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ABSTRACT

The Yff circumellipse and the Yff inellipse of a triangle al-
low for a poristic family of triangles (henceforth called Yff
porism), since the initial triangle is already an interscribed
triangle. Surprisingly, the Yff porism can be parametrized
by means of rational functions, and thus, it delivers a
porism in Universal Geometry. This also allows us to give
explicit examples of poristic triangle families over finite
fields. Considering the Yff inellipse and Yff circumellipse
as the basis of an exponential pencil of conics, we can it-
erate the construction of the porism and find an infinite
sequence (and thus infinitely many) nested rational trian-
gle porisms over the real (and complex) number field or a
finite closed chain of porisms in the case of a finite field.

Key words: porism, inellipse, circumellipse, triangle, ra-
tional porism, rational parametrization, finite field, finite
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Univerzalne porizme i Yff konike
SAZETAK

Yff opisana elipsa i Yff upisana elipsa trokuta dopustaju
poristi¢nu familiju trokuta (odsada zvanu Yff porizma),
buduéi da je polazni trokut ve¢ upisan prvoj, a opisan
drugoj elipsi. Iznenadujuée, Yff porizma se mozZe
parametrizirati pomocu racionalnih funkcija i stoga daje
porizmu u univerzalnoj geometriji. To nam takoder
omogucuje da damo eksplicitne primjere poristi€nih fami-
lija trokuta nad kona&nim poljima. Promatrajuéi Yff upi-
sanu elipsu i Yff opisanu elipsu kao bazu eksponencijalnog
pramena konika, moZemo ponavljati konstrukciju porizme
i pronaci beskonaZan niz (a time i beskona&no mnogo)
ugnijezdenih racionalnih porizmi trokuta nad realnim (i
kompleksnim) poljem brojeva ili kona&ni zatvoreni lanac
porizmi u sluéju kona&nog polja.

Klju€ne rije€i: porizma, upisana elipsa, opisana elipsa,
trokut, racionalna porizma, racionalna parametrizacija,
konaéno polje, konaéna projektivna ravnina

1 Introduction

Porisms have attracted the interest of geometers in the past
years anew. An exhausting overview of this topic and
newer as well as many classical results can be found in [3]
and [4]. Certain subproblems, dealing with a detailed anal-
ysis of CHAPPLE’s porism (the most prominent one cf. [1])
were studied in [19] and inspired further investigations of
orbits and invariants in relation to porisms in [5, 6, 7]. The
isotropic version of CHAPPLE’s porism was investigated in
[13]. Not only orbits of points and centers related with the
moving triangles have gained interest. The closely related
topic of billiards within ellipses, and in conics in general,
was enriched with new results. To mention only a few, see
for example [8] and a study on Poncelet grids in [22]. Pro-
jective invariants of Poncelet closure figures are presented
in [24, 27], the motions induced by Poncelet closure figures
are studied in [25], the diagonals in Poncelet grids are the
subject of interest in [26], and focal billiards are described
in [23].

In the vast majority, and especially in the case of CHAP-
PLE’s porism, explicit analytical descriptions of Poncelet
triangle families involve algebraic (and by no means ratio-
nal) expressions (cf. [6, 7, 19, 21]). This limits direct sym-
bolic computations, and sometimes, even graphical rep-
resentations. Even the (from the computational point of
view) simple case of the isotropic Chapple porism studied
in [13] needs square roots in order to describe the vertices
of the moving triangles. Now, the question is near: Are
there porisms that allow for rational (or, in terms of homo-
geneous coordinates, even polynomial) parametrizations?
Such porisms would then also exist in Universal Rational
Trigonometry (as defined in [28]) and would also be well-
defined in planes over finite fields.

In this article, we shall present porisms that can be de-
scribed by rational (or polynomial) functions. Sec. 2 is
devoted to the basic setting and notations. In this sec-
tion, it is further shown that the tritangent and the circum-
conic allow for certain porisms in general. Then, in Sec. 3
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the parametrization of the poristic triangle families inter-
scribed between Yff conics are derived and some examples
in planes over finite fields are given in order to show dif-
ferent phenomena that can occur in various exotic planes.
Sec. 4 shows how to find more such rational porisms based
on the Yff porism. Finally and for the sake of complete-
ness, Sec. 5 collects some results in the Euclidean plane.

2 Porisms interscribed between
the YT ellipses

In the plane of the initial triangle A = ABC, we describe
points and lines by homogeneous trilinear coordinates.
Thus, the vertices of A have the coordinates

A=1:0:0, B=0:1:0, C=0:0:1. H

Circumconics, i.e., conics which pass through all three ver-
tices of A, are given by a homogeneous equation of the
form

C: pyz+qzx+rxy =0, 2

where p,q,r € F\ {0} and F is some commutative field.
The conics C are always regular if neither of p, g, r van-
ishes, since detH C = 2pgr, provided that char[F # 2. Here,
and in the following H Q shall denote the Hessian matrix
of a (trivariate) form Q.

In the beginning, F shall be the real or complex number
field. Later, we also consider finite fields ' of order g,
which we shall denote by GF(g). The order g can be a
prime or a prime power. Projective planes of order g shall
be denoted by PG(2,q).

A conic inscribed into A, or simply, an inconic of A touches
all side lines of A. An inconic should rather be termed #ri-
tangent conic, since the contact points with the sides of A
may also be exterior points. We use the term inconic or in-
scribed just as a simplification, though we know that such
conics are not necessarily inscribed into A in the elemen-
tary geometric sense.

The inconics of A in the aforementioned sense can be given
by equations of the form

D: x> +m?y* +n*2? — 2lmxy — 2mnyz — 2nlzx = 0, (3)

where [,m,n € F\ {0}. Note that the conics D are regu-
lar if neither of I, m, n vanishes, since detH D = 21>m?n?,
again provided that char[F # 2. It is worth pointing at the
characteristic of the underlying field as we shall see later.
The conics in the pencil spanned by C and D are called
Yff conics (cf. [15]) among them, we also find the permu-
tation conics (see [16, 20]). The existence of a poristic
triangle family interscribed between C and D is obvious,
since there exists already one interscribed triangle, namely
A. We shall call this family the Yff porism.
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Now, we shall return to the case of charF =0 (e.g., F =
R, C). Any two regular conics C, D with equations (2) and
(3) allow for poristic families of certain polygons:

Theorem 1 The pair (C,D) of conics circumscribed to
and inscribed into A allows for a poristic family of 3n-gons

forn e N\ {0}.

Proof. The conics in the pencil spanned by C : x'Cx=0
and D : x'Dx =0 have the equations x' (+C + D)x = 0.
In order to apply the Cayley criterion (cf. [9, p. 432]),
we expand /det(H(tC+D)) in a power series S(t) =
ap+ ait + axt> + .... With the abbreviations A := Imn,
T := pqr, and ® := [p + mqg + nr, we find

S(t) =iv2 <4x—mt+0~t2—é;t3

o, 1| 7w, )

"3l T et

Hence, 3 =a» =0, 84 = a3 = %%,

_|a asz| 1 2 _|as as|
55_‘(13 a4‘_ maz %= as as 0,
ay ds dg . as d4 das V3 xS
O=|a3 as as|= 72']42 %, Og=|as as as|= 72]202 §7 >
as as ag as de ag
89 - 07 )

and &3 = 0 for all k € N which confirms the statement. (]

The Cayley criterion uses the complex number field. How-
ever, the equations (2) and (3) can be considered as conics
in projective planes over arbitrary commutative fields and
the criterion can be used to test pairs of conics whether
or not they allow for poristic polygons interscribed in be-
tween. The square root of the cubic polynomial can be
expanded in a power series S(¢) anyhow. In [2], the Cay-
ley criterion was used in order to count possible cases of
conic pairs allowing for triangle porisms. This does neither
answer the question whether such porisms exist nor what
they look like if they exist.

As is clear from the proof of Thm. 1, the pair (C, D) of
conics will never allow for interscribed quadrilaterals ac-
cording to the assumptions made on the coefficients in their
equations.

3 Parametrizing the poristic family

3.1 Basic properties

Two conics that merely fulfill the Cayley criterion will not
immediately lead to an explicit description of the poristic
triangle family interscribed between them. In order to give
an explicit example which later will even allow for a gener-
alization, we choose p=g=r=I[=m=n=1 which yields
the Yff circumellipse M and the Yff inellipse N/.
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The resulting two conics are indeed triangle conics because
of the cyclic symmetry of their equations, and of course,
they are Yff conics (cf. [15]). Their equations in terms of
homogeneous trilinear coordinates do not depend on Eu-
clidean notions such as the side lengths or the interior an-
gles of the triangle A:

M :xy+yz+zx =0,

4

AL X242+ 22— 2(xy+yz+zx) =0. @
From the elementary (affine) point of view, these conics
are ellipses, the Yff ellipses. They span a pencil of the third
kind considered as a pencil of the real or complex projec-
tive plane. The point X; =1:1:1 is the common pole and
the antiorthic axis £; =1:1:1 (or with the homogeneous
equation x+y-+z=0) is the common polar of all regular
conics in the pencil (see Fig. 1). Here and in the following,
the labelling of points (centers) and lines (central lines) re-
lated to triangles follows the labelling in [14, 17]. (Later,
in Sec. 5, this will be of more significance.) We shall also
use shorthand X; for the point defined by 1:1:1 and the
symbol £L; if we mean the line x+y+ z = 0 even if they
are not the incenter and the antiorthic axis in the elemen-
tary geometric sense.

Figure 1: The Yff conics M and N in the real plane.

In PG(2,C), the conics M and Al share the pair of com-
plex conjugate points 1:€£:€> and 1:€%:€ on £; (with €
being a non-trivial cube root of unity), hence M NN =0
in the real projective plane. However, in some finite planes,
their intersection is not empty.

In order to describe the vertices Pj, P>, P; of the triangles
in the poristic family, we start with the homogeneous and
polynomial parametrization of /M given by

Pr=—uv:u(u+v):v(u+v), u:v#0:0. (35)

Note that the parametrization (5) of M makes sense over
any field.

In order to find the remaining vertices P» and P3, we deter-
mine the polar line of P; with respect to Al which meets
A in the contact points

By =u?: (u+v)?:v?, ©)

By =v?:u?: (u+v)?,
of the tangents from Py to . Note that the homogeneous
representations of the contact points are also polynomial,
i.e., they do not involve square roots. This cannot be the
case in CHAPPLE’s porism (see, e.g., [19, 9]). Now, we in-
tersect the tangents , = [Py, B;] and t3 = [Py, B3] with the
Yff circumellipse M and find the remaining vertices P,, Ps
of the moving triangle as

P=v(u+v):—u:u(u+v),

P3:M(M+V) :v(u+v) L —UV. @)

For the sake of completeness, we determine the contact
point By of [P, P3] and A/, which has the homogeneous
coordinates

By = (u+v)> v, (3)

By virtue of (6) and (8), we see that the homogeneous co-
ordinate representation of By, B,, and B3 can be obtained
from each other by applying cyclic shifts to the coordinate
functions. The same holds true for the vertices P;, P>, and
P of the triangles in the poristic family. The fact that all
coordinate functions of the vertices and the contact points
are polynomial has the following consequence:

Theorem 2 The Yff porism, that is the family of triangles
interscribed between the Yff inellipse N and Yff circum-
ellipse M given in (4) contains triangles whose vertices
allow for rational parametrizations. The Yff porism is also
well-defined over arbitrary fields F with positive charac-
teristic not equal to 2.

Proof. The rationality is obvious: The homogeneous co-
ordinates of the vertices P; € M (5) and (7) as well as the
contact points B; (6) and (8) are polynomial. All polyno-
mials are well-defined over any field. (]

The case charF = 2 is excluded in Thm. 2 since the con-
struction of the triangles in the poristic family uses the po-
lar system of Al. In planes of characteristic 2, polarities
are null polarities at the same time, and therefore, they are
singular and all tangents of a conic pass through one point,
the nucleus.

It makes sense to call the Yff porism a unsiversal porism in
the sense of [28] for the vertices of the triangles (as well as
the contact points) are given in terms of rational functions.
Thus, they are defined over any finite field.

Depending on the characteristic of the underlying field I,
Wwe can prove:
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Theorem 3 In any finite field F with charF # 2, the Y[f
porism contains at most two degenerate triangles. In the
case charF = 3, the Yff porism contains a single degener-
ate triangle.

Proof. The vertices (5) and (7) of the triangles in
the Yff porism are at least collinear if, and only if,
det(p1,p2,p3) = 0 which is equivalent to

&= +uw )1 =0 )

(where p; is a coordinate vector of P;) vanishes for some
parameter u : v # 0: 0, i.e., 8 = u> +uv +v> = 0. This is
obviously a quadratic equation in u : v, and depending on
the underlying field, it may have 0, 1, or 2 zeros.

If charF = 3, then 1 = —2, and thus, u? + uv +1? =
u? —2uv+v? = (u—v)? which yields the single solution
u:v=1:1 (with multiplicity two). ]

In Thm. 3, we did not explicitly state that the order of the
underlying field is a prime, say p, different from a prime
power p* with k € N\ {0, 1}. It is clear that the number of
degenerate triangles in an Yff porism will not exceed 2. If
in PG(2, p) the Yff porism already has a degenerate trian-
gle, then (x) = x*> +x+ 1 already has at least one solution
in GF (p) and ®(x) cannot be used for a quadratic field ex-
tension and no additional zeros will show up with a proper
field extension.

We shall have a look at the following examples:

(1) If the underlying field F is a quadratic extension of
GF(p), the number of zeros of 8 may increase if F =
GF (p)[x]/(x*+x-+1). For example, there exists a unique
quadratic extension of GF(2) in order to obtain GF(4),
since x2+x+1 is the only quadratic polynomial that has
no zeros in GF (2). Hence, in PG(2,4) the Yff porism con-
tains two degenerate triangles, while in PG(2,2) the Yff
porisms consists of regular triangles only. We shall come
back to PG(2,4) in Sec. 3.2.3.

(2) The quadratic polynomial x*>+x+1 has a single zero of
multiplicity two in GF (3). Therefore, it cannot be used for
a quadratic extension of GF (3) in order to create GF (9).
However, x2+1 is suitable for the desired quadratic exten-
sion and its zeros are not zeros of & from (9). Thus, in
GF (9) the Yff porism still has a single degenerate triangle
inherited from GF (3). For details, we refer to Sec. 3.2.6.
(3) The example of GF(5) is to show that there do ex-
ist quadratic field extensions so that the Y{f porism shows
both, degenerate and non-degenerate triangles. Both poly-
nomials ®; (x) =x>+x-+1 and @, (x) =x>+x+2 have no
zeros in GF (5). Since o (x) is an inhomogeneous version
of (9), the extension with ®;(x) delivers two degenerate
triangles, while the extension with m;(x) does not.

We will come back to field extensions and the thus created
planes in Sec. 3.2.
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The regularity condition for the contact triangle B{B>B3
equals 286 = 0. This shows again that the case charF = 2
plays an exceptional role.

Further, we can say:

Theorem 4 If the Y{f porism contains a degenerate trian-
gle, then this triangle is a single point.

Proof. According to Thm. 3, the matrix P := (p1,p2,p3)
is singular if, and only if, (9) holds, i.e., 8 = 0, or, likewise,
rkP < 2. A triangle of the Yff porism becomes a single
point if P is of rank 1 which is the case if, and only if, all
2 x 2 submatrices of P are singular. The determinants of
the non-trivial 2 x 2 submatrices of P evaluate to one of the
following polynomials (up to the coefficient -1, not playing
arole even if charF = 2):

wvd, u(u+v)9d, v(u+v)J,

which vanish all, if 8 does. This is not the case if only one
of the following is true u: v=1:0,u:v=0:1, or u+v=0.
The only larger minor is already singular by assumption,
and therefore, it does not have to be taken into account. [J

In Thm. 4, a distinction of the underlying field is not nec-
essary. Once & = 0, the Yff porism contains at least one
degenerate triangle, no matter, if & = 0 is caused by a field
extension or not.

Common points of M and A’ and degenerate triangles do
not enter the scene independently:

Theorem 5 A degenerate triangle in the Yff porism is nec-
essarily a common point of M and N, and vice versa.

Proof. Assume that there is a parameter u : v # 0 : 0 (with
u,v € F) such that (9) is annihilated. Then, according to
Thm. 3, P; = P, = P, i.e., a pose with a degenerate trian-
gle is reached. Inserting (5) and (7) into (4), we see that
both equations are also fulfilled.

On the other hand, common points of M and A/ can be
found by eliminating one variable, say, e.g. z, from both
equations in (4). This yields (x* +xy+y*)? = 0, which is
fulfilled by any of the parametrizations of (5) and (7) if,
and only if] W4 uv+1vr =0, ie., the points P; coincide. [
For the following 80 prime integers less than 1000 (which
are in total 168), (9) has two solutions in GF (p):

7,13,19,31,37,43,61,67,73,79,97, 103, 109, 127,
139,151,157,163,181,193,199,211,223,229,241,
271,277,283,307,313,331,337,349,367,373,379,
397,409,421,433,439,457,463,487,499,523, 541,
547,571,577,601,607,613,619,631,643,661,673,
691,709,727,733,739,751,757,769,787,811,823,
829,853,859,877,883,907,919,937,967,991,997.

Thus, in PG(2, p) with one of the above p, the Yff porism
contains two degenerate triangles and quadratic field ex-
tensions have to be constructed with a polynomial differ-
ent from x> + x4+ 1 in any case. If p = 3, the polynomial
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x> 4x+ 1 is not suitable for a quadratic field extension,
since then it is a full square. For any other p # 3 and not
in the above list, a quadratic field extension with X4x+1
would add two degenerate triangles to the Yff porism.
Field extensions GF (p*) with arbitrary k > 2 do not cause
more degenerate triangles in the Yff porism as long as
x% +x+ 1 is not a divisor of the extension polynomial.
The chosen conics M and A with equation (4) have rather
simple equations because of their relative position with re-
spect to the underlying coordinate system. More general
forms of rational and universal porisms can be obtained by
applying collineations to M, A/, and the family of inter-
scribed triangles:

Theorem 6 The totality of universal Y{f porisms in a pro-
Jective plane PG(2,p) can be obtained by applying the
full group of regular projective transformations to the Yff
porism determined by M and N. In the projective plane
PG(2, p), there exist p>(p> — 1)(p?> — 1) collinear copies of
the initial Yff porism.

Proof. According to [10, p. 298], the number of 3 x 3 ma-
trices K with entries from GF (p) and detK = 1 equals
p*(p* —1)(p* —1). Since non-zero multiples of K de-
scribe the same collineation, it is admissible to normal-
ize the transformation matrices such that their determinants
are equal to unity. |

3.2 Examples of Yff porisms in small planes

In the following, we shall describe the universal porisms
in some finite projective planes of low order, i.e., in small
planes. For details and basic information on finite projec-
tive planes, we refer to [12].

The points (1) appear as poses of the vertices P;, P>, P3 of
the triangles in the poristic family in any projective plane
over any (finite) field. Since for any prime p (5) and (7)
evaluate to multiples of the canonical basis vectors, we
shall use the labels of the vertices of the initial triangle A
for those poses of the points P;.

The vertices P; of the triangles have the coordinate rep-
resentations p;(u,vp) with i € {1,2,3} and the homoge-
neous parameter (u,v) # (0,0) always traces the projective
line PG(1,F), i.e.,

(u,v) € {(1r,0r), (1r, 1g), ..., (Op, 1) }.

Note that the parameter pairs are normalized, i.e., the first
coordinate is set to unity (except the last one) which can al-
ways be achieved. So, they are ordered numerically. This
has no geometric meaning and is done just in order not to
lose a point.

3.2.1 The minimal projective plane

The minimal projective plane is the unique projective plane
with seven points and seven lines sometimes referred to

as the Fano plane. (Despite not showing the Fano prop-
erty: Here, the three diagonal points of a quadrilateral are
collinear.) Its algebraic model is erected over GF (2). Al-
though we have emphasized at several places that the case
charF = 2 has to be excluded or at least to be handled with
care (polarities are null polarities at the same time), we
find that the parametrizations (5) and (7) of the points P;
evaluate to meaningful expressions, whence we shall have
a look at it.

There is only one triangle in the family: It is the standard
triangle that plays its role in a threefold way and it is the
only non-trivial triangle in this particular poristic family.
We collect the triangles depending on the homogeneous
parameter u : v in a table:

u:y ‘1:0 1:1 0:1
triangle | BCA  ABC CAB °

Fig. 2 tries to illustrate the three poses of the moving trian-
gle.

Note that in the minimal plane the conic M has a singu-
lar equation, since the determinant of the coefficient matrix
vanishes:

01 1
M:xy+yz+zx=x[ 0 0 1 |x=0,
000

=M

hence detM = 0 and rkM = 2. Here, we shall point out
that the usual way of extracting the coefficient matrix from
a quadratic form fails: We cannot multiply coefficients by
2.

However, the three points on M are not collinear as should
be the case with conics.

In comparison, A_ whose equation simplifies due to the
speciality of the underlying field according to

N: P +y*+22=0
is regular, but contains the three collinear points
B1=1:1:0, B=1:0:1, B3=0:1:1.

They also lie on the line £;. Hence, A’ and L; agree as
sets of points. Note that there is no contact between the
sides of A and A(, since all tangents of A/ pass through its
nucleus.
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0:0:1
o o or
oM
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1:0:0 0:1:0 P} OP13 P}

o —O0——0 O —O0—— 0
P} P P P3
Figure 2: The projective plane PG(2,2) with its seven
points and lines and the two conics M and N. A spe-
cial feature can be observed here: The inconic N = L,
consists of three collinear points. Superscripts denote the
pose.

3.2.2 The thirteen point plane

The unique projective plane of order three has thirteen
points and lines. It can be modeled over GF(3). An inci-
dence graph and the coordinatization that we use are shown
in Fig. 3. In the thirteen point plane PG(2,3), the two con-
ics M and A are regular. They share precisely one point,
i.e., X1 and have the line £; as common tangent there.

Figure 3: The plane of order 3 with 13 points and lines is
isomorphic to the projective plane PG(2,3).

Again, the standard triangle plays a threefold role for the
parameter values

u:v=1:0, u:v=1:2, u:v=0:1.

30

According to Thm. 3, the Yff porism in PG(2, 3) contains a
single degenerate triangle corresponding to &’s single (dou-
ble) root u : v =1:1. The degenerate triangle equals the
point X, which is the only point of intersection of M and
A(. This holds true in any plane over GF (3¥) with positive
k.

Fig. 4 illustrates the position of M and A in PG(2,3) rel-
ative to each other. Fig. 5 is given in order to illustrate the
poristic family in PG(2,3).

Figure 4: Both Yff conics consist of four non-collinear
points, they intersect in X| and share the tangent L, there.

LN
&I

Figure 5: The Yff porism in the 13 point plane shows a sin-
gle degenerate triangle corresponding to u:v=1:1 and all
three vertices fall into the point 1:1:1 (see top right).

In order to track the triangle while it moves through the
poristic family, we collect the different poses of P;P,P; in
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the following table:

wv | 1:0  1:1  1:2  0:1
triangle | BCA 1:1:1 ABC CAB '

3.2.3 The projective plane of order 4

The projective plane PG(2,4) of order 4 consists of 21
points and lines. The underlying field GF(4) is ob-
tained from GF (2) by the unique quadratic field extension
GF (4) =GF (2)[x]/ (x> +x+1). This clearly shows that the
Yff porism in PG(2,4) contains two degenerate triangles
(since the polynomial used for the extension is an inhomo-
geneous version of § from (9)). However, PG(2,4) inherits
all properties from PG(2,2) including the singularity and
regularity of conics. Only the order of the underlying field
changes, not so the characteristic.

The field GF (4) is obtained from GF(2) by the quadratic
field extension with the only quadratic polynom ®(x) =
x?+x+1 that has no zeros over GF(2). If we label the
elements of GF(4) by {0,1,a,1 + a}, then we compute
modulo 2 and simplify sums and products according to
a*+a+1=0. Fig. 6 shows an incidence diagram of
PG(2,4) with the coordinatization used in this section.

Figure 6: The 21 point plane modeled over GF(4) con-
tains Fano-subplanes, and therefore, it doesn’t have the
Fano property: The diagonal points of quadrilaterals are
collinear mirroring the property of the algebraic model
based on the field GF (4) whose characteristic equals 2.

The conic M has a singular equation in PG(2,4) (like in
the case of GF(2) and for the same reasons) and consists
of the five points

0:1:0, 1:0:0, 1:a:1+4a,
l:14a:a, 0:0:1,

of which no three are collinear, while the conic A has a
regular equation and consists of the five collinear points

1:1:0, 1:0:1, 0:1:1,
l:a:1+a, 1:14a:a.

Obviously, the two Yff conics intersect in
Si=1l:a:14a and S=1:1+4a:a.

The diagram in Fig. 7 illustrates the relative position of the
two conics M and Al in PG(2,4).

The quadratic form § = u? + uv +v? equals ® if we sub-
stitute ¥ = 1 and v = x. Hence, the two new elements in
the extension GF (4) of GF(2) are zeros of 8. Thus, in
GF (4), the Yff porism contains two degenerate triangles.
The parameters u:v=1:a and u:v=1:1+a deliver the
two degenerate triangles in the Yff porism, which coincide
with the points S and S5 (the intersections of M and N\)).

By virtue of (5) and (7), we find the vertices of the triangles
in the poristic family as

u:v 1:0 1:1 1:a
triangle | BCA ABC 1l:a:l+a
u:v 1:1+a 0:1 ’
triangle | 1:14+a:a CAB

point of M point of A\

Figure 7: In PG(2,4), the circumconic M is regular, while
the inconic N consists of five collinear points. Further, M
and N share two points playing the role of the degenerate
triangles in the poristic family.
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3.2.4 The planes over GF (5) and GF (7)

We shall treat the two planes over GF(5) and GF(7) si-
multaneously which helps simplifying the comparison. In
Figs. 8 and 9, we have illustrated an affine version of the
respective Yff porisms.

o o o

points of N X, points of £; points of M

Figure 8: The Yff porism in an affine part of the plane
PG(2,5): M NN = 0 and the Yff porism contains only
non-degenerate triangles each playing a threefold role.

PPl Py

o o

points of N X1, points of £; points of M

Figure 9: The Yff porism in an affine part of the plane
PG(2,7): M NN ={S1,52} and the two degenerate tri-
angles fall into the points S1 and S».
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In both planes PG(2,5) / PG(2,7), both Yff conics have
regular equations and consist of 6 / 8 points where no three
of them are collinear. While M and A do not intersect in
PG(2,5), they share the two points

S1=1:2:4 and S =1:4:2

in PG(2,7). Further, M and A share the tangents S| and
S». Thus, in PG(2,7), the pencil spanned by M and A
resembles a pencil of the third kind as we know it from the
case F =C.

The two intersection points S; and S of M and A
in PG(2,7) serve as the degenerate triangles in the Yff
porism. On the contrary, degenerate triangles are missing
in the Yff porism over GF (5).

3.2.5 A cubic field extension:
the projective plane over GF (8)

The field GF(8) shall be constructed from GF(2) by the
cubic field extension with the roots of ®(x) =x>+x+1
which is irreducible in GF(2). This means computations
are performed modulo 2 and modulo ®. The elements of
GF (8) shall be denoted by

{0,1,a,14a,a*, 14+d* a+a*, 1+-a+a*}.

The triangle P;P>P; with the parametrization (5) and (7)
reaches the following poses while the homogeneous pa-
rameter u : v traverses PG(1,8):

u:v 1:0 1:1 l:a
triangle BCA ABC RiS1Th

u:v 1:14a 1:a° 1:14+d°
triangle | RS> S1T1R; ThR»S)

u:v l:a+ad> 1:1+a+d? 0:1
triangle TiR1S1 SoHhRy CAB

where we have set
Ri=1:a*:1+a, S;=1:a:14+a+d?,
T\ =1:a+ad*:1+d?,
Ry=1:1+a+d*:a, S,=1:1+a:a?,
D=1:1+a*:a+d>.

There is no degenerate triangle in the Yff porism in
PG(2,8), since (9) has no zeros in GF(8). The poristic
orbit of the triangle ABC splits into three suborbits and the
moving triangle changes the orbits more or less irregularly,
for it is not possible to establish an ordering in GF (8).

3.2.6 The only Desarguesian plane of order 9

Among the four non-isomorphic projective planes of order
9, only the plane PG(2,9) is Desarguesian. Because of the
commutativity of GF(9), the projective plane PG(2,9) is
also Pappian, and thus, the study of conics makes sense
there (cf. [9]), whence it makes sense to consider this par-
ticular plane of order 9. (Note that any Pappian plane is
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Desarguesian, but on the contrary, not any Desarguesian
plane is Pappian, cf. [9]).

The field GF (3) shall be extended to GF (9) by adding the
roots of ®(x) =x>+1 (which do not exist in GF (3)). It is
well-known that any other quadratic polynomial (without
zeros in GF (3)) leads to an isomorphic copy of the field of
order 9. We label the nine elements of GF (9) by

{0,1,2,a,14+a,2+a,2a,1+2a,2+2a}

and calculate modulo 3 and modulo ®. Then, (5) and (7)
yield the following triangles:

u:v 1:0 1:1 1:2 l:a
triangle BAC 1:1:1 ACB RiS1Th
u:v 1:14a 2+a 2a 14+2a
triangle | S1T\Ry RxS2Th,  TiR1S1 RS '’
u:v 24+2a 0:1
triangle | S>T>R; CAB

where we have used the abbreviations

Ri=1:24a:242a, Si=1:a:1+a,
Ti=1:142a:2a,
Ry=1:2a:142a, S)=1:1+a:a,
Th=1:242a:2+4a,

There is only one degenerate triangle in the poristic fam-
ily. The degenerate triangle corresponds to the param-
eter u:v=1:1 and is inherited from GF(3), and as
such, rather a feature of GF (3), than of GF (9). However,
charGF (9) = charGF (3) = 3.

4 More universal porsims

4.1 The tangent triangle

For the case of CHAPPLE’s porism (triangles with common
incircle and circumcircle), it is shown that the vertices of
the tangent triangle Ay, i.e., the triangle of tangents to the
circumcircle at A’s vertices, move on an ellipse which is of
course traced thrice, while A traverses the poristic family
(see [19)).

For the tangent triangle of 4 in the Yff porism, we can
show:

Lemma 1 In any projective plane PG(2,F) with charF #
2, the vertices of the tangent triangle of M trace a single
conic T, while the initial triangle traverses the Y[f porism.
T is the image of N under the harmonic homology with
center X| and axis L.

Proof. When determining the vertices 7; of the tangent tri-
angle A,, we observe that the tangents ¢; of M at P; have
homogeneous coordinate vectors proportional to those of

B; given in (8) and (6). Then, for example, 71 = t, Nt3 is
given by

2 2 2

T1:u2+3uv+v2:—u —w+ v —uv—v

and the others are obtained by permuting the coordinate
functions of the latter. Now, the implicitization of the
parametrization of 7; yields

T: Y F¥+3y2=0 (10)
cyclic

and confirms that 77 runs on a conic. It is easily verified
that the points 75 and T3 also trace ‘7 while A and A; move
through the Yff porism.

We can check that cr(P;,B;,X;,T;) = —1 for all i €
{1,2,3}. Furthermore, by the initial construction, it is
elementary to verify that [B;,B;|Nt; = [P, Pj|Nt € Ly
for (i, j,k) € {(1,2,3),(2,3,1),(3,1,2)}. Hence, the har-
monic homology py,,,, (with center X; and axis £) sends
B; to T; and maps the respective tangents of A’ and 7 onto
each other. ]

Lem. 1 is in particular valid in the real and in the complex
projective plane. In planes of characteristic two (or equiva-
lently, in planes over fields of characteristic two), the con-
struction of the tangent conic must fail for two reasons:
(1) The tangents of a conic pass through a single point (the
nucleus). If the characteristic of the underlying plane (or
field) equals 3, we have 7: ¥ x> =0.

cyclic
(2) In the planes of characteristic 2 there are no harmonic
homologies.

Figure 10: Iterating the Y{f porism can yield infinitely many
universal porisms.

Fig. 10 illustrates the geometric relations between pairs of
subsequent conics and the orbits of tangent triangles in the
Yff pencil.

If M, N, and T denote the coordinate matrices of the ho-
mogeneous equations of the conics M, A, and T, then
T =5-M+2-N. Hence, 7 is also an Yff conic (cf. [15]).
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4.2 A linear family of matrices

The coefficient matrices of the conics M, A, and T
belong to the special family of matrices that can be
parametrized by

p
L(p,q)=| g (11
q

QT R
ASTESEEN

with entries p,g # 0 from some commutative field F.
The linear one-parameter family of matrices (11) forms a
straight line in the eight-dimensional projective space of
3 x 3 matrices. Note that the coefficient matrices of these
triangle conics do also not depend on Euclidean notions
such as the side lengths of A.

For the sake of simplicity (and since non-zero multiples do
not count), we shall assume gcd(p,q) = 1 (in the under-
lying field under consideration). The matrices L(p,q) are
regular if, and only if,

P’ =3pg® +24° = (p—q)*(p+2q) #0,

ie.,, p:q#1:1and p:g# —2:1. The two singular ma-
trices in the family (11) are L(1,1) and L(—2,1). While
rkL(1,1)=1 and kerL(1,1)=[(1,-1,0),(1,0,—1)], we
have tkL(—2,1)=2 and kerL(-2,1)=(1,1,1).

The regular matrices (11) form a commutative group, since
the multiplication obeys the rule

L(p1,q1) - L(p2,q2) =
=L(p1p2+2q192,p192 + p2q1 + q192),

the inverses are

L(p,q)"' =L(p+4,—q) /(P> +pa—24")
(provided that p? 4+ pg —2¢* # 0, i.e., L(p,q) is regular),
and L(1,0) is the neutral element.

4.3 More tangent triangles

The coefficient matrices of M and AL of the Yff conics in
(4)are M =L(0,1) and N = L(1,—1). For the coefficient
matrix of 7 from (10), we find T = L(2,3). Moreover, the
respective matrices in (4) satisfy

M-N=-2I3 (12)
as long as charF # 2. Further, we can easily verify that

T=M(N"'M)! :—%M3. (13)
Since 7 is the polar conic of the dual conic A’* (the set of
tangents of A) with respect to M, T is a successor of A

and M in the exponential pencil of conics spanned by A’

and M (cf. [11]).
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According to [11], the conics in the exponential pencil
spanned by two regular conics () :x'Cox=0 and ( :
x'Cx=0 have equations of the form x"C(¢)x = 0 with

C)=Ci-(c;'-C)", teF.

Again, the case charF = 2 has to be excluded, since there
M is singular. In [11], the coordinate ¢ in the exponential
pencil was assumed to be real. By virtue of Lem. 1,7 € F
it makes sense.

With Cyp = N and C; = M and by virtue of (12), the coef-
ficient matrices of the conics’ equations in the thus defined
exponential pencil are

Cr) = (—3)" 7'M~ = (=2)"N"2, (14)

where t +u = 1. Here, it is more obvious that fields [F with
charF = 2 do not play a role.

Defining the matrices C; the other way around, i.e., C; =N
and Cy = M, means to trace the pencil of conics in the op-
posite direction.

In the case F = R, we can describe the limit conics in the
exponential pencil: For ¢ — oo, the matrices C(r) converge
towards the singular matrix L(1, 1) which describes £; as
a repeated line. The limit # — —oo yields L(2,—1) corre-
sponding to X; as the intersection of the pair of complex
conjugate tangents

Y X —yz=(x+ey+e’z)(x +€%y+e2) =0,

cyclic

(where € is a non-trivial third root of unity) common to all
conics in the linear and the exponential pencil (in the case
of F = C). Obviously, C(2) evaluates to the coefficient
matrix of the conic 7 in (10), i.e., C(2) = —3L(2,3).

We can repeat the construction of the tangent triangle now
applied to 7 and the triangles 717,73 and, by virtue of
Lem. 1, we can state:

Theorem 7 Any pair of subsequent conics in the exponen-
tial pencil spanned by N and M allows for a universal
porism of 3n-gons, provided there are sufficiently many
points and conics in the plane under consideration and the
exponential parametrization is evaluated only at integers.

We can also give a more synthetic generation of the se-
quence of pairs of conics allowing for rational porisms:

Theorem 8 Any conic in the exponential pencil together
with its tangent triangle (including the contact points) is
the image of its pre-predecessor under a harmonic homol-
ogy with center X| and axis L.
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4.4 The chain of universal porisms

The triangle B1B,B3 is perspective with P P,P; and both
are perspective with 717>73. The common perspector for
any pair of triangles is the point X;. Any two out of the
three triangles share the perspectrix, the line £;.

According to Thm. 7, this is true for any pair of triangles
in the infinite chain of contact and tangent triangles. In
this way, we find infinitely many nested Desargues config-
urations with the perspector X; and perspectrix £;. The
same holds true for the contact triangle. These Desargues
configurations are more special than those constructed in
[18].

Subsequent contact and tangent triangles are mapped to
their successors by means of a harmonic homology. Fur-
ther, the coefficients of equations of all conics in the pencil
contain only elements of the underlying field and (espe-
cially in the Euclidean case) do not depend on the triangle’s
side lengths, we have:

Theorem 9 Independent of the underlying field F (with
charF # 2), the exponential pencil of conics spanned by N
and M contains at most as many poristic 3n-gon families
as there are pairs of subsequent conics in the exponential
pencil of conics.

The number of poristic triangle families in the Yff pencil is
equal to the number of points on a line if F = R, C. In the
case of finite fields we have to distinguish several cases:

(1) If charF =2, the Yff pencil consists of three conics
with the coefficient matrices N = L(1,0), M = L(0,1),
T =1L(1,1) of rank 3, 2, 1. The conic T is the repeated
line £;, which agrees with A’ as point set. In PG(2,2),
tangent conics do not exits, to be more precise the tangent
triangle of A collapses to a point as can be seen by eval-
uating the parametrization of 7 given prior to (10). So,
there is only a triad of triangles forming the one and only
poristic family. (as explained in Section 3.2.1).

(2) If charF =3, the Yff pencil contains the four conics de-
fined by the coefficient matrices N =L(1,2), M =L(0, 1),
T =L(1,0), and further L(1, 1). The latter is of rank 1 and
corresponds to the repeated line £; as a singular conic. The
tangent triangle of M moves on ‘T and passes one instant
of degeneracy, which is again the point X; corresponding
tou:v=1:1. Since there are only 3 regular conics in the
pencil, we find only 3 different Yff porisms in PG(2,3) (up
to collineations). Fig. 11 shows one particular pose in each
of the three nested poristic families.

o R

X=l: 11
1:0:1
o —o— ﬂ
1:0:0 1:1:0 0:1:0
point of A\
e
@ point of M
@ pointof 7

Figure 11: The chain of Yff porisms in PG(2,3) contains
three poristic triangle families: (i) between N and M, (ii)
between M and T, and (iii) between T and N.. The point
X\ plays the role of the degenerate triangle in each porism.
The line Ly (with multiplicity two) is a degenerate conic in
the discrete exponential pencil.

(3) Let us now assume that charF # 2, 3 is a prime p. Then
it is rather elementary to verify that the coefficient matrices
of the conics in the pencil are matrices proportional to

L (é(4k—4),é(4’<+2)) , keF.

(Note the denominator.) The base 4 can never be a gen-
erator of the multiplicative group in some GF (p), for odd
powers of 2p cannot be reached. Hence, the number of
conics in the Yff pencil is at most 1 (p —1).

In Tab. 1, we have collected those primes 17 < p < 2011
for which in PG(2, p) the number y of conics in the discrete
exponential pencil and of Yff porisms is less than 5 (p—1).

In the case of a prime p = F(k) = 22° 4 1, we have ob-
served that y(p) = 2X if k € {1,2,3,4}. Unfortunately, the
projective plane of order F(0) = 3 does not fit. Since no
prime F (k) with k > 5 is known (as to October 2024), it is
therefore also unclear, whether there do exist further finite
projective planes of Fermat prime order F (k) that allow for
only 2% Yff porisms.

Applying Thm. 6 to all results in this section leads to all
possible variants of chains of rational Yff porisms in finite
planes. Thms. 7, 8, and 9 remain valid if we apply any
regular projective transformation to A/, M, and the inter-
scribed triangle family.
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17| 31 41 43| 73 89| 97| 109| 113
4 5 10 7 9 11 24 18 14

127 137 | 151 157| 193 | 223| 229| 233| 241
7 34 151 26| 48 371 29 12| 38

251 257| 277| 281| 283 | 307 | 313| 331| 337
25 8| 47| 35| 47 51| 78 15 21

353 | 397| 401 | 409 | 431 | 433 | 439| 449 | 457
44| 221 100| 102| 43 36| 73| 112 38

499 | 521| 569 | 571 | 577| 593| 601| 617| 631
83| 130 142 57| 72 74| 25| 77| 45

641| 643 | 673 | 683| 691 | 727| 733| 739| 761
42| 107 24 11| 115 121| 122| 123| 190

769 | 809 | 811 | 827| 881 | 911| 919| 929| 937
192 202| 135| 214| 55 91| 153| 232 117

953| 971 | 977| 997|1009 | 1013|1021 | 1033|1049
34| 97| 244 166| 252 46| 170| 129 131

1051|1069 | 1093 | 1097 | 1103 | 1129 | 1153 | 1163 | 1181
175 170| 182| 137| 29| 282| 144| 83| 118

1193 11201 | 1217 | 1249 | 1289 | 1297 | 1321 | 1327 | 1361
149| 150| 76| 78| 161| 324 30| 221 | 340

1399 | 1409 | 1423 | 1429 | 1433 | 1459 | 1471 | 1481 | 1489
233 | 352 237| 42| 179 243 | 245| 185| 372

1553|1579 [ 1597 | 1601 | 1609 | 1613 | 1627 | 1657 | 1697
97| 263| 266| 200| 201 | 26 | 271| 46| 424

1699 | 1709 | 1721 | 1723 | 1753 | 1777 | 1789 | 1801 | 1811
283 | 122 215| 287| 73| 37| 298| 25| 181

1831 1873 | 1889 | 1913 | 1933 | 1993 | 1999 | 2003 | 2011
305| 468 | 236| 239| 322| 498 | 333| 143| 201

“ TV|IWT|IWT|WT|WT|WT|WT|WT|WT|IWTVT|WDT|IKDT|IK DT

Table 1: Orders p of planes PG(2, p) in which the number
y of subsequent regular conics and porisms in the discrete
exponential Yff pencil is less than %( p—1).

5 Some Euclidean properties of the Yff
porism

For the sake of completeness, we shall end the study of the
Yf{f pencil and Yff porism by adding some results concern-
ing the Euclidean plane. We restrict ourselves to a small
number of moving points.

5.1 Some central orbits

With the parametrization of the triangles in the poristic
family from (5) and (7) we can immediately determine the
orbits of triangle centers. Many of them turn out to be cen-
ters which still does not answer the question raised in [5]
why there are so many elliptic orbits. Of course, since each
triangle vertex takes the role of any other vertex, the orbits
of centers are traced three times by the corresponding cen-
ter. We can state:

Theorem 10 The orbits of the triangle centers X; of a tri-
angle A traversing the Yff porism in the Euclidean plane
with Kimberling indices i = {2,3,4,5,6} are ellipses.
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Proof. The centroid X, is the harmonic conjugate of the
ideal line ® :=a: b : ¢, i.e., the pole of ® with respect to A.
Hence, we obtain a parametrization of the one-parameter
family of centroids with triangle center function

be(u® +10) + 3bcuv(u* +v*)
+(b—c)(b+c—2a) (v —u*)uv
—(3a® — 8ab + 2ac + b> — 4*)ut?
—(3a® +2ab — 8ac — 4b* + *)u*v*
—(6a®—6ab—6ac—3b*+5bc—3c?)v3u?,
i.e., the second and third coordinate function can be ob-
tained by cyclically replacing a, b, ¢, while we keep the
parameters u and v in their place.

Implicitization of the latter parametrization yields the
quadratic trivariate form

O Y ala+b+c)x?

cyclic

—(2a(b+c) —b*+bc —c?)yz =0,

which is the equation of a conic centered at the yet un-
known triangle center with the generating trilinear center
function
2(b+c)a* — (3b* +5bc + 3c?)a
+(b+c)(b* —3bc+c?).

The orbits of the circumcenter, the orthocenter, the nine-
point center, and the symmedian point are determined in
the same way, once a parametrization of the respective cen-

ters is known. The circumcenter X3 is the center of the
circumircle U of A = P P, Pz with the equation

U: Y auv(u+v) (bc(b —c)(u® —V?)

cyclic
+ ((b+c)a2—abc—b3+2bzc—bcz—c3)u2v
+((b+c)a® —abe—b? —b26+2bc2—c3)uv2)
+ (azbc(u2+v2) (u* —uPv? %)
+a((b+c)a®+3abc—(b—c) (> +c?))u’v
—a((b+c)a*—3abc—(b—c)(b*+c?))uy
—(a*=(3b—2c)a® —2(b*+c?)d?
+(3b3—4b26—|—bcz—2c3)a+(b2_c2)2)u4v2
—(a*+(2b—3c)a* —2(b*+c*)a?
OB e b 3N (R
—(+2a*~ (b+c)a® — (45— Sbe+4c?)a?
(c+b)(b*—dbc+c?)a+ 2(52—02)2)u3v3)yz,

Now, it is rather elementary to determine the center of U as
the pole of @ with respect to U. We omit writing down the
rather lengthy parametrization of the circumcenters. The
elimination of the homogeneous parameter u : v % 0 : 0
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yields the equation of an ellipse centered at the unknown
triangle center

C3 =a((b+c)a* — (2b* + 5bc +2¢%)d’
4bc(b+c)a*+
(2b* + bPc — 4b%c? + b +2¢*)a
—(b—c)*(b+c)?) =
The orthocenter X is the intersection of A’s altitudes. Note

that in terms of trilinear coordinates, the homogeneous tri-
linear coordinates of the altitudes are found as

hy = pi X G(pi X pj)
with (i, j,k) € J3, where
J3 = {(172a3)a (2”3’ 1)a (3’ 172)}7

and p; are homogeneous coordinate vectors of the vertices
P;, and G is the singular 3 x 3 matrix

1 —cosC —cosB
G= —cosC 1 —CcOsA
—cosB —cosB 1

ruling the orthogonality in A’s plane (cf. [14, p. 29]). We
recall that the cosines of A’s interior angles can be ex-
pressed in terms of its side lengths as rational functions:

2)/(2bc) (cyclic).

The intersection of any two altitudes results in a rather
lengthy homogeneous parametrization of the orthocenter’s
trace, which after implicitization, again results in a conic
(4 with the equation

cosA = (> +c*—a

G: ¥ X2

a(a27b27c2)
cyclic

(a®—(b+c)a*—(b*+c*)a+(b+c)(b—c)?)
—((b*+bc+c?)a
—2(b*—c?)?a+(b* —be+c?) (> —c*)?) yz=0

centered at the yet unknown triangle center with the trilin-
ear center function

Cy= (P> —bc+c?)a* —2(b+c)(b?
+2bc(b— )2 2

+2(b+c)(b>—bc+c?) (b c)
—(b?—3bc+c?) (b*—c?)?:

In order to verify the statement for X5, we recall that the
nine-point center is the circumcenter of the medial triangle
Ay = M M>M35 with M; being the midpoint of the segments
M ;M (again with (i, j, k) € J3). Note that the midpoint of
the segment M ;M is the harmonic conjugate of the ideal
point of the line [M;, M| with respect to M; and M.

—bc+-c?)a®

The symmedian point X is the perspector of A and its tan-
gent triangle A; = T1T,T3 whose vertices T; are the inter-
sections of the tangents #; and #; of the circumcircle U at
P; and Py. O
In a similar way, we can show that X75 (the isotomic con-
jugate of X;) traces the conic

Crs: ¥ x*d*(@®+b*+c*) — ((b*+c?)d?
cyclic

+2bc(b+c)a— be(b* —be+2c?))yz =0

which is centered at Xo = b+c—a

Triangle centers of the initial triangle that lie on M trace
M three times. These are the 124 triangle centers X; with
Kimberling indices (< 63000)

i € {88,100,162,190,651,653,655,658,660,662,673,771,
799,823,897,1156, 1492, 1821,2349,2580,2581, 3257,
4598,4599, 4604, 4606, 4607, 8052,20332,23707,24625,
27834,29059, 32680, 34085, 34234, 36083 — 36102,
37128 —37143,37202 — 37223,38340,40110, 43069,
43192,43757 — 43764,45875,46116 — 46122, 55321,
55325,55328,55331,60055 — 60057,61240, 62535}

The same holds true for the inconic A, where the fol-
lowing 24 triangle centers with Kimberling numbers (<
63000) orbit three times:

i € {244,678,2310,2632,2638,2643,3248,4094,
4117,10501,24012,41211,42074 — 42084,52302

Further, 204 centers lie on the antiorthic axis £; : x+y+
z = 0 which have the following Kimberling indices (<
63000):

i € {44,649,650,652,654,656,657,659,661,672,770,798,
822,851,896,899,910,1155,1491, 1575, 1635, 1755,
2173,2182,2183,2225,2227 — 2240, 2243 — 2247,

2252 —2254,2265,2272,2290,2312 — 2315,2348
2483,2484,2503,2509,2511,2515,2516,2522,2526,
2578,2579,2590,2591,2600,2610,2624,2630,2631,
2635,2637,2641,2642,3000,3013,3287,3330,3768
4394, 4724, 4782, 4784, 4790,4813,4893,4979,7655,
7659,8043,8061,9356,9360,9393,9404,9508,9511,
10495, 13401, 14298, 14299, 14300, 15586, 17410, 17418
17420,18116,20331,20979,21127,21894,22108,22443,
23503,24533,24750,25143,29357,29361,30600, 38472,
39690,40109,40137,40338,44151,44319,45877,

45881 — 45886,46380 — 46393,47777,47810,47811,
47826 — 47828,47842, 48019 — 48033,48160,48162,
48193,48194,48213,48226, 48244, 48544, 48572, 50328
50335,50336, 50349, 50350, 50358, 50359, 50454, 50455,
50505,50525,53300, 54258, 54277,54278,55216,57164,
58288,58374,58773,58842}.

Fig. 12 (top) shows the orbits of X, ..., X4 in the Eu-
clidean Yff porism. The bottom of Fig. 12 shows a close-
up of the central orbits together with the envelope of the
Euler lines, which is a sextic curve.
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7

envelope of
Euler lines

Figure 12: Top: Some triangles in the Euclidean Yff porism
and the traces of the triangle centers X1, ..., Xe.

Bottom: Close-up of the top figure including the envelope
of the Euler lines.

6 Final remarks

The construction of further Yff porisms by means of
tracing the exponential pencil (14) or by applying har-
monic homologies to existing pairs of conics leaves open,
whether field extensions enrich the family of Yff porisms
or not. The number of points, lines, and even conics in the
extended plane is definitely raised. This does not necessar-
ily mean that the exponential pencil contains more mem-
bers. In principle, the parametrization of the exponential
pencil (14) can be evaluated at any value taken from the un-
derlying field. However, it is unclear if matrix powers eval-
uate to meaningful matrices if we insert elements from the
extension of a finite field, since discrete logarithms evalu-
ate only to integers.
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