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ABSTRACT

This paper is a continuation of research on a geometry of a
complete quadrilateral in the Euclidean plane. We present
the well-known facts on the complete quadrilateral but all
proved in the same way by using rectangular coordinates,
symmetrically on all four sides of the quadrilateral with
four parameters a,b,c,d. The properties related to the
central circle, orthopolar circle, Hervey’s circle, Kantor’s
point and Plücker’s points are observed. During this study,
some new results come up.
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Potpuni četverostran u pravokutnim
koordinatama II

SAŽETAK

Ovaj rad je nastavak proučavanja geometrije potpunog
četverostrana u euklidskoj ravnini. Iznosimo neke poznate
činjenice o potpunom četverostranu, ali ih ovdje dokazu-
jemo jedinstvenom metodom koristeći pravokutne koordi-
nate, simetrično s obzirom na četiri stranice četverostrana,
odnosno četiri parametra a,b,c,d. Promatramo svojstva
vezana za centralnu kružnicu, ortopolarnu kružnicu, Her-
veyevu kružnicu, Kantorovu točku i Plückerove točke. Ti-
jekom ovog istraživanja dobili smo i neke nove rezultate.

Ključne riječi: potpuni četverostran, centralna kružnica,
ortopolarna kružnica, Herveyeva kružnica, Kantorova točka,
Plückerove točke

1 Introduction

In this paper we present a continuation of research on a
geometry of a complete quadrilateral in the Euclidean plane.
The first part is given in [34] where we explained that we
presented the well known facts on the complete quadrilat-
eral but all proved in the same way by using rectangular
coordinates, symmetrically on all four sides of the quadri-
lateral with four parameters a,b,c,d. The same method we
apply in this paper as well. Hence, the title of the paper
is fully justified. During this investigation, some of new
results come up and in the text they are written in the form
of theorem. We will not give an exhaustive introduction
on the points, lines, circles of the quadrilateral but we will
refer to the first paper [34]. Nevertheless, some elements
of the complete quadrilateral and valid equalities are still
mentioned.
Our complete quadrilateral has the lines A ,B,C ,D and
the vertices TAB = A ∩ B , TCD = C ∩D, TAC = A ∩ C ,

TBD = B ∩D, TAD = A ∩D, TBC = B ∩ C . Parabola P
inscribed to the complete quadrilateral is of the form

P . . .y2 = 4x, (1)

with the focus

S = (1,0), (2)

and the directrix H is x = −1. By A,B,C,D we denote
the contact points of the lines A ,B,C ,D and its inscribed
parabola P

A = (a2,2a), B = (b2,2b), C = (c2,2c), D = (d2,2d).

(3)

The lines are of the forms

A . . . ay = x+a2, B . . . by = x+b2,

C . . . cy = x+ c2, D . . . dy = x+d2, (4)
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KoG•28–2024 V. Volenec, E. Jurkin, M. Šimić Horvath: A Complete Quadrilateral in Rectangular Coordinates II

and vertices

TAB = (ab,a+b), TAC = (ac,a+ c), TAD = (ad,a+d),

TCD = (cd,c+d), TBD = (bd,b+d), TBC = (bc,b+ c).
(5)

Fig. 1 presents the complete quadrangle with its elements.
There are denoted the diagonal points and lines as well.
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Figure 1: The complete quadrangle ABCD .

Further on, the midpoints of pairs of points TAB,TCD;
TAC,TBD; TAD,TBC are lying on the median

N . . . y =
1
2

s. (6)

Basic symmetric functions will be useful hereby as well:

s = a+b+ c+d, q = ab+ac+ad +bc+bd + cd,

r = abc+abd +acd +bcd, p = abcd.

We also use abbreviations α= 1+a2, β= 1+b2, γ= 1+c2

and δ = 1+d2.
Let Sa,Sb,Sc, Sd be circumcircles of trilaterals BCD,
ACD, ABD, ABC , respectively. The circle Sd has the
equation

Sd . . . x2 + y2− (ab+ac+bc+1)x− (a+b+ c−abc)y

+ab+ac+bc = 0, (7)

and the center

Sd =

(
1
2
(ab+ac+bc+1),

1
2
(a+b+ c−abc)

)
. (8)

Circles Sa,Sb,Sc and their centers Sa,Sb,Sc are obtained
analogously because of the symmetry on a,b,c,d.
The central circle M of the quadrilateral ABCD , the circle
passing through the centers of Sa,Sb,Sc Sd , has the equation

M . . .x2+y2−1
2
(3+q−p)x+

1
2
(r−s)y− 1

2
(1+q− p)= 0,

(9)

and center

M =

(
1
4
(3+q− p),

1
4
(s− r)

)
(10)

that we call a central point of the ABCD , see Fig. 2.

2 Results

The lines A and STAD have the slopes 1
a and a+d

ad−1 , so
for the tangent of the angle ∠(A ,STAD) due to formula
(22) from [34] we obtain 1

d , meaning that this angle
is equal to the angle ∠(N ,D). Hence, for the com-
plete quadrilateral ABCD with the focus S and vertices
TAB,TAC,TAD,TBC,TBD,TCD the equalities ∠(A ,STAD) =
∠(B,STBD) = ∠(C ,STCD) = ∠(N ,D) are valid as well
as three more sets of such equalities. The statement appears
in [9].
The tangent to the circle Sd with the equation (7) in the
point TBC has the equation

2bcx+2(b+ c)y− (ab+ac+bc+1)(x+bc)

− (a+b+ c−abc)(y+b+ c)+2(ab+ac+bc) = 0,

that after some computing obtains the form

(bc−ab−ac−1)x+(b+ c−a+abc)y =

= b2c2 +b2 + c2 +bc−ab−ac

and it passes through the point

S′A =
( 1

α
(a2 +bc+bd + cd−ab−ac−ad +abcd),

1
α
(b+ c+d−a+abc+abd +acd−bcd)

)
(11)

and because of symmetry on b,c,d the tangents to Sb and
Sc at the points TCD and TBD are incident to S′A as well (see
Fig. 2). It was proved in [34] that lines TBCSd ,TBDSc,TCDSb
are intersected in one point SA = ( 1

α
[a(abc+abd +acd−

bcd+b+c+d)+1], a
α
(−abcd+ab+ac+ad−bc−bd−

cd+1)), an intersection of circles M and A . The points S′A
and SA have for the midpoint the point Sa analogous to Sd
from (8). It means that the point S′A is diametrically opposite
to SA on the circle Sa. Moreover, for the complete quadri-
lateral ABCD, the points S′A,S

′
B,S
′
C,S
′
D are diametrically

opposite to SA,SB,SC,SD on circles Sa,Sb,Sc,Sd , respec-
tively. [6] and [26] have this statement.
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Figure 2: Circumcenters Sa,Sb,Sc,Sd of trilaterals BCD,
ACD, ABD, ABC lie on the central circle M with cen-
ter M.

As for the point S′A from (11) we have x−1 = 1
α
(bc+bd +

cd−ab−ac−ad +abcd−1) and

(bc+bd + cd−ab−ac−ad +abcd−1)2+

+(b+ c+d−a+abc+abd +acd−bcd)2 =

= (a2 +1)(b2 +1)(c2 +1)(d2 +1) = αβγδ

the equality SS′A
2 = βγδ

α
, and similarly SS′B

2 = αγδ

β
, SS′C

2 =
αβδ

γ
, SS′D

2 = αβγ

δ
are valid. Obviously, the equalities

TABS2 = αβ, TACS2 = αγ, TADS2 = αδ, TBCS2 = βγ,
TBDS2 = βδ, TCDS2 = γδ are valid. For points S and Sd
from (2) and (8) we get SS2

d = 1
4 αβγ, and analogously

SS2
a =

1
4 βγδ, SS2

b =
1
4 αγδ, SS2

c =
1
4 αβδ follow. Out of these

equalities we obtain

SSa : SSb : SSc : SSd =
1√
α

:
1√
β

:
1
√

γ
:

1√
δ
. (12)

The lines SSa and STBC have the slopes b+c+d−bcd
bc+bd+cd−1 , b+c

bc−1
so for tangent of the angle ∠(STBC,SSa) due to formula
(22) in [34] and after some computing we get the value −d.
Because of symmetry on a,b,c the angles ∠(STAC,SSb) and
∠(STAB,SSc) have the same value for the tangents. Lines
SS′D and SSd have the slopes

a+b+ c−d +abd +acd +bcd−abc
ab+ac+bc−ad−bd− cd +abcd−1
and
a+b+ c−abc

ab+ac+bc−1
,

so for the tangent of the angle ∠(SS′D,SSd) we get the value
−d again. Because of that, there are the equalities among
angles

∠(STBC,SSa)=∠(STAC,SSb)=∠(STAB,SSc)=∠(SS′D,SSd).

Besides that, the equalities

SSa : STBC = SSb : STAC = SSc : STAB = SSd : SS′D =
1
2

√
δ

are valid. This means that cyclic quadrangles TBCTACTABS′D
and SaSbScSd are directly similarly and that the factor of
similarity is equal to 1

2

√
δ, and the center of similarity

is the focus S. These statements can be found in [26].
Similarly as this, the cyclic quadrangles S′ATCDTBDTBC,
TCDS′BTADTAC and TBDTADS′CTAB are similar to quadran-
gle SaSbScSd where the center of similarity is the focus
S, and factors of similarity are 1

2
√

α, 1
2

√
β, 1

2
√

γ, see Fig. 3.
The angles of these studied similarities have the tangents
−d,−a,−b,−c, respectively. However, these are slopes
of lines perpendicular to lines D,A ,B,C so the mentioned
angles of similarity are the same as the ones formed by
median N and normals to the lines D,A ,B,C , respectively.
We have just proved our original theorem.
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Figure 3: Visualisation of Theorem 1

Theorem 1 Let ABCD be a complete quadrilateral.
The cyclic quadrangles S′ATCDTBDTBC, TCDS′BTADTAC,
TBDTADS′CTAB and TBCTACTABS′D are similar to quadran-
gle SaSbScSd . Angles of similarity are the same as the ones
formed by median N and normals to the lines A ,B,C ,D,
respectively.
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From the latest results the next follows: triangles SaSbSc,
SaSbSd , SaScSd , SbScSd are directly similar to trilaterals
ABC , ABD, ACD, BCD where the center of each simi-
larity is the focus S, and that is the statement in [31].
The circle with the equation

x2 + y2− (ab+ cd)x− sy+ p+(a+b)(c+d) = 0 (13)

is incident to TAB and TCD and the center of the circle is the
point

( 1
2 (ab+ cd), 1

2 s
)
, the midpoint of these two points.

Hence, (13) is the circle with diameter TABTCD. Similar, the
circle with the diameter TACTBD has the equation

x2 + y2− (ac+bd)x− sy+ p+(a+ c)(b+d) = 0. (14)

Subtracting these two equations, the radical axis of these cir-
cles with the equation (a−d)(c−b)x+(a−d)(c−b) = 0
is obtained. It is the line with equation x =−1, being the di-
rectrix H . Because of symmetry, it is the radical axis of the
third circle with diameter TADTBC as well. The statement
that circles with diameters TABTCD, TACTBD and TADTBC
have the directrix H for the radical axis, can be found in
[13] and it is attributed to Bodenmiller, and some of authors
call it the Plücker’s theorem. The elementary proofs can be
found in [5], [19] and [23]. The intersection point of the
line H with each of these three circles are the points with
ordinates that fulfill the equation

y2− sy+ p+q+1 = 0, (15)

i.e.

P1,2 =

(
−1,

1
2
(s±

√
s2−4p−4q−4)

)
, (16)

that are so called Plücker’s points of the quadrilateral
ABCD, real ones and imaginary. The pencil of circles
incident to these two points is Plücker’s pencil of circles.
Let the points A′′,B′′,C′′,D′′ be orthogonal projections of
any Plücker’s point Pi, i ∈ 1,2, to the lines A ,B,C ,D, re-
spectively. Then, A′′,B′′ are incident to the circle with the
diameter PiTAB, and points C′′,D′′ are on the circle with
the diameter PiTCD. However, these two diameters are per-
pendicular because the points Pi, i ∈ 1,2, are incident to the
circle with diameter TABTCD, so then the circles PiA′′B′′ and
PiC′′D′′ are orthogonal circles. This statement appears in
[33].
The circle P ′ with equation

P ′ . . .x2+y2− 1
2
(p+q+1)x−sy+

1
2
(p+q−1) = 0 (17)

is incident to the focus S = (1,0) and Plücker’s points (16).
Namely, out of x = −1 and (17) we obtain the equation
(15). It is so called the orthopolar circle of the quadrilateral
ABCD . The center of this circle is the point

P =

(
1
4
(p+q+1),

1
2

s
)
, (18)

orthopolar center of the quadrilateral ABCD, incident to
the median N , see Fig. 4. For the radius ρ′ of the circle P ′
we get 16ρ′2 = (p+q−3)2 +4s2.
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Figure 4: Plücker’s points P1,P2, orthopolar circle P ′, and
orthopolar center P of the quadrilateral ABCD .

For the point P from (18) and the point Sd from (8) we
obtain the equality

16PS2
d =(ad +bd + cd−ab−ac−bc−1+abcd)2

+4(abc+d)2,

and adding up this equality and three more analogous ones
we get

16
(
PS2

a+PS2
b+PS2

c+PS2
d
)
=4(a2+1)(b2+1)(c2+1)(d2+1)

i.e. because of (21) in [34] we show that for the or-
thopolar center P and the centers Sa,Sb,Sc,Sd the equality
PS2

a +PS2
b +PS2

c +PS2
d = 4ρ′2 is valid. This appears in

[26].
The points Sa,Sb,Sc,Sd from (8) have the centroid Gs =( 1

4 (q+2), 1
8 (3s− r)

)
, the midpoint of P from (18) and M

from (10). This proves the statement in [27] that the point
symmetric to the point M with respect to the centroid Gs is
incident to the median of ABCD. The point Gs is called
a dimidium point of the quadrilateral ABCD. Adding the
equations (9) and (17) of the circles M and P ′ we obtain
the equation of the so called dimidium circle of that quadri-
lateral with the form

x2 + y2− 1
2
(2+q)x− 1

4
(3s− r)y+

1
2

q = 0. (19)
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Its center is the dimidium point Gs and it passes through
the focus S = (1,0).
We observe the triangle HMP where H =

(
−1, 1

4 (3s+ r)
)

is the centroid of the orthocenters of four trilaterals of the
quadrilateral ABCD, M is its central point from (10), and
P is its orthopolar center from (18). The triangle HMP has
the centroid in the point T =

( 1
6 q, 1

2 s
)

from (10) in [34],
and that is the centroid of all six vertices of the quadrilateral
ABCD. The midpoint of the points H and M is the point( 1

8 (q− p−1), 1
2 s
)

and it is incident to the median N . The
orthopolar center P is incident to the median as well. These
statements are coming from [2].
The circle Pd with equation

x2 + y2 +2x−2(a+b+ c+abc)y (20)
+a2 +b2 + c2 +ab+ac+bc+abc(a+b+ c) = 0

has the center in the orthocenter Hd = (−1,a+b+c+abc)
of the trilateral ABC and the radius given by

ρ
2
d = 1+ab+ac+bc+abc(a+b+ c+abc).

The point TAB has the polar line abx+(a+b)y+ x+ab−
(a+b+c+abc)(y+a+b)+a2+b2+c2+ab+ac+bc+
abc(a+b+c) = 0 with respect to the circle Pd , i.e. the line
x− cy+ c2 = 0 that is the line C . Similarly, we obtain lines
B and A for polar lines of points TAC and TBC, respectively.
Hence, the circle Pd is the polar circle of the trilateral ABC .
Analogously, the polar circle Pc of the trilateral ABD is of
the form

x2 + y2 +2x−2(a+b+d +abd)y (21)
+a2 +b2 +d2 +ab+ad +bd +abd(a+b+d) = 0.

The radical axis of (20) and (21) is of the final form
2y+ s = 0 that makes the equation of the median. The
same applies to the polar circles of the other two trilater-
als. Hence, from [8] and [24] we have the statement: The
polar circles of ABC , ABD, ACD and BCD belong to
one pencil of circles whose radical axis is the median of the
quadrilateral ABCD. As it appears in [3] we will show
that this pencil of circles is conjugate to Plücker’s pencil of
circles, i.e. each circle of one pencil is orthogonal to each
circle of another pencil, see Fig. 5. It is enough to prove
that the Plücker’s points P1,2 are conjugated with respect to
the circle (20). Two points (xi,yi), i = 1,2, are conjugated
with respect to the circle (20) under the condition that

x1x2 + y1y2 + x1 + x2− (a+b+ c+abc)(y1 + y2)

+a2 +b2 + c2 +ab+ac+bc+abc(a+b+ c) = 0

holds. For Plücker’s points from (16) the equalities x1x2 = 1,
y1y2 = p+q+1, x1 + x2 = −2, y1 + y2 = s are valid, and
the next equality

p+q− (a+b+ c+abc)s+a2 +b2 + c2

+ab+ac+bc+abc(a+b+ c) = 0

is valid as well.
Putting y= 1

2 s into (20) we obtain 4x2+8x+s2−4p−4q=
0 with solutions x1,2 =−1± 1

2

√
4(p+q+1)− s2. Hence,

the polar circles of four trilaterals of quadrilateral ABCD
have the common points (real or imaginary)

P′1,2 =
(

1± 1
2

√
4(p+q+1)− s2,

1
2

s
)
.
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Figure 5: Two conjugated pencils of circles.

Let us remind that Plücker’s pencil of circle has the com-
mon points P1,2 from (16). Out of two conjugated pen-
cil of circles, one is always elliptic, and another is hyper-
bolic, or both of them are parabolic. It depends on the sign
of 4(p+ q+ 1)− s2. The case, when both of pencils are
parabolic, we get 4(p+ q+ 1) = s2 i.e. P1 = P2 = P′1 =
P′2 =

(
−1, 1

2 s
)
.

The points TAB,TCD from (5) are conjugated with respect
to the circle with the equation x2 + y2 +2hx+2 jy+ k = 0
if and only if the equality abcd +(a+ b)(c+ d)+ h(ab+
cd)+ j(a+b+ c+d)+ k = 0 is valid, i.e.

(h−1)(ab+ cd)+ js+ k+ p+q = 0.

The analogous equalities for pairs of points TAC,TBD and
TAD,TBC are

(h−1)(ac+bd)+ js+ k+ p+q = 0
(h−1)(ad +bc)+ js+ k+ p+q = 0.

If two out of these three equalities are valid, than h = 1
follows, and the third equality is valid as well. Besides,
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k = − js− p− q is valid and the observed circle has the
equation x2 + y2 +2x+2 jy− js− p−q = 0 and the center
incident to the directrix of the quadrilateral ABCD. Any
two circles of this form have the radical axis with the equa-
tion 2y− s = 0, and it is the median of the quadrilateral
ABCD. Hence, if two pairs of opposite vertices of the
quadrilateral are conjugated with respect to some circle,
then it is valid for the third pair as well, and the circle
belongs to one pencil of circles whose the radical axis is
the median and its centers are incident to the directrix of
the quadrilateral, as it is in [22]. This statement is in accor-
dance with the Hesse’s theorem: if two pairs of the opposite
vertices of the quadrilateral are conjugated with respect to
some conic, then this holds for the third pair of its opposite
vertices as well.
The previous statement can be refined a little more. Each cir-
cle with the center lying on the directrix of the quadrilateral
ABCD has the equation of the form x2 + y2 +2hx+2 jy+
k = 0, where h = 1. Because of that the points TAB,TCD
are conjugated with respect to this circle under the condi-
tion js+ k+ p+ q = 0, so such a circle has the equation
x2 + y2 +2x+2 jy− s j−q− p = 0 where j is a parameter.
The symmetry on a,b,c,d of the previous condition proves
our original statement:

Theorem 2 Let ABCD is a complete quadrilateral. If one
pair of opposite vertices of the quadrilateral is conjugated
with respect to the circle with the center on the directrix of
the quadrilateral, then it is also valid for other two pairs of
opposite vertices.

We give below the well known statement: If two points
are conjugated with respect to the circle then this circle
is orthogonal to the circles for which these two points are
diametrically opposite. For the sake of completeness in
proving all the statements using rectangular coordinates,
we will prove this statement. Without loss of generality, we
can take that our circle has the center (0,0), the radius equal
to 1 and the equation x2 + y2 = 1, so two points are conju-
gated with respect to it under the condition that for their
coordinates the equality x1x2 + y1y2 = 1. We can take one
of these points of the forms (u,0), and then from previous
condition follows that another point is of the form

( 1
u ,v
)
.

The center of another circle is the point
( 1

2 (u+
1
u ),

1
2 v
)
, and

the square of its radius is 1
4

(
(u− 1

u )
2 + v2

)
, while for the

square of distance of these two circles we get the form
1
4

(
(u+ 1

u )
2 + v2

)
. Our statement follows from the fact that

1
4

((
u− 1

u

)2

+ v2

)
+1 =

1
4

((
u+

1
u

)2

+ v2

)
.

From the previous consideration, due to this proven state-
ment, it follows that circles with centers on the directrix,
to which the opposite vertices of the quadrilateral ABCD

are conjugate points, form one pencil of circles, which are
orthogonal to the circles, of which the diagonals of that
quadrilateral are diameters, and the last three circles belong
to another pencil of circles (with centers on the median of
the quadrilateral).
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Figure 6: The complete quadrilateral ABCD whose oppo-
site vertices are conjugated with respect to the circle with
the center on the directrix of the quadrilateral.

The trilaterals ABC has the orthocenter Hd = (−1,a+b+
c+abc) and circumcenter Sd given by (8), and their mid-
point is the Euler’s center Nd of that trilateral and it is given
by

Nd =

(
1
4
(ab+ac+bc−1),

1
4
(3a+3b+3c+abc)

)
(22)

Normals to the side D have the slope −d, hence the normal
from the point Nd to this line is 4dx+ 4y = 3s+ r− 4d.
This line is incident to the point

H =

(
−1,

1
4
(3s+ r)

)
, (23)

the same is valid and for the perpendiculars of the Eu-
ler’s centers of trilaterals ABD, ACD, BCD to the lines
C ,B,A , respectively. The point H is the Morley’s point
of the quadrilateral ABCD. It is incident to the direc-
trix of this quadrilateral and it is the centroid of points
Ha,Hb.Hc,Hd , see Fig. 7. The fact that normals from Eu-
ler’s centers of four trilaterals BCD, ACD, ABD, ABC
to lines A ,B,C ,D are incident to one point on directrix we
find in [20] and [21].

51
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Figure 7: Morley’s point H of ABCD
The parallel line to D through the point Nd from
(22) has the equation x − dy = 1

4 (ab + ac + bc − 1 −
3ad− 3bd− 3cd− abcd) and it passes through the point( 1

4 (ab+ac+bc+ad +bd−3cd−1−abcd),a+b
)
. The

parallel line to C and through the point Nd is incident to this
point as well. The midpoint of it and TCD = (cd,c+ d)
is the point

( 1
8 (q− p−1), 1

2 s
)
. Hence, the quadrilat-

eral ABCD is symmetric to the quadrilateral formed
by parallels to A ,B,C ,D through the Euler’s centers of
BCD , ACD , ABD , ABC with the center of the symmetry( 1

8 (q− p−1), 1
2 s
)

that is incident to the median N of the
quadrilateral ABCD. This point is in [32] called nine-
point center homothetic center QL−P22.
Points Sc,Sb,Sa are analogous to the point Sd from (8).
These three points have the centroid

GD =
(1

6
(ab+ac+2ad +bc+2bd +2cd +3),

1
6
(2a+2b+2c+3d−abd−acd−bcd)

)
, (24)

i.e. it is the centroid of the triangle SaSbSc, and circum-
center of the triangle is the point M from (10). As in any
triangle the following is valid: for the circumcenter S, or-
thocenter H and the centroid G the equality H +2S = 3G
holds. So, for the orthocenter HD of the triangle SaSbSc the
equality HD = 3GD−2M holds and from (10) and (24) we
get

HD =

(
1
2
(ad +bd + cd + p),

1
2
(d +abc+ s)

)
. (25)

The midpoint of the points Sd and HD is the orthopolar
center P from (18). The coordinates of the point HD given

in (25) obviously satisfy the equation (4) of the side D.
Therefore, we can conclude that the points HA, HB, HC,
HD lie on the sides A , B , C , D, respectively. So, the fact
found in [7] and [25] is valid: The orthopolar center P
is the midpoint of pairs of points Sa,HA; Sb,HB; Sc,HC;
Sd ,HD where HA,HB,HC,HD are orthocenters of triangles
SbScSd , SaScSd , SaSbSd , SaSbSc, incident to A , B , C , D,
respectively, see Fig. 10.
The circle Sd with the equation (7) has the tangent line at
TAB = (ab,a+b) of the form

2abx+2(a+b)y− (ab+ac+bc+1)(x+ab)

− (a+b+ c−abc)(y+a+b)+2(ab+ac+bc) = 0.

This tangent intersects the line D with dy = x+d2 in the
point

x=
acd+bcd−abd−a2d−b2d+ad2+bd2−cd2−a2b2d+abcd2

c+d−a−b−abc−abd +acd +bcd

y=
ac+bc−a2−ab−b2 +d2−a2b2−abd2 +acd2 +bcd2

c+d−a−b−abc−abd +acd +bcd
.

(26)

The equation

[c+d−a−b−ab(c+d)+ cd(a+b)]

· [x2 + y2−(ab+ cd)x−sy+ p+(a+b)(c+d)]

+ [1−ab−cd +(a+b)(c+d)+abcd]

· [(a+b−c−d)x+(cd−ab)y+ab(c+d)−cd(a+b)]=0

is the linear combination of the equation (13) of the cir-
cle with diameter TABTCD and the equation (cd− ab)y =
(c+d−a−b)x+(a+b)cd−ab(c+d) of the line TABTCD,
so it is the equation of the circle STABTCD. The point from
(26) is incident to this circle as well. Hence, the following
statement from [1] and [3] is proved: the intersection points
of the tangents at the point TAB to the circles Sc and Sd with
the sides C and D, respectively, and the intersections of
the tangents at the point TCD to the circles Sa and Sb with
the sides A and B , respectively, lie on the circle STABTCD.
Similarly, two quadruples of analogous intersection points
lie on the circles STACTBD and STADTBC.
It can be checked that the circle with equation

(a−b)(x2 + y2)

+(ab2−a2b+b2c−a2d−a+b+ c−d)x−
(ab2c−a2bd +a2−b2 +ac−bd)y

+a2b2c−a2b2d +a2b−ab2 +a2c−b2d = 0

passes through the points TAB,TAD,TBC and the circle with

2(x2 + y2)− [(a+b)(c+d)+2ab+2]x
+[(ab+1)(c+d)−2(a+b+ c+d)]y+

+(a+b)(c+d)+2ab = 0
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passes through the points S and TAB, and through the mid-
points of the line segment TACTAD and TBCTBD. Their radical
axis is

(a2+b2+2)x−(a2b+ab2+a+b)y+2a2b2+a2+b2 = 0,

and due to symmetry on c and d, the circle that is in-
cident to TAB,TAC,TBD also belongs to the same pencil
of circles. All three of circles have the common point
TAB and an additional point Sab. However, the circles
TABTADTBC and TABTACTBD are circumcircles of the trilat-
erals ABW and ABV of the quadrilateral ABV W , so
the point Sab is the focus of that quadrilateral. We have
just proved the statement from [3]: If Sab is the focus of
the quadrilateral ABV W , then the circle Sab = STABSab
passes through the midpoints of line segments TACTAD and
TBCTBD. There are five more such circles Scd , Sac, Sbd ,
Sad , Sbc incident to triples of points S,TCD,Scd; S,TAC,Sac;
S,TBD,Sbd; S,TAD,Sad; S,TBC,Sbc and passing through the
two of midpoints of corresponding line segments, where
Scd , Sac, Sbd , Sad , Sbc are foci of quadrilaterals CDV W ,
ACUW , BDUV , ADUV , BCUV .

Euler’s line of the trilateral ABC , i.e. the line connecting
Sd =

( 1
2 (ab+ac+bc+1), 1

2 (a+b+ c−abc)
)

and Hd =

(−1,a+ b+ c+ abc) has the slope − a+b+c+3abc
ab+ac+bc+3 , so the

perpendicular line from Nd from (22) has the equation

4(ab+ac+bc+3)x−4(a+b+ c+3abc)y =

−3a2b2c2−8abc(a+b+ c)+a2b2 +a2c2 +b2c2

−3(a2 +b2 + c2)d−4(ab+ac+bc)−3.

The point

K =

(
1
4
(q+3p−1),

1
4
(3s+ r)

)
(27)

fulfill this equation. With analogous statements for other
three trilaterals of the quadrilateral ABCD we have proved
statement from [15] and [18]: The perpendicular lines to
Euler’s lines of four trilaterals of the quadrilateral at its
Euler’s centers are incident to one point K. We will call
the point K Kantor’s point of the quadrilateral ABCD , see
Fig. 8. The points M and K from (10) and (27) have the
point P from (18) as their midpoint, as stated in [2].

The point H and the point K from (23) and (27) have the
same ordinate, so the line HK is parallel to median, i.e.
perpendicular to the directrix that is the result given in [2],
[7] and [10].
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Figure 8: Euler’s lines ea, eb, ec, ed and Kantor’s point K
of ABCD

The center M from (10) and Kantor’s point K from (27)
have the midpoint P, the orthopolar center from (18),
and points M and P have the dimidium center Gs for
the midpoint. Thus, for the oriented lengths we have
ratios KP : PGs : GsM = 2 : 1 : 1. The point P22 =( 1

8 (q− p−1), 1
2 s
)

is the midpoint of the Morley’s point
H from (23) and central point M from (10), as well as
the midpoint of the orthopolar center P from (18) and
the point P20 =

(
− 1

2 (p+1), 1
2 s
)
. For the centroid T =( 1

6 q, 1
2 s
)
, dimidium point Gs =

( 1
4 (q+2), 1

8 (3s− r)
)

and
Morley’s point H =

(
−1, 1

4 (3s+ r)
)
, the equality 3T =

2Gs +H is valid meaning that these points are collinear
and that for oriented lengths the equality T H = −2T Gs
holds. Out of (23) and (27) the equality K − H =( 1

4 (q+3p+3),0
)

follows, and for the point T and P from
P−T =

( 1
12 (q+3p+3),0

)
is valid, so the lines HK and

T P are parallel, and for the oriented lengths the equal-
ity HK = 3T P holds. The points T,P,P20 and P22 are
incident to the median N and we derived the equality−→
T P =

( 1
12 (q+3p+3),0

)
. Out of the equalities P20 =(

− 1
2 (1+ p), 1

2 s
)

and P22 =
( 1

8 (q− p−1), 1
2 s
)
, the forms

−−−−−→
P20P22=

( 1
8 (q+3p+3),0

)
,
−−−→
P22T =

( 1
24 (q+3p+3),0

)
follow, and because of that P20P22 : P22T : T P =
3 : 1 : 2. From the previous consideration points
T,M,P,Gs,H,K,P20 and P22 in each quadrilateral have
mutual relationships as it is presented on the Fig. 9. Then
the fact from [32] that lines MP20,PH and GsP22 are par-
allel follows.
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Figure 9: Centroid T , orthopolar center P, dimidium point
Gs, Morley’s point H and Kantor’s point K of ABCD
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Figure 10: Hervey’s circle H ′ of ABCD

Symmetry with respect to the point P from (18) is done by
replacement

x→ 1
2
(1+q+ p)− x, y→ s− y. (28)

By this symmetry the points Sa,Sb,Sc,Sd are mapped into
HA,HB,HC,HD and because of that the last mentioned

points are incident to one circle H ′ whose equation is de-
rived from the equation (9) of the central circle M . We
obtain the circle H ′

x2 + y2− 1
2
(q+3p−1)x− 1

2
(3s+ r)y

+
1
2
(s2 + sr− p+ p2 + pq) = 0, (29)

so called Hervey’s circle of the quadrilateral ABCD. Its
center is Kantor’s point K of the quadrilateral ABCD , see
Fig. 10. The fact that HAHBHCHD lie on one circle with the
center K appears in [17]. The point symmetric to the focus
S with respect to the point P obviously is incident to the
circle H ′.
From (17) and (21) given in [34] the next equations are
obtained

16(ρ2
a +ρ

2
b +ρ

2
c +ρ

2
d) = 12s2 +8q2 +4r2−4sr

−2qp−6q+4p+4,

16ρ
2 = s2 +q2 + r2 + p2−2sr−2qp−2q+2p+1,

and out of (2), (10) and (27) the following equalities can be
derived

16SK2 = 9s2 +q2 + r2 +9p2 +6sr+6pq−10q−30p+25,

16MK2 = 4s2 +4r2 +16p2 +8sr−32p+16.

And now, we easily get the equality ρ2
a +ρ2

b +ρ2
c +ρ2

d −
7ρ2 = SK2−MK2 that is statement from [11]. The solution
of Guillotin reaches

−−→
MSa +

−−→
MSb +

−−→
MSc +

−−→
MSd =

−−→
MK that

then can be found in [14], while [32] attributes it to Morley.
This means that equality Sa +Sb +Sc +Sd = 3M+K holds
for the points themselves. However, it is easy to see by (8)
and analogous formulas, and (10) and (27) that the left and
the right sides are equal to

(
q+2, 1

2 (3s− r)
)
.

We can prove famous Zeeman’s theorem from [12] saying:
if one side of the quadrilateral is parallel to Euler’s line of
the trilateral formed by the remaining three sides, then this
holds for the rest three analogous combinations. Indeed,
slopes − a+b+c+3abc

ab+ac+bc+3 and 1
d of the Euler’s line of the trilat-

eral ABC and the line D are the same under the condition
q+3p+3 = 0 that is symmetric on a,b,c,d. The quadrilat-
eral with such properties is called Zeeman’s quadrilateral.
The midpoint of Kantor’s point K from (27) and central
point M from (10) is ( 1

4 (1+q+ p), 1
4 (s− r)). In the case

of Zeeman’s quadrilateral 1+q+ p = 2
3 q holds, hence this

midpoint is the centroid T . The statement comes from [12].
In the same case Kantor’s point K from (27) and Morley’s
point H from (23) coincide, that is the result in [17].
As explained in [16], if perpendiculars are dropped on any
line from the vertices of a triangle, the perpendiculars to
the opposite sides from their feet are concurrent at a point
called the orthopole of the line. The construction of the
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orthopol Od of the line D with respect to the trilateral ABC
is shown in Fig. 12.
The perpendicular line from the point S to the line A has
the equation y+ ax = a and intersects the line A in the
point A′′ = (0,a). Similarly, ortoghonal projections of the
focus S to lines B,C ,D are points B′′ = (0,b), C′′ = (0,c),
D′′ = (0,d), respectively. All of four points lie on y−axis
that is vertex tangent to parabola P . Let A ′′,B ′′,C ′′,D ′′
be parallel lines to the lines A ,B,C ,D through the points
Ha,Hb,Hc,Hd . The lines A ′′ and B ′′ have the equations

ay = x+1+ab+ac+ad +abcd,

by = x+1+ab+bc+bd +abcd,

and their intersection point is (−1−ab−abcd,c+d). The
midpoint of this point and the point TAB = (ab,a+ b) is
the point N = (− 1

2 (p+ 1), 1
2 s) from (28) in [34]. Simi-

larly, the same is valid for the quadrilaterals ABCD and
A ′′B ′′C ′′D ′′, hence these two quadrilaterals are symmet-
ric with respect to the point N. The perpendicular from
A ′′∩B ′′ to the line H has the equation y = c+d and inter-
sects it in the point (−1,c+d), and the perpendicular line
from that point to the line C ′′ has the equation y+cx = d so
it passes through the point D′′ = (0,d). Because of symme-
try on a,b,c we conclude that D′′ is the orthopole of H with
respect to the trilateral A ′′B ′′C ′′. In the same way we ob-
tain three more orthopoles. The statement that orthogonal
projections of the point S to lines A ,B,C ,D are orthopoles
of the line H with respect to trilaterals B ′′C ′′D ′′, A ′′C ′′D ′′,
A ′′B ′′D ′′, A ′′B ′′C ′′ appears in [28] and [29].
Parallel lines to A ,B,C ,D through the points Sa,Sb,Sc,Sd
form a quadrilateral symmetric to the quadrilateral ABCD
with respect to the point P, and parallel to lines A ,B,C ,D
through points Ha,Hb,Hc,Hd form a quadrilateral sym-
metric to ABCD with respect to point N. The second
quadrilateral is obtained by using translation for a vec-
tor v from the first quadrilateral. If τ is any real num-
ber and if Ta,Tb,Tc,Td are points such that SaTa = τSaHa,
SbTb = τSbHb, ScTc = τScHc, SdTd = τSdHd hold, then lines
through the points Ta,Tb,Tc,Td parallel to A ,B,C ,D form
the quadrilateral that is obtained by using the translation
for vector τv from the first new before mentioned quadrilat-
eral. It is symmetric to A ,B,C ,D with respect to the point
Tτ that is obtained from P by the translation for the vec-
tor τ
−→
PN. All of these centers of symmetry Tτ are incident

to the common median of all of mentioned quadrilaterals.
Particularly, the quadrilateral made by lines parallel to
A ,B,C ,D through centroids Ga,Gb,Gc,Gd of trilaterals
BCD, ACD, ABD, ABC , is symmetric to the quadrilat-
eral ABCD with respect to a point Tτ such that

−→
PTτ =

1
3
−→
PN.

It is easy to see that Tτ = ( 1
6 q, 1

2 s), and that is the centroid
T of the vertices of ABCD . This statement appears in [4].

The points Sa,Sb,Sc,Sd are in accordance with (8). The
midpoint of e.g. Sc and Sd have coordinates of the form

x =
1
4
(2ab+ac+ad +bc+bd +2),

y =
1
4
(2a+2b+ c+d−abc−abd),

and the line SaSb has the slope 1−cd
c+d so the perpendicu-

lar line to this line through the point P from (18) has the
equation

(c+d)x+(1− cd)y =
1
4
(c+d)(p+q+1)+

1
2
(1− cd)s,

that is fulfilled by before mentioned coordinates. Anal-
ogously, the perpendicular lines from the point P to any
side of the cyclic quadrangle SaSbScSd pass through the
midpoints of corresponding opposite sides. A well known
properties of the cyclic quadrangle is following: the perpen-
dicular lines from the midpoint of the side to the opposite
side pass through one point such that Wallace’s lines of
the vertices of this quadrangle with respect to the triangles
formed by remaining three vertices are incident to this point
as well as Euler’s circles of all four triangles. This point
is so called anticenter of this cyclic quadrangle. Hence,
the orthopolar center P of the quadrilateral ABCD is the
anticenter of the cyclic quadrangle SaSbScSd . Because of
symmetry with respect to the point P it follows that P is the
anticenter for the cyclic quadrangle HAHBHCHD as well.
We find this statement in [21].
The line D0 through the point Sd from (8) and parallel to D
has the equation

dy− x =
1
2
(ad +bd + cd−bc−bd− cd−abcd−1).

This equation is possible to obtain by substitutions (28), so
lines D and D0 are symmetric with respect to the orthopolar
center P. Similarly, this is valid for the remaining sides of
ABCD . Hence, we shown our original theorem:

Theorem 3 Let ABCD be a complete quadrilateral.
Quadrilaterals ABCD and A0B0C0D0 are symmetric with
respect their join orthopolar center P, where A0, B0, C0, D0
are lines through the circumcenters Sa, Sb, Sc, Sd of trilater-
als BCD, ACD, ABD, ABC , and parallel to A ,B,C ,D
respectively. The circumcenters of trilaterals of one quadri-
lateral are incident to corresponding sides of the other
quadrilateral. The central circle of one quadrilateral is
Hervey’s circle of the other. The central point of one quadri-
lateral is Kantor’s point of the other.

55
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Figure 11: Hervey’s circle H ′ of ABCD is central circle
of A0B0C0D0, and vice versa.

The line D0 through the point Sd from (8) parallel to D is
x−dy= 1

2 (1+ab+ac+bc−ad−bd−cd+abcd), and the
normal from the point TAB to the line D0 has the equation
dx+ y = a+ b+ abd and intersects it in the point having
coordinates

x =
1
2δ

(1+ab+ac+ad +bc+bd− cd +abcd +2abd2),

y =
1
2δ

(2a+2b−d +ad2+bd2+ cd2+abd−acd−bcd−abcd2).

The normal from this point to the line C has the equation

2δ(cx+ y) = 2a+2b+ c−d +abc+abd +ac2 +ad2

+bc2 +bd2 + cd2− c2d +abc2d +abcd2

and passes through the point Od0 with coordinates

x =
1
2δ

(ab+ac+bc−ad−bd− cd +abcd−1) ,

y =
1
2δ

(2a+2b+2c−d +abd +acd +bcd

+ad2 +bd2 + cd2 +abcd2).

As these coordinates are symmetric on a,b,c this point is
incident to two more analogous normals, i.e. the point Od0
is the orthopole of the line D0 with respect to the trilateral
ABC . It is easy to prove that the point Od0 is incident to
orthopolar circle P ′ of the quadrilateral ABCD with equa-
tion (17). The same is valid for orthopoles Oa0,Ob0,Oc0
of lines A0,B0,C0 with respect to trilaterals BCD, ACD,
ABD that justify the name of this circle. The fact that four

orthopoles Oa0,Ob0,Oc0,Od0 lie on one circle incident to
focus, we find in [30]. Leemans uses in his proof inscribed
parabola with the equation y2 = 4x as well, and as the result
he obtains the equation (17) using notations different from
ours. The point Od0 can be written in the form

Od0=

(
1
2δ

(q+ p−1−2ds+2d2),
1
2δ

(2s−3d +dq+d p)
)
.

(30)
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Figure 12: The orthopoles Od and Od0 of the lines D and
D0 with respect to the trilateral ABC , respectively.

The line D ′′′ symmetric to the line D with respect to
the axis X of the parabola P has the slope − 1

d , so the
line through Od0 parallel to this line has the equation
x+dy = 1

2δ
(q+ p−1−d2 +qd2 + pd2) i.e. the equation

x+dy = 1
2 (q+ p−1). This line intersects the axis X in the

point
( 1

2 (q+ p−1),0
)
. It is easy to check that this point is

incident to orthopolar circle with the equation (17). The line
through the point Sd from (8) parallel to the line D ′′′ has the
equation x+dy = 1

2 (1+q− p) and intersects the axis X in
the point ( 1

2 (1+q− p),0) which lies on the central circle
with the equation (9). These results are in [31] attributed to
R. Bouvaist-u: the lines through the circumcenters of four
trilaterals BCD, ACD, ABD, ABC , and parallel to the
lines symmetric to A , B , C , D with respect to the axis of
the inscribed parabola P intersect in the intersection point
of the axis and the central circle different from the focus S.
For the point Od0 from (30) we have x− 1 = 1

2δ
(q+ p−

3−2ds), so together with second coordinate from (30) the
equality 4δ2SOd0

2 = (d2 + 1)(p2 + 2pq+ q2− 6p− 6q+
4s2 +9) is obtained, i.e.

SOd0
2 =

1
4δ

(p2 +2pq+q2−6p−6q+4s2 +9),
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and formulas for distances of focus S to the points
Oa0

2,Ob0
2,Oc0

2 look similarly and from them the equality

SOa0 : SOb0 : SOc0 : SOd0 =
1√
α

:
1√
β

:
1
√

γ
:

1√
δ

(31)

follows. From (31) for x− 1 and the second coordi-
nate in (30) follows that SOd0 has the slope 2s−3d+dq+d p

q+p−3−2ds

and, analogously, the line SOc0 has 2s−3c+cq+cp
q+p−3−2cs . Af-

ter applying formula (22) in [34] and leaving out the
common factor p2 + 2pq + q2 − 6p− 6q + 4s2 + 9 we
obtain tan∠(SOd0,SOc0) =

c−d
cd+1 . Lines STAC and STAD

have the slopes a+c
ac−1 and a+d

ad−1 and for them we ob-
tain tan∠(STAC,STAD) =

c−d
cd+1 . Hence, ∠(SOd0,SOc0) =

∠(STAC,STAD). Earlier we have proved that focus S is
the center of similarity of quadrangles TCDS′BTADTAC and
SaSbScSd . Because of that ∠(STACSTAD) = ∠(SSd ,SSc).
We obtain the equality ∠(SOd0SOc0) = ∠(SSd ,SSc). With
such other equalities with other index pairs, for example,
∠(SOa0SOb0) = ∠(SSa,SSb) etc. and from equalities (12)
and (31) we conclude that cyclic quadrangles SaSbScSd
and Oa0Ob0Oc0Od0 are directly similar with the center of
similarity S. This result appears in [26].
According to [34] the orthopole Od of the line
D with respect to ABC is given by Od =(
−1, 1

δ

(
a+b+ c+(ab+ac+bc)d +abcd2 +d2

))
.

Its coordinates can be rewritten as Od =(
−1, 1

δ

(
s−d +qd− sd2 + pd +2d3

))
. The difference

between the ordinates of the points Od and Od0 is equal to
1
2δ

(
−d−qd− pd +2sd2−4d3

)
, and difference between

their abscissas is equal to 1
2δ

(
1+q+ p−2sd +4d2

)
. Thus,

the slope of the line OdOd0 is −d. Therefore, OdOd0 is
perpendicular to D. Similarlly, the lines OaOa0, ObOb0,
OcOc0 are perpendicular to the sides A , B , C (see Fig. 13).
So, the following theorem, which is our original result, is
proved:

Theorem 4 Let ABCD be a complete quadrilateral. The
lines OaOa0, ObOb0, OcOc0, OdOd0 are perpendicular to
the sides A , B , C , D , where Oa, Ob, Oc, Od are orthopoles
of A , B , C , D with respect to BCD, ACD, ABD, ABC ,
and Oa0, Ob0, Oc0, Od0 are orthopoles of A0, B0, C0, D0
with respect to BCD , ACD , ABD , ABC , respectively.

Some long, but elementary calculations show that the mid-
point of the point Sd given by (8), and the point Od0 given
by (30) has the coordinates

x =
1
4δ

(
2ab+2ac+2bc−ad−bd− cd +dr+d2)

y =
1
4δ

(3a+3b+3c−d +abd +acd +bcd−abc

+2(a+b+ c)d2). (32)
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Figure 13: Lines OaOa0, ObOb0, OcOc0, OdOd0 are perpen-
dicular to A , B , C , D , where Oa, Ob, Oc, Od are orthopoles
of A , B , C , D with respect to BCD, ACD, ABD, ABC ,
and Oa0, Ob0, Oc0, Od0 are orthopoles of A0, B0, C0, D0
with respect to BCD , ACD , ABD , ABC , respectively.

It follows from (11) that the point S′D has the coordinates

S′D =
(1

δ
(d2 +ab+bc+ac−ad−bd− cd +abcd),

1
δ
(a+b+ c−d +abd +acd +bcd−abc)

)
,

and therefore the point given by (32) is at the same time
the centroid of the quadrangle TABTBCTACS′D. The fact that
the midpoints of the line segments SaOa0, SbOb0, ScOc0,
SdOd0 are the centroids of the quadrangles TBCTCDTBDS′A,
TACTCDTADS′B, TABTBDTAAS′C, TABTBCTACS′D, respectively,
can be found in [26].
If we write the coordinates of the point Sd in the following
form(

1
2
(q+1− sd +d2),

1
2
(s−d +d3− sd2 +qd− r)

)
,

then we can check that they fulfill the equation

2(s+ r−2d +2pd)x+2(sd + rd +2−2p)y

+3sp− rp+ r−3s− sq−qr+4d−4pd = 0. (33)

The coordinates of the point Od0 given by (30) also fulfill
(33). So, that equation represents the line SdOd0. Similarly,
the line ScOc0 has the equation

2(s+ r−2c+2pc)x+2(sc+ rc+2−2p)y

+3sp− rp+ r−3s− sq−qr+4c−4pc = 0. (34)
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By subtracting those two equations and dividing the result
by the factor 2(d− c), we get the equation

2(p−1)x+(s+ r)y−2(p−1) = 0, (35)

the equation of the radical axis of the circles M and P ′
given by (9) and (17). Therefore, lines SdOd0 and ScOc0
intersect each other in a point lying on the radical axis of
the central and the orthopolar circle. The lines SaOa0 and
SbOb0 pass through the same point as well. From (33) and
(34) we obtain its coordinates as

x =
1
2k

(
pr2−2qrs−3ps2 +qr2 +2prs+qs2 +8p2

− r2 +2rs+3s2−16p+8
)
, (36)

y =
1
k

(
−p2r+3p2s−pqr−pqs+4pr−4ps+qr+qs−3r+s

)
,

where k = 4(p−1)2 +(s+ r)2. The connection line MP of
the centers of the central and the orthopolar circles has the
equation

4(s+ r)x−8(p−1)y+3sp− rp−qr− sq− r−5s = 0.

Its intersection with the radical axis (35) of M and P ′ has
the coordinates

x =
1
4k

(
pr2−2prs−3ps2 +qr2 +2qrs+qs2

+16p2 + r2 +6rs+5s2−32p+16
)

y =
1
2k

(
− p2r+3p2s− pqr− pqs+4pr−4ps

+qr+qs−3r+ s
)
, (37)

being, therefore, the midpoint of the point (36) and the
focus S whose coordinates can be written in the form
S=

( 1
2k (8p2−16p+8+2s2 +4sr+2r2),0

)
. The fact that

the intersection of the lines SaOa0, SbOb0, ScOc0, SdOd0 is
the intersection point of the central circle M and the or-
thopolar circle P ′ (different from S), can be found in [26].
It is depicted in Fig. 14.
By using the equalities d4− sd3 + qd2− rd + p = 0 and
abc = r−qd + sd2−d3 the coordinates of the midpoint od
Sd and Os0 given by (32) get the form(

1
4δ

(2q−3sd + rd +4d2),
1
4δ

(3s−4d− r+2qd)
)
.

They satisfy equation (19), so we have proved one more re-
sult given in [26]: the midpoints of the segments SaOa0,
SbOb0, ScOc0, SdOd0 lie on the dimidium circle of the
quadrilateral ABCD .
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Figure 14: Lines SaOa0, SbOb0, ScOc0, SdOd0 pass through
the intersection point of the orthopolar circle P ′ and central
circle M of the quadrilateral ABCD .
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Ber. Verh. Kön. Sächs. Ges. Wiss. Leipzig, 6 (1854),
4–13.

[24] SEYDEWITZ, F., Neue Untersuchungen über die Bes-
timmung einer gleichseitigen Hyperbel vermittelst
vier gegebener Bedingungen, Arch. Math. Phys. 3
(1843), 225–235.
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Soc. Roy. Sci. Liége 14 (1945), 299–307.; Mathesis 55
(1945), suppl.9p.
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[29] THÉBAULT, V., CLAWSON, J. W., Problem 3991,
Amer. Math. Monthly 49(8) (1942), 550–551, https:
//doi.org/10.2307/2302878
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