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ABSTRACT

The Cramer-Castillon problem (CCP) consists in finding
one or more polygons inscribed in a circle such that their
sides pass cyclically through a list of N points. We study
this problem where the points are the vertices of a triangle
and the circle is either the incircle or one of the excircles.
We find that (i) in each case there is always a pair of solu-
tions (total of 8 new triangles and 24 vertices); (ii) each
pair shares all Brocard geometry objects, (iii) barycentric
coordinates are laden with the golden ratio; and (iv) simple
operations on the barycentrics of a single vertex out of the
24 yield all other 23.
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Cramer-Castillonov problem u slučaju trokutu
upisane i pripisanih kružnica

SAŽETAK

Cramer-Castillonov problem (CCP) se sastoji u traženju
jednog ili vǐse mnogokuta upisanih u kružnicu tako da
njihove stranice ciklički prolaze kroz N točaka. Ovaj pro-
blem proučavamo u slučaju kada su točke vrhovi trokuta, a
kružnica ili njegova upisana ili jedna od pripisanih kružnica.
Dokazujemo da (i) u svakom slučaju uvijek postoji par
rješenja (ukupno 8 novih trokuta i 24 vrha); (ii) svaki
par dijeli sve objekte Brocardove geometrije; (iii) u bari-
centričnim koordinatama se pojavljuje zlatni rez; i (iv)
jednostavnim operacijama na baricentričnim koordinatama
se iz jednog od 24 vrha mogu dobiti preostala 23.

Ključne riječi: zlatni rez, trokut, Brocard, simedijana

1 Introduction

The Cramer-Castillon problem (CCP) consists in finding
one or more N-gons inscribed in a circle C such that their
sides pass cyclically through a set of points Pi, i = 1 · · ·N.
In Figure 1 this is illustrated for the N = 3 case. The solu-
tions to CCP are given1 by the roots of a quadratic equation
(see [7, Section 6.9], [10]), i.e., there can be 0, 1, or 2
real solutions. Geometric conditions for solution existence,
though not germane to this article, are described in the
aforementioned references.

Referring to Figure 2, we investigate the CCP for the case
where the Pi are the vertices A,B,C of a reference triangle
and C is the incircle or one of the excircles. Our findings
include:

• For any triangle, the CCP on either the incircle or
an excircle has exactly two solutions (total of 8 new
triangles and 24 new vertices).

• We derive barycentric coordinates for the 4 pairs of
solutions and notice they are laden with the golden
ratio φ = (

√
5+1)/2.

• Each pair shares circumcenter, symmedian point, and
all “Brocard geometry” objects [4], e.g., the Brocard
points, Brocard circle and inellipse, Lemoine and
Brocard axis, isodynamic points, etc.

• The four distinct Brocard axes shared by each pair
concur on the de Longchamps point [11] of the refer-
ence triangle.

• Given barycentrics for a single vertex out of the 24
newly generated, all other 23 can be obtained with
simple cyclic substitutions.

• Solving the CCP for a triangle’s arbitrary inconic is
equivalent to solving it (via a projectivity) for the
incircle case.

1In the hyperbolic plane, corresponding sides of the two solutions are polar-orthogonal with respect to the ideal circle [1].
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Figure 1: The Cramer-Castillon problem (CCP) in the
N = 3 case. In the top (resp. bottom) picture, two points are
exterior and one is interior (resp. all exterior) to the target
circle. In each case, two solutions are shown (magenta and
orange).

Article organization

The Cramer-Castillon Problem (CCP) on the incircle is cov-
ered in Section 2. Its shared Brocard objects are examined
in Section 3. The CCP on the excircles are analyzed in Sec-
tion 4. In Appendix A we provide a list of correspondences
between triangle centers in the incircle CCP solutions and
the reference triangle.

Notation

We shall use barycentric coordinates [11] and refer to trian-
gle centers using Kimberling’s notation Xk [5].

2 Cramer-Castillon on the Incircle

Referring to Figure 2, consider a triangle T = ABC with the
sidelengths a,b,c and s = (a+b+ c)/2 its semiperimeter.
Below we use φ to denote the golden ratio, φ = (1+

√
5)/2.

A B

C

X3=X1,ref

X6=X7,ref

Figure 2: The two solutions of CCP (orange, magenta)
on the incircle C of a triangle T = ABC. Since both are
inscribed in C , they share their circumcenter X3 (at the in-
center X1,ref of the reference). Also shared is the symmedian
point X6, which coincides with the Gergonne X7,ref of the
reference.

Proposition 1 The CCP on a triangle T and its incircle C
admits exactly two solutions T1 and T2, whose barycentric
vertex matrices with respect to T are given by:

T1 =

(1−φ)2vw uw (2−φ)2uv
(2−φ)2vw (1−φ)2uw uv

vw (2−φ)2uw (1−φ)2uv


T2 =

(1−φ)2vw (2−φ)2uw uv
vw (1−φ)2uw (2−φ)2uv

(2−φ)2vw uw (1−φ)2uv


where u = (s−a), v = (s−b), w = (s− c).

Proof. While barycentric entries in T1,T2 can be obtained
as roots of a quadratic equation [7, Section 6.9], we also
provide a synthetic construction for the vertices.

Referring to Figure 3, define three paths (A1,A2,A3,A4),
(B1,B2,B3,B4) and (C1,C2,C3,C4). Cramer-Castillon re-
quires that AiAi+1 (or BiBi+1 or CiCi+1) be a circle chord.

The points B1, C1 are tangent points of C with AC and AB
while A1 is the reflection of a tangent point with BC with
respect to X1.

The three paths are non-closing: A4, B4 and C4 are respec-
tively different from A1, B1 and C1.

Intersect the two pairs of segments (A1B4,A4B1) and
(A1C4,A4C1) to get points H1 and H2 on their perspectrix.

Intersecting the homography line with C gives M1 and
M4, two vertices of the solution triangles M1M2M3 and
M4M5M6. �
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Figure 3: top: The construction for the two points H1 and
H2 which define the homography axis used in Proposition 1.
The sequence C1, ...C4 is not shown, but is as A1...A4 and
B1...B4. bottom: a slight zoom-in on the region where H1
and H2 are.

By definition, both solutions share their circumcenter X3,
located at the incenter X1 of the reference. Interestingly:

Proposition 2 The two solutions T1 and T2 have a common
symmedian point X6 which coincides with the Gergonne
point X7 of T .

Proof. Using a CAS, we obtain [1/(s− a) : 1/(s− b) :
1/(s−c)] as barycentrics for the symmedian point of T1,T2
with respect to T , which are precisely those of the Gergonne
X7 of T [5]. �

3 Shared Brocard objects

Recall (i) the Brocard circle of a triangle has segment X3X6
as diameter, and (ii) the Brocard axis is the line that passes
through said diameter [11].

Since by definition T1,T2 share their circumcenter X3, and
per Proposition 2 their symmedian as well:

Corollary 1 T1 and T2 share their Brocard axis and Bro-
card circles.

Let δ = |X6−X3|. The Brocard angle ω to a triangle is
given by [2, Prop. 3, p. 209]:

tanω =

√
3

3

√
1−
(

δ

R

)2

Corollary 2 T1 and T2 have the same Brocard angle ω.

Referring to Figure 4, recall the two Brocard points of a
triangle lie on the Brocard circle and the line joining them is
perpendicular to the Brocard axis X3X6. In [9] the following
formula is given for the distance between the two Brocard
points Ω1,Ω2 which only depends on the circumradius R
and the Brocard angle ω:

|Ω1−Ω2|2 = 4c2 = 4R2 sin2
ω(1−4sin2

ω)

Corollary 3 T1 and T2 share their Brocard points Ω1 and
Ω2.

Proposition 3 The shared Brocard points Ω1 and Ω2 of
T1 and T2 are triangle centers of T given by the following
barycentric coordinates:

Ω1 = [α/u : β/v : γ/w], Ω2 = [γ/u : α/v : β/w]

where:

α = (a−b)2− (a+b)c

β = (b− c)2− (b+ c)a

γ = (c−a)2− (c+a)b

and u,v,w are as in Proposition 1.

Let a,b be the semi-axes of the Brocard inellipse of a tri-
angle (whose foci are the Brocard points). The following
relation was derived in [8, Lemma 2]:

[a,b] = R
[
sinω,2sin2

ω
]

Corollary 4 T1,T2 share their Brocard inellipses.

Recall the two isodynamic points X15 and X16 are the lim-
iting points of the Schoute pencil [3], defined by the cir-
cumcircle and the Brocard circle (and orthogonal to the
Apollonius circles), whose radical axis is the Lemoine axis.

Corollary 5 T1 and T2 share their isodynamic points X15
and X16 and Lemoine axis.

The intersection of the Lemoine axis with the Brocard axis
is X187 [5].
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Corollary 6 T1 and T2 share their X187.

Figure 4: The two solutions (orange, magenta) of CCP on
a triangle’s incircle (black) share all Brocard geometry
objects, to be sure: their Brocard points Ω1,Ω2, Brocard
circle and axis (dashed purple), Brocard inellipse (light
blue) whose foci are the Brocard points, the two isodynamic
points X15, and X16 (not shown) and the Lemoine axis (solid
purple).

Generalizing the CCP to any inconic

Referring to Figure 5 (top), let I be some inconic of a
triangle T = ABC.

Proposition 4 The CCP of A,B,C on I has two solutions
which circumscribe a single inconic B .

Proof. The CCP is projectively-invariant since only in-
cidences are involved. Let T ′ be the image of T under
a projectivity Π that sends I to a circle C ′, see Figure 5
(bottom). Clearly, C ′ is the incircle or an excircle of T ′.
Per Proposition 1 and Corollary 4, the CCP on (T ′,C ′) has
two solutions with a common Brocard inellipse B ′. Thus
B is the latter’s pre-image under Π, with all tangencies
preserved. �

Proposition 5 Consider a general inconic I with perspec-
tor [p,q,r]. The two solutions T1 and T2 of the CCP on I
have A-vertices given by:

T1(A-vertex) =[(2−φ)p,q,(1+φ)r]

T2(A-vertex) =[(2−φ)p,(1+φ)r,q]

Corollary 7 If I is the Steiner inellipse (perspector X2),
the two A-vertices are given by:

T1(A-vertex) =[2−φ,1,1+φ]

T2(A-vertex) =[2−φ,1+φ,1]

Notice that if I is the incircle, whose perspector is the
Gergonne point X7 : [1/(s−a) : 1/(s−b) : 1/(s− c)], we
recover Proposition 1.

Figure 5: Since the CCP is projectively-invariant, its solu-
tion on a ABC (top) with respect to a generic inconic(black)
can be regarded as the pre-image of a perspectivity Π which
sends said inconic to a circle (black, bottom). Clearly, this
circle is an incircle of the new triangle A′B′C′. This implies
that the two solutions in the original case will envelop a
conic (light blue, top) which is the pre-image of the Brocard
inellipse (light blue, bottom) under Π.

4 Cramer-Castillon on the Excircles

In this section we extend the CCP to the excircles of a given
triangle T . Referring to Figure 6:

A B

C

X3

X6

X20

X6
X6

X6

Figure 6: The CCP applied both to the incircle and the
excircles (green). In each of the four circles the symmedian
(and all Brocard objects) are shared. The four Brocard axes
concur on the de Longchamps point X20 of the reference
triangle.
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Proposition 6 The first and second solutions T1,exc and
T2,exc of the CCP on the A-excircle are given by the follow-
ing barycentric vertex matrices:

T1,exc =

−vw(φ−1)2 sv sw(φ−2)2

−vw(φ−2)2 sv(φ−1)2 sw
−vw sv(φ−2)2 sw(φ−1)2



T2,exc =

−vw(φ−1)2 sv(φ−2)2 sw
−vw sv(φ−1)2 sw(φ−2)2

−vw(φ−2)2 sv sw(φ−1)2


where u,v,w are as in Proposition 1.

Proposition 7 The symmedian X6 of the A-excircle is
shared by the two solution and is the A-exversion of the
reference’s Gergonne X7, i.e., its barycentrics are given by
[−vw,sv,sw], coinciding with the Gergonne point X7 of the

“outer” contact triangle inscribed in the A-excircle.

Corollary 8 Each pair of solutions of the CCP on an ex-
circle shares all of their Brocard objects.

Proposition 8 The Brocard axis of the incircle-CCP as
well as the 3 Brocard axes of the excircle-CCP solutions
concur on the de Longchamps point X20 of the reference.

Proof. The shared Brocard axis of the incircle-CCP solu-
tions contains, by definition, X3 and X6 of either solution
triangle. We saw above these correspond to X1 and X7
of the reference, i.e., it is the Soddy line of the reference
[6], which is known to pass through X20. The Brocard
axis shared by the A-excircle solutions are the A-exversion
(a→−a) of the incircle Brocard axis, and similarly for the
B- and C-excircles. It can be shown these 4 lines meet at
X20. �

Twenty-three from one

There are a total of 4 pairs of triangles which are solutions
to the CCP on both incircle and excircle, i.e., there are eight
triangles and a total of 24 vertices.

Proposition 9 Twenty-three of said vertices can be directly
derived from a single vertex of a solution triangle of the
CCP in the incircle.

Proof. As seen in Proposition 1, the A-vertex of the first
solution T1 on the incircle is given by:[
(1−φ)2(s−b)(s− c),(s−a)(s− c),(2−φ)2(s−a)(s−b)

]

Perform a bicentric substitution, i.e., b→ c and c→ b, and
swap postions 2 and 3 to arrive at:[
(φ−1)2(s−b)(s− c),(φ−2)2(s−a)(s− c),(s−a)(s−b)

]
i.e., the A-vertex of T2. The other vertices can be computed
cyclically. Now, derive the A-excircle solution from the
incircle one by performing an “A-exversion”, i.e., changing
every a→−a, obtaining the T1 A-vertex of the A-excircle:[
(φ−1)2(b− s)(s− c),(s−b)s,(φ−2)2(s− c)s

]
.

For the B-vertex of the A-excircle, we first perform a cyclic
substitution, then the exversion a→−a, obtaining:[
(φ−1)2(s−b)(s− c),(s−a)(s− c),(φ−2)2(s−a)(s−b)

]
which leads to:[
(φ−2)2(s−b)(s− c),(φ−1)2(s−a)(s− c),(s−a)(s−b)

]
and then:[
(φ−2)2(s−b)(s− c),(φ−1)2s(b− s),s(c− s)

]
The remaining vertices can be obtained similarly. �
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5 Appendix A. Center Correspondences

Let [i,k] indicate that Xi of either solution of the in-
circle CCP coincides with X j of the reference triangle.
The following is a list of corresponding pairs: [3,1],
[6,7], [15,3638], [16,3639], [32,10481], [182,5542], [187,1323],
[371,482], [372,481], [511,516], [512,514], [575,43180],
[576,30424], [1151,176], [1152,175], [1350,390], [1351,4312],
[1384,21314], [2076,14189], [3053,279], [3098,30331],
[3311,1373], [3312,1374], [3592,21169], [5017,42309],
[5023,3160], [5085,11038], [5585,31721], [5611,10652],
[5615,10651], [6200,31538], [6221,1371], [6396,31539],
[6398,1372], [6409,17805], [6410,17802], [6419,21171],
[6425,31601], [6426,31602], [6431,21170], [6437,17804],
[6438,17801], [6449,17806], [6450,17803], [11824,31567],
[11825,31568], [12305,30333], [12306,30334], [14810,43179],
[15815,5543], [21309,20121], [31884,8236], [43118,30342],
[43119,30341], [43120,31570], [43121,31569].
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