, then I and Ei trace four distinct parts
of an algebraic curve, such that the mapping µ1 : M 7→ I is
independent of Ei. In the presented case, I traces even a
closed curve.

For an analytic description of µ1 it seems adequate to con-
nect a Cartesian frame with the triangle4ABC with origine
A and unit point B on the x-axis. Thus, 4ABC as also
4AMB can be described by the angles α and β (fixed) resp.
ξ and η (variable), see Fig. 6. With these angles the side
lengths a, b are

a =
sinα

sin(α+β)
, b =

sinβ

sin(α+β)
, c = 1 (1)

|AM|= sinη

sin(ξ+η)
,

|BM|= sinξ

sin(ξ+η)
,

|CM|= sin(α−η)sinβ

sin(ξ+η)sin^AMC
, (2)

(cot^AMC = sinαsin(β−η)+cos(ξ+η)sinβsin(α−ξ)
sinβsin(α−ξ)sin(ξ+η)

),

|R′′T ′′|= 2|AM|sinα,

|R′′S′′|= 2|BM|sinβ,

|S′′T ′′|= 2|CM|sin(α+β), (3)

R′′ = |AM|
(

cosξ

−sinξ

)
,

T ′′ = |AM|
(

cos(2α−ξ)
−sin(2α−ξ)

)
,

S′′ = |BM|
(

1− cos(2β−η)
sin(2β−η)

)
. (4)

Figure 6: Labeling used for calculating the analytic repre-
sentation of the first Miquel mapping µ1.

When iterating µ1 : M 7→ I =: M1 7→ I1 =: m2 → ··· , we
might suppose the following

Conjecture: The orthocenter O of4ABC is an attractor of
µn

1, (n→ ∞).
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Remark 2 Obviously, one could extend the first Miquel
mapping to the quadrangle consisting of I and the excen-
ters Ei of4′′. If M traces a line l, then each of the excenters
traces a curve lEi . Thereby, dependent on the line l and
similar as in Fig. 5b, the centers Ei can change their roles.
The combination of these four orbits lEi , lI seems to form a
single algebraic curve.

2.3 Miquel circles and their midpoints

In the following we consider the triangle formed by the cen-
ters of the Miquel circles mA = k(AR′T ′), mB = k(BR′S′),
mC = k(CS′T ′). Independent of the chosen points R′, S′, T ′

we find a property of the centers of mA, mB, mC (see Fig. 2,
Fig. 7, and [16]), which we formulate as

Theorem 3 Given a triangle 4ABC and a triangle
4R′S′T ′ arbitrarily inscribed to it. The centers MA, MB,
MC of the three Miquel circles mA, mB, mC form a triangle
similar to4ABC. The similarity factor is 1/2cosε.

Figure 7: The triangle of the Miquel circle centers is similar
to the given triangle4ABC.

A proof of Theorem 3 can be read from Fig. 2. It follows
that the sides of4MAMBMC enclose a fixed angle with the
sides4ABC. We shall make use of Theorem 3 in the next
chapters.

2.4 A second Miquel mapping

The circumcircle c′ of triangle 4RST intersects the sides
of the initial triangle4ABC in additional points R, S, T see
Fig. 8. This new triangle4RST =:4 gives rise to a new
Miquel point M, such that one can give:

Definition 3 Given a triangle4ABC and arbitrarily cho-
sen non collinear points R, S, T defining the Miquel point
M. Let further R, S, T be the remaining intersections of the
circumcircle c′ of 4RST with the sides of 4ABC, which
define a new Miquel point M, then we define the mapping
µ2 : M 7→M as the second Miquel mapping.

Figure 8: Visualization of the second Miquel mapping
µ2 : M 7→M.

If we consider the contact points R = R, S = S, T = T of
in- and excircles of4ABC then it becomes obvious that the
incenter and the excenters of4ABC are fixed points of the
second Miquel mapping µ2.

We collect some properties of µ2, leaving the elementary
but lengthy calculations to the reader.

A less obvious property, see Fig. 9, shall be formulated as

Theorem 4 Let the triangles 4RST , 4RST , both in-
scribed to4ABC, have the same circumcircle c′. Thtouch-
inge midpoint triangles 4M := 4MAMBMC and 4M :=
4MAMBMC of the therewith defined two triplets of Miquel
circles are directly congruent with rotation center Z2 and
they are similar to the initial triangle4ABC. Furthermore,
the two Miquel points M, M are equidistant to Z2 and the
angle ^MZ2M is twice the rotation angle MA→MA.

Figure 9: The midpoint triangles4M and4M are directly
congruent (rotation center Z2) and similar to the initial
triangle4ABC.
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When we start with a fixed (but arbitrarily chosen) Miquel
point M and consider the one-parameter family of triangles,
(in Fig. 10 represented by4RST ,4R′S′T ′), then we find
the centers of their circumcircles on a line u, although these
circles dot form a pencil. They intersect the sides of4ABC
in an additional family of triangles of type4RST ,4R′S′T ′,
which define a fixed Miquel point M.

Figure 10: To a fixed Miquel point M belongs a set of trian-
gles4RST and, via their circumcircles, a set of triangles
4RST , which again define a fixed Miquel point M, such
that µ2 : M 7→M is involutive.

Remark 3 For points M on the circumcircle c = k(ABC)
the points R, S, T are collinear and their circumcircle de-
generates and splits to the line RS plus the ideal line ω,
which defines the collinear triple R, S. T . Therefore, as the
circumcircles k(ART ), k(BRS), k(CST ) are not defined, c
is an exceptional set of points M.

We can therefore conclude

Theorem 5 The second Miquel mapping µ2 : M 7→ M is
involutoric. The in- and excenters of4ABC are fixed points
of µ2, the circumcenter c of4ABC is an exceptional set of
points M.

3 Special cases of Miquel’s theorem

3.1 The Theorems of Brocard

The French mathematician Henri Brocard (1845-1922)
stated that the three circles passing through a pair of ver-
tices of a triangle4ABC and touching one of its sides have
a common point. Due to the two possible orientations of

4 there are two triples of circles, and therefore two such
points, which are called first and second Brocard point B1,
B2, see e.g. [10]. They have many interesting properties
and give rise to additional concepts, c.f. [7]. There is an
interpretation in the sense of Miquel, if we choose R, S, T
infinitely close to A, B, C. Then the Miquel circles will
touch the sides of 4 at its vertices and become Brocard-
Miquel circles see Fig. 11. The two possible Miquel points
become the first and second Brocard point B1, B2. For these
points, the Miquel stars pass through all three vertices of4.
Fig. 12 shows the situation for one of the Brocard points,
but also for the altitude star.

Figure 11: Brocard-Miquel circles and Brocard points of a
triangle, as limit cases of Miquel points.

Figure 12: The Miquel-star through the three vertices of a
triangle4 to Brocard point B1 and to the orthocenter O.

As the sides of each Miquel star intersect the sides of a trian-
gle at equal angles (see Fig. 2), the theorem concerning the
so-called fixed Brocard-angle follows as a trivial corollary.

As for one limit triangle 4RST its circumcircle c′ coin-
cides with the circumcircle c of 4, we get the triangle
4RST mentioned in Chapter 2.2 as the 2nd limit triangle,
such that the Miquel points B1 and B2 correspond in the
second Miquel mapping µ2. We formulate this as

Theorem 6 The Brocard points B1 and B2 of a triangle
4ABC correspond in the involutive Miquel mapping µ2 of
4ABC.
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We consider now the midpoints of the two triads of Brocard-
Miquel circles bA

i , bB
i , bC

i , (i = 1,2), which intersect in the
Brocard points Bi. As a consequence of Theorem 4 and by
arguments of congruent angles, see Fig. 13 and 14, we can
formulate

Theorem 7 The centers ZX
i , (i = 1,2; X = A,B,C), of the

two triplets of Brocard Miquel circles bX
i form two con-

gruent triangles 41, 42, which are similar to the given
triangle 4ABC. They are in Desargues-position with the
circumcenter U of4 as perspector and the bisector of the
segment [B1,B2] as perspectrix (passing through U). The
centers ZX

i of the 6 Brocard-Miquel circles bX
i lay in pairs

on circles, which are concentric with the circumcircle z of
the isosceles triangle4B1UB2.

The proof of Theorem 7 can be performed by straight for-
ward calculation similar to that of the first and second
Miquel mappings. The similarity statement is a conse-
quence of Theorem 3.

Figure 13: The midpoints of the two triplets of Brocard-
Miquel circles form two congruent triangles of a Desargues
configuration. They are similar to the initial triangle.

Figure 14: The midpoints of the two triads of Brocard-
Miquel circles are in pairs on concentric circles. Their
common center is the center Z of the circumcircle z of
4B1UB2.

Remark 4 It turns out that the similarity factor σ for the
midpoint triangles 4′i =4ZA

i ZB
i ZC

i with respect to 4 be-
comes σ = UB1 : B1B2. Consequently, one could con-
struct the Brocard points for these triangles, and we must
receive Brocard triangles similar to 4B1UB2. Fig. 15
shows the situation for the midpoint triangle 4′i, which
is directly similar to 4. Taking 4ABC =4A0B0C0 and
4B1UB2 =4B0

1U0B0
2 as the initial situation, the next step

delivers B1
1 =U0, B1

2 = B0
2, and we get a chain of similar

triangles with common vertex B0
2 = · · ·= Bn

2. Constructing
the Brocard points for both midpoint triangles at each stage
gives a kind of a fractal structure based on a bifurcation
process.

Figure 15: The midpoint triangles 41, 42 are similar to
the given triangle. The similarity factor σ turns out to be
the ratio UB1 : B1B2.

Figure 16: Vertices C moving along circles of a hyperbolic
pencil of circles, together with fixed vertices A, B, form
triangles with similar triangles4B1UB2.
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Remark 5 As a triangle 4 needs three parameters to be
described, while4B1UB2 is isosceles, there must be a one-
parameter family of triangles to a given triangle4B1UB2.
We formulate the result when keeping the vertices A and B
fixed and C movable such that the corresponding triangles
4B1UB2 are similar, see Fig. 16:

Theorem 8 The vertices C to fixed vertices A, B move
along two circles symmetric to the line AB if we demand
that the corresponding triangles4B1UB2 shall be similar.
The circles c(ϕ) to different angles ϕ = ^B1UB2 belong
to a hyperbolic pencil of circles, the degenerate circles of
which are the two possible vertices C forming equilateral
triangles4ABC over the segment [AB].

We omit the proof, which is straight forward calculation
similar to that for µ1 and µ2. A consequence of Theorem 8
is that 0◦ < ϕ < 60◦. Therefore, only for equilateral trian-
gles4 the triangles41,42 coincide and are congruent to
4.

3.2 The points R, S, T fulfill the Menelaos condition

As a second special case we choose collinear points R, S,
T . In other words, R, S, T fulfill Menelaos’s condition.
Now4RST =:4′ is degenerate and the, in general, three
parabolas (Fig. 3) coincide in a single one with the Miguel
point M as focus, see Fig. 17.

Figure 17: Collinearly chosen points R, S, T lead to the
theorems of Steiner and Simson-Wallace and of Kantor.

J. Steiner interpreted the line RS as the fourth line of a
quadrilateral and stated that the four circumcircles of its
four partial triangles intersect in one point, namely the fo-
cus of the single parabola p touching all four lines. In the
sense of Miquel, all possible Miquel triangles4R′S′T ′ to
M must be degenerate and M is a point of the circumcircle
of 4. The pedal points of M at the sides of 4ABC are

therefore collinear with the vertex tangent of the parabola p,
which means that the theorem of Simson-Wallace (see [4])
becomes an obvious consequence. As the Miquel points are
restricted to the circumcenter of4, i.e. a one-parameter set,
while for the line RS there is a two parameter set of possibil-
ities, there must be a one-parameter set of lines belonging
to the same Miquel point M. Indeed, this set consists of
the tangents of the single parabola mentioned above. Of
course, one again could define a kind of Miquel mapping
µ? : g→M, which now is singular with image img(µ?) = u
and the tangent sets of parabolas as fibers.

Remark 6 It seems worth mentioning a theorem by S. Kan-
tor [9], which states that the centers U, U1, U2, U3 of the
four circumcircles of the partial triangles of a quadrilateral
and their common intersection, (the Miquel point M) are
concyclic. In Fig. 17 the center of this Kantor circle is
labelled by K. Kantor considered the five partial quadrilat-
erals of a five-lateral and states that the centers of the five
Kantor circles are again concyclic, delivering a new center.
K. Hirano [6] considers these new centers of a six-lateral
and found that they again are concyclic. Finally, Ch. J.
Hsu [17] extended these results step by step to n-laterals,
stating that concyclicity prevails in each step. Furthermore,
a connection of Steiner’s and Miquel’s theorems is applied
in [11] to define so-called Steiner-Miquel mappings.

3.3 The points R, S, T fulfill Ceva’s condition

Now, we choose R, S, T such that RC, SA, and T B meet at a
point X , which means that they fulfill the “Ceva condition”.
Even though this case looks somehow dual to the former
case and can be related to it via the triangle polarity to
4ABC, it has quite different properties.

Figure 18a: The 2nd Miquel-mapping µ2 : X 7→ X ′ maps a
line g to a curve g′ of degree 6. If g coincides with a side of
4, then its µ2-locus is the circumcircle u of4ABC.

Now, a mapping of some point X to the Miquel point
M =: X ′ is induced in a natural way which is algebraic
of degree 6. In the following, we give a description of what
shall be called third Miquel-mapping µ3 : X 7→ X ′. It turns
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out that points on the sides of4ABC are mapped to points
of the circumcircle of this triangle4, see Fig. 18a.

In the view of circle geometry, which usually considers
both lines and circles as Möbius circles within a projective
line over complex numbers, and which is modeled as the
Gauss plane π and/or the Riemannian sphere, we present
here a slight modification of this approach: We replace the
Riemannian sphere by a paraboloid of revolution and an
axis normal to the plane of the triangle 4. The standard
stereographic projection of the Riemann sphere becomes
then the orthogonal projection onto what shall be called
Riemann paraboloid Ψ described by the Cartesian equation

Ψ : x2 + y2 = z. (5)

For a convenient calculation, we embed the Euclidean space
into its projective closure and use homogeneous coordinates
(x,y,z) 7→ (x0,x1,x2,x3)R. Let the Euclidean planar coor-
dinate representation of the vertices of triangle 4 and of
the points R, S, T be A := (0,0), B := (1,0), C := (u,v),
R := (r,0), S := (1+(u−1)s,vs), T := (ut,vt).

They are mapped by the inverse stereographic projection
p : π→ Ψ to points Ap, . . . ,T p ∈ Ψ. The representation
in homogeneous coordinates of these image points reads
therefore as

Ap = (1,0,0,0)R
Bp = (1,1,0,1)R,
Cp = (1,u,v,u2 + v2)R
Rp = (1,r,0,r2)R (6)

T p = (1,ut,vt,(u2 + v2)t2)R
Sp = (1,1+u−1s,vs,(1+u−1s)2 + v2s2)R, (u−1 := u−1).

The planes ApRpT p, BpSpRp, CpT pSp represent the three
Miquel circles, and, because of Miquel’s theorem, their
intersection point Mp must be a point of Ψ.

As there is a one-parameter family of triplets R, S, T to a
given Miquel point X ′, we can expect, that at least one of
those triples fulfills Ceva’s condition, such that it is possible
to define the inverse mapping µ−1

2 : X ′→ X in a geometric
way, see Fig. 18b. Starting with an arbitrarily given triple
R′, S′ T ′, we construct a Ceva trilateral with sides AS′, BT ′,
CR′ and its vertices U ′, V ′, W ′. When rotating the Miquel
star (Fig. 2), these vertices trace conics with a common
point X , the Ceva point of X ′.

Figure 18b: Reconstruction of the Ceva point X to a given
Miquel point X ′.

Theorem 9 The Ceva-Miquel mapping µ3 : X 7→ X ′ maps
a Ceva point to a Miquel point. It is invertible and has the
orthocenter of4ABC as fixed point.

4 Orbits of Miquel points for special sets of
Miquel triangles4RST

In the earlier Chapter 3.3, Fig. 15, we considered a special
kind of dependencies of the point triples (R,S,T ) caused
by the fact that the corresponding Ceva points X are bound
to a line g. In this chapter, we shall look for other and
simpler kind of dependencies. As there are too many quite
interesting cases, they shall be treated in a separate paper.
Here, we restrict ourselves to present the case of R, S, T
running through similar point series on the sides of4ABC,
see Fig. 19. This shall mean that the ratios, in cyclic order,
are equal, i.e. ar(ARB) = ar(BSC) = ar(CTA) =: t ∈R. We
formulate

Theorem 10 The Miquel points M to triplets (R,S,T )
at sides of a triangle 4ABC fulfilling the ratio equality
ar(ARB) = ar(BSC) = ar(CTA) =: t ∈ R trace the 1st Bro-
card circle, which is the circumcircle of the triangle formed
by the circumcenter U and the two Brocard points B1, B2
of4.

It turns out that this Brocard circle contains the triangle
centers Xi with the following Kimberling numbers i (see
[10]):
i∈ {3, 6, 1083, 1316, 1670, 1671, 2555, 2556, 2557, 32481,
32482, 5091, 5108, 6232, 6322, 6795, 8429,9129, 11650,
13414, 13415, 13511, 13515, 13516, 14685,18332, 18338,
24279, 35901, 43765, 46407, 46410, 53719, 59781, 59782,
59783, 59784, 59785, 59786, 59787, 59788, 59789, 59790,
59791, 59792, 59793, 59794, 59795, 59796}.
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Figure 19: The set of triplets R, S, T with ar(ARB) =
ar(BSC) = ar(CTA) =: t ∈ R has its Miquel points on the
Brocard circle of4ABC.

In addition we found (see Fig. 20)

Theorem 11 The cases of dependencies of R, S, T , with
ar(ARB) = t ∈ R, and ar(BSC) = fS(t), ar(CTA) = fT (t),
where the linear functions fS(t), fT (t) lead to circles as
loci of Miquel points.

Figure 20: The set of triples R, S, T with ar(ARB) = t,
ar(BSC) = fS(t), ar(CTA) = fT (t), where fS(t), fT (t) are
linear functions, causes the Miquel points to lie on a circle.

5 Miquel’s theorem in circle geometries and
Minkowski planes

5.1

It is near to consider the classical version of the Theorem of
Miquel in the Möbius-Gauss plane and use it as an axiom
for certain ring geometries, see [2]. There is an interpreta-
tion as a (64,83)-configuration of 6 Möbius circles, each
containing four points, and eight Möbius points, each on
three Möbius circles. Via stereographic projection onto

the Riemann sphere, these eight points can be seen as the
vertices of a right prism, e.g., a cube, while its six faces act
as the planes of the circumcircles of face rectangles, see
Fig. 21a.

Similarly, the four (congruent) circles of the so-called beer-
mat theorem (Fig. 21b, left), in some sense also a relative to
Miquel’s configuration, form a (43,43)-configuration and
can be interpreted as an image of a tetrahedron, see Fig. 21b.
The beermat theorem states that, if one marks three points
A, B, C on a circle c and draws congruent circles c1, c2, c3
through any pair of these points, then these three circles
have a common point which turns out to be the orthocenter
of4ABC.

Figure 21a: The (64,83)-configuration of a Miquel figure is
interpreted as vertices and faces of a cube.

Figure 21b: The (43,43)-configuration of a beermat figure
can be interpreted as vertices and faces of a tetrahedron.

Remark 7 If we choose R, S, T as the feet of the altitudes
of4ABC, then the orthocenter O becomes the correspond-
ing Miquel point. We can say that this combines some-
how the beermat configuration with Miquel’s configuration.
In addition to the altitudes r, s, t, which now contain 4
points, also the Thales circles over [AB], [BC] and [CA]
pass through 4 points, see Fig. 22. This gives rise to a
(124,86)-configuration which allows an interpretation as
the 8 vertices of a cube, its 6 faces and 6 diagonal planes.
In Fig. 22 the altitudes r, s, t are mapped to diagonal planes
ρ, σ, τ through the vertex labelled as ∞. This shows that
the standard interpretation of Miquel’s configuration by a
cube can only be a metaphor, as the cube automatically
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has additional planes through four vertices, and this would
mean six additional Möbius circles containing four points
also in the general Miquel figure.

Figure 22: The (124,86)-configuration of the special Miquel
figure with the orthocenter as Miquel point can be inter-
preted as vertices and faces and diagonal planes of a cube.

Steiner’s configuration with its 4 straight Möbius cir-
cles and 4 Miquel-Möbius circles is therefore an (84,84)-
configuration. Here, no proper interpretation of a polyhe-
dron in 3-space with quadrangular faces / diagonal planes
is possible. One could still use a cube and 8 tetrahedra, the
four vertices of which symbolizing concyclic point quadru-
ples, see Fig. 23a.

Figure 23a: The (84,84)-configuration of the Steiner fig-
ure could be interpreted as the 8 vertices of a cube with
8 partial tetrahedra, the vertices of which correspond to
concyclic point quadruples.

Each of the two Brocard figures Fig. 11 show a degenerate
situation, where three points, the vertices of4ABC, count
twice (and lead to parabolic pencils of circles), while two
points are always distinct. In this case we can no longer
speak of a configuration. We get six Möbius circles and five
points, and a 3D-interpretation could be the six planes and
five points of a three-sided double pyramid, see Fig. 23b.

Figure 23b: “Limit situation“ for one of the Brocard figures.
It is no longer a con figuration, it can be interpreted as a
3-sided double-pyramid.

5.2

Affine planes with a norm are called Minkowski planes.
Here, a centrally symmetric and convex curve or polygon
acts as unit circle u with radius of length 1 and all circles
are centric similar or translates to u, see e.g. [1] and [15].
Therewith, the question arises, if there are analogs to the
classical figure of Miquel and its relatives, see e.g. [1] and
[14]. Note that the norm depends on an additionally given
(affine) coordinate frame, see Fig. 24, while the (geometric)
distance measure is already well-defined by u alone.

Figure 24: Miquel figure for a parallelogram as unit cir-
cle u. Dependent on the affine coordinate frame, it allows
an interpretation in a plane with maximum norm or with
Manhattan norm.

For the beermat theorem to remain valid, central symmetry
of u is a sufficient condition. For some triples R, S, T , one
of the three beermats through R, S or S, T or T , R is identi-
cal with the basic beermat u. Fig. 25a and 25b show this for
beermats being regular hexagons, decagons, and pentagons.
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Figure 25a: The beermat theorem is valid in Minkowski planes.

Figure 25b: If the beermats are not centrally symmetric,
the three congruent beermats through R,S,T ∈ have, in
general, no common point, but there exist triplets R, S, T
such that they can have a common point M.

It turns out that there is, in general, no analogon for the
Steiner-Wallace-Simson figure in Minkowski planes with
a unit circle u different from an ellipse. The same is true
also for Brocard’s theorem. To translate a Brocard figure
into a Minkowski plane the unit circle u should be strictly
convex and smooth, such that e.g. the left-orthogonality of
Birkhoff [3] becomes a (1,1)-relation. In general, the three
Brocard-Miquel circles to a given triangle4ABC have no
common point, see Fig. 26a, but there are triangles4ABC
and unit circles u, such that they can be concurrent, see
Fig. 26b.

Figure 26a: A general case for a Brocard figure in a
Minkowski plane with unit circle u. The three Brocard-
Miquel circles have no common point.

Figure 26b: A special case of a Brocard figure, where the
three Brocard-Miquel circles pass through one point M.

5.3

Finally, we shortly point to some classical Cayley-Klein
planes, thus generalizing the Euclidean case in an obvi-
ous direction. As long as we deal with pseudo-Euclidean
and isotropic planes the place of action is a projectively ex-
tended affine plane and we can expect that Miquel’s theorem
and its relatives remain valid. For example, the isotropic
case of a Miquel figure is shown in Fig. 27a, while Fig. 27b
shows an isotropic version of the Steiner-Wallace-Simpson
figure.

Figure 27a: A Miquel figure in an isotropic plane.
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Figure 27b: A “Steiner figure” with collinear points R, S,
T .

In an elliptic or hyperbolic plane a triangle has four cir-
cumcircles. A Miquel figure in such a plane consists of
the triangle4ABC, the triplet R, S, T on its sides, and the
four times three circumcircles of partial triangles. It is well-
known that there are, in general, no common points for
triplets of such circles, such that Miquel’s Theorem is not
true in such planes.

Also the beermat theorem, dealing with congrtuent circles,
is not true in elliptic or hyperbolic planes, as can be seen
in Fig. 28: The three congruent circles through R, S resp.
S, T resp. T , R, (R 6= S 6= T arbitrarily chosen points of a
fixed circle c), have no common point, and they do not pass
through the orthocentre of4RST .

Figure 28: Four hyperbolic congruent circles ci forming a
beermat figure visualized in the Klein model of a hyperbolic
plane with absolute conic ω.

6 Final remarks

Some of the material treated here is more or less common
knowledge. However, we shall emphasize the connections

between several elementary geometric theorems, and their
interpretation as special cases of Miquel’s Theorem. This
leads, on one hand, to some Miquel mappings, which are
seemingly new, and on the other to a more detailed under-
standing of those standard theorems.

The figures in this paper are generated with the graphics
freeware Cinderella [5], an effective tool for planar geome-
try in Euclidean, hyperbolic and elliptic geometry.
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[12] MIQUEL, A., Théorèmes sur les intersections des cer-
cles et des spheres, J. Math. Pures Appl. 3 (1838),
517–522.

[13] ODEHNAL, B., A Miquel-Steiner Transformation,
KoG 27 (2023), 14–24, https://doi.org/10.

31896/k.27.2

[14] SPIROVA, M., On Miquel’s theorem and inver-
sions in normed planes, Monatsh. Math. 161
(2010), 335–345, https://doi.org/10.1007/

s00605-009-0153-8

[15] THOMPSON, A.C., Minkowski Geometry, Cam-
bridge University Press, 1996, https://doi.org/
10.1017/CBO9781107325845

[16] DE VILLIERS, M., A variation of Miquel’s the-
orem and its generalization, Math. Gaz. 98(542)
(2014), 334–339, https://doi.org/10.1017/

S002555720000142X

[17] WEISS, G., 3D-Versions of Theorems related to
Miquel’s Theorem, Proceedings of the Slovak-Czech
Conference on Geometry and Graphics 2023 (Krem-
nica, Slovakia, Sept. 11-14, 2023), Bratislava 2023,
195–202.

Gunter Weiss
orcid.org/0000-0001-9455-9830
e-mail: weissgunter@gmx.at

University of Technology Vienna
Karlsplatz 13, 1040 Vienna, Austria

University of Technology Dresden
Helmholtzstrße 10, 01069 Dresden, Germany

Boris Odehnal
orcid.org/0000-0002-7265-5132
e-mail: boris.odehnal@uni-ak.ac.at

University of Applied Arts Vienna
Oskar-Kokoschka-Platz 2, 1010 Vienna, Austria

24

https://doi.org/10.1017/S001309150003087X
https://doi.org/10.1017/S001309150003087X
https://doi.org/10.31896/k.27.2
https://doi.org/10.31896/k.27.2
https://doi.org/10.1007/s00605-009-0153-8
https://doi.org/10.1007/s00605-009-0153-8
https://doi.org/10.1017/CBO9781107325845
https://doi.org/10.1017/CBO9781107325845
https://doi.org/10.1017/S002555720000142X
https://doi.org/10.1017/S002555720000142X

	Introduction 
	Properties of elementary geometric Miquel figures 
	Miquel stars to a given triangle
	A first Miquel mapping
	Miquel circles and their midpoints
	A second Miquel mapping

	Special cases of Miquel's theorem
	The Theorems of Brocard
	The points R, S, T fulfill the Menelaos condition 
	 The points R, S, T fulfill Ceva's condition 

	Orbits of Miquel points for special sets of Miquel triangles RST 
	Miquel's theorem in circle geometries and Minkowski planes 
	 
	 
	 

	 Final remarks 

