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Coal mined in the shut-down Raša mine in Istria, Croatia had a high organic sulphur content. What has remained of  its local combustion 
is a coal and ash waste (legacy site) whose trace element and radionuclide composition in soil has enduring consequences for the environment. 
The aim of  this study was to follow up on previous research and investigate the potential impact on surrounding soil and local residents 
by characterising the site’s ash and soil samples collected in two field campaigns. Trace elements were analysed using particle induced X-ray 
emission (PIXE) analysis. Radionuclides, namely 232Th, 238U, 226Ra, 210Pb, and 40K, were analysed with high resolution gamma-ray spectrometry. 
PIXE analysis confirms previous findings, whereas radionuclide analysis shows higher activity concentrations of  238U, 226Ra, and 210Pb in 
ash samples than the worldwide average, and the absorbed dose rates for local residents are up to four times higher than background 
levels. Our findings confirm the need of  investigating coal industry legacy sites and the importance of  remediation of  such sites.
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LIST OF ABREVIATIONS:
HR-ICP-MS – high-resolution inductively coupled plasma mass 
spectrometry; HTE – hazardous trace elements; IAEA – International 
Atomic Energy Agency; LOD – limit of  detection; NORM – naturally 
occurring radioactive materials; PIXE – particle induced X-ray emission; 
PTE – potentially toxic elements; RBS – Rutherford backscattering 
spectrometry; SDD – silicon drift detector

The coal industry has been one of  the leading polluting human 
activities due to its sizable emissions of  hazardous particles and 
gases (1–4). Regardless of  the environmental costs, many nations 
depend on coal as a major source of  energy due to its great 
abundance and low price. However, coal is a “dirty fuel” in terms 
of  human health (5). Depending on various geological factors, coal 
can contain hazardous trace elements (HTEs), such as Hg, As, Cr, 
Ni, V, Pb, Se, and Cd, and their levels are even higher in coal 
combustion by-products (6–8).

Another class of  contaminants found in coal are naturally 
occurring radionuclides, formed either by incomplete fossil fuel 
combustion or coal formation. Coal contains trace quantities of  
uranium, thorium, and 40K. According to the United Nations 
Scientific Committee on the Effects of  Atomic Radiation 

(UNSCEAR) (9), mean natural radionuclide concentrations in coal 
are 35 Bq/kg (range 16–110) for 238U, 35 Bq/kg (range 17–60) for 
226Ra, 30 Bq/kg (range 11–64) for 232Th, and 400 Bq/kg (range 
40–850) for 40K.

Coal combustion by-products are fly ash (74 %), bottom ash 
(20 %), and boiler slag (6 %). Bottom ash consists of  larger (heavier) 
particles collected at the bottom of  the furnace. Fly ash is made of  
fine, airborne particles, most of  whose content is recovered by stack 
emission control devices. The remainder is released into the 
atmosphere and later deposited on soil, contaminating it with HTEs 
(10–12) and radionuclides (13–21).

As the affected soils – particularly the ones of  abandoned coal 
and ash waste sites – can be prone to erosion caused by winds and 
rain to release large amounts of  coal and ash particles into the 
environment (8, 22), stringent environmental laws and efficient 
research and restoration strategies have been implemented to address 
these issues at legacy sites (23).

One such legacy site, Štrmac, is located near the town of  Raša, 
which had the largest coal-mining company in Croatia in the 20th 
century, shut down since 1999 (24) (Figure 1). The site was used for 
the deposition of  ash from the local foundries and heating plants, 
during which period they used domestic coal (anthracite from Istrian 
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peninsula) with higher radionuclide amounts and higher radioactivity 
levels (25). Today, this legacy site is a 30-metre tall hill covered with 
vegetation (Figure 1c). The same coal was used by the Plomin coal-
fired power plant but was never deposited at the site.

Previous environmental research (26–29) revealed the 
detrimental effects of  coal combustion on all environmental 
compartments, mainly reflected in significantly increased levels of  
Se, V, and U in soil and biota. Moreover, Raša coal is known for its 
high content of  organic sulphur (>14 %) (27, 28).

There are many coal fly ash legacy sites worldwide. However, 
measurements of  radioactivity in fly ash at such sites are poorly 
reported. The reasons may be that most of  the worldwide sites have 
been remediated or that most of  the fly ash has been repurposed 
by construction industry. This, however, is not the case with the 
Štrmac site, and we believe it is important to characterise the site 
to obtain more information for possible solutions of  remediation 
in the future.

The aim of  our study was follow up on previous research by 
determining trace element and radionuclide levels at this legacy site 
and assess a potential impact on the surrounding soil and health of  
local residents.

METHODS

Study site and sampling

The Štrmac legacy site is situated on the Istrian peninsula to the 
NW of  the former Adriatic carbonate platform (30) and is a part 
the Outer Dinarides (31). In the late Carboniferous, the Adriatic 
platform was located in the north of  Gondwana and subsequently 
formed a distinct carbonate platform in the early Jurassic only to 
disintegrate in the Cretaceous (32). Considering its paleogeology, 
the majority of  the Istrian bedrock consists of  carbonates, most of  
which are Mezozoic and early Cenozoic limestone. The Istrian 
peninsula consists three distinct geological units: 1) the Jurassic-
Cretaceous-Eocene carbonate plain in the south and west, 2) the 
Cretaceous-Eocene carbonate-clastic zone across the thrust 
structure in east and north-east, and 3) the Eocene flysch sediments 
in the central part (32).

The study site (Figure 1) is located in the Raša River basin 
containing deposits of  bituminous Paleocene Kozina limestone (33, 
34). The settlement of  Štrmac is situated in the southeastern part 
of  the Istrian peninsula on “terra rossa” cambic soil formed by 
insoluble residues of  Eocene limestone with flysch sediments and 
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Figure 1 Overview of  the research 
area. a) the geographical position 
of  the Istrian Peninsula (North 
Adriatic Sea) and Štrmac settlement 
(orange circle); b) aerial view of  the 
study area with marked sampling 
locations [yellow diamonds denote 
the first field campaign (May 2019) 
and blue diamonds the second (July 
2019)]; c) the Štrmac coal burning 
waste disposal site; d) vertical B2 
sampling profi le  with three 
subsamples – B2a, B2b, B2c; e) hill 
s ide  wi th  v i s ib le  l ayers  of  
progradation (the length of  the 
vertical white line in d and e is 
120 cm)
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loess (30). It is close to the Plomin bay, which is a part of  the 
northern Adriatic Sea (about 5 km of  air distance).

Two field campaigns were carried out, in May and July 2019. In 
the first field campaign, ash and soil samples were collected from 
13 locations in the Štrmac area, while in the second field campaign 
only ash samples were collected from 10 sampling locations (Table 
1), with subsamples of  different horizons along the vertical profiles 
(Figure 1d and 1e).

The sampling locations were chosen randomly, depending on 
accessibility, with the aim to investigate the potential influence of  
atmospheric events on the surrounding environment. Previous 
investigations at the site showed potential cytotoxicity of  soil (33). 
Additionally, during sampling, we noticed private vegetable gardens 
in the vicinity, owned by the local community.

Soil and ash samples were air-dried, crushed, sieved through a 
1 mm sieve, and homogenised in an agate mortar for further analysis.

PIXE elemental analysis

Particle induced X-ray emission (PIXE) elemental analysis was 
performed at the Ruđer Bošković Institute Tandem Accelerator 
Facility with 2 MeV proton beam obtained from 1 MV Tandetron 
accelerator (HVE Tandetron 4110, High Voltage Engineering 
Europa B.V., Amersfoort, Netherlands). The beam spot size on the 
sample was 3 mm in diameter. Emitted characteristic X-ray lines 
were measured simultaneously with two X-ray detectors, while 
backscattered ions were measured with a surface barrier detector 
using Rutherford backscattering spectrometry (RBS). For low-energy 

Table 1 Sample labels and geographical coordinates

1st field campaign (May 2019)

Sample label Sample type Geographical coordinates
0

Soil

45° 7' 14.40"N 14° 7' 36.86" E
1 45° 7' 10.80"N 14° 7' 40.40" E
2 45° 7' 9.98"N 14° 7' 41.97" E
3 45° 7' 8.87" N 14° 7' 43.53" E
5 45° 7' 11.41" N 14° 7' 46.35" E
6 45° 7' 13.12" N 14° 7' 44.07" E
7 45° 7' 13.55" N 14° 7' 48.76" E
8 45° 7' 11.09" N 14° 7' 44.22" E
9 45° 7' 14.97" N 14° 7' 48.27" E
10 45° 7' 16.45" N 14° 7' 49.44" E
11 45° 7' 17.60" N 14° 7' 50.48" E
12

Ash
45° 7'10.88" N 14° 7'39.14" E

13
14 

45° 7' 11.31" N 14° 7' 38.83" E
15

2nd field campaign (July 2019)

Sample Subsample Sample type Geographical coordinates
A1 A1

Ash

45° 7' 10.36'' N 14° 7' 37.95'' E

A2
A2a

45° 7' 10.55'' N 14° 7' 37.80'' E
A2b

A3
A3a

45° 7' 10.85 '' N 14° 7' 37.78'' EA3b
A3c

B1
B1a

45° 7' 10.55'' N 14° 7' 38.83'' E
B1b

B2
B2a

45° 7' 10.82" N 14° 7' 38.54'' EB2b
B2c

B3
B3a

45° 7' 11.00'' N 14° 7' 38.33'' E
B3b

C1 C1 45° 7' 12.18'' N 14° 7' 40.54'' E
C2 C2 45° 7' 12.36''N 14° 7' 40.25'' E
D1 D1 45° 7' 13.68'' N 14° 7' 39.80'' E
D2 D2 45° 7' 13.50'' N 14° 7' 40.80'' E
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X-rays we used a silicon drift detector (SDD) (Vitus H20, KETEK 
GmbH, Munich, Germany) with the active area of  10 mm2 and 
8 µm thick Be window. It is placed at the distance of  110 mm from 
the sample at an angle of  150 ° to the incident beam. For energies 
above 3.5 keV we used a Si(Li) detector (SSL80165, Canberra, 
Meriden, CT, USA) with 30 mm2 active area and 25 µm thick Be 
window, positioned at the angle of  135 ° and covered with a Mylar 
filter (275 μm). For backscattered ions we used a surface-barrier 
detector (Ultra, Ortec, Oak Ridge, TN, USA), placed at the angle 
of  165 ° from the incident beam. The schematic of  the standard 
chamber for PIXE/RBS experimental setup is shown in Figure 2.

The energy spectrum was determined using a multichannel 
analyser coupled with a homemade data acquisition system 
SPECTOR. Each sample was irradiated with 0.6 nA with a total 
charge of  0.6 µC. The PIXE experimental setup was calibrated with 
two standards: Standard Reference Material (SRM) 2710 Montana 
Soil and PTXRFIAEA08 Natural Soil, provided as a reference 
material from the International Atomic Energy Agency in 2014 (35). 
Samples were ground, and their powder pressed into pellets of  1 cm 
in diameter using a standard press with a pressure of  6.4 t/cm2 and 
then mounted on the sample holder with carbon tape.

Proton backscattered spectra were analysed with the SIMNRA 
simulation software (SIMNRA 7.0, Max Planck Institute for Plasma 
Physics, Garching, Germany) as described elsewhere (36) to 
determine the concentrations of  major low Z elements (Z<10). For 
quantitative analysis of  the obtained PIXE spectra we used the 

GUPIXWIN software (GUPIXWIN 2.2.0, University of  Guelph, 
Guelph, ON, Canada) (37) with a fixed matrix solution approach 
on thick targets and input matrix composition taken from SIMNRA 
results.

The accuracy of  PIXE analysis was checked using the Standard 
Reference Material (SRM) 2710 Montana Soil and PTXRFIAEA08 
Natural Soil.

Radioactivity analysis

For radioactivity analyses, soil and ash samples were prepared 
as described elsewhere (38, 39). Briefly, the samples were sieved 
(maximum grain size of  2 mm), dried at 105 °C for three days, ashed 
at 400 °C, and packed in 200 mL sealed cylindrical containers.

Radionuclide activity in the obtained ash was determined from 
the activity of  decay product with a shorter half-life (T1/2) under the 
assumption of  a secular equilibrium between radionuclides. In 
undisturbed soil, the secular equilibrium between 238U and 234Th and 
between 232Th and 228Ac was established naturally. However, the loss 
of  gaseous 222Rn from the surface layer of  soil and during sample 
preparation resulted in a disequilibrium between 226Ra and 214Pb. In 
order to restore the equilibrium, sealed samples were left to rest for 
more than 30 days.

Radionuclide activity concentrations were measured using high-
resolution gamma-ray spectrometer with a high-purity germanium 
coaxial detector (Ortec GMX, Oak Ridge, TN, USA) at relative 

F i g u r e  2  S t a n d a r d  I B A 
experimental chamber for PIXE 
and RBS measurements with 
marked positions of  detectors, 
sample holder, suppression, Faraday 
cup, and incoming beam
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efficiency of  74.3 % and energy resolution of  2.23 keV, all at 60Co 
1.33 MeV. The counting time was 80,000–250,000 seconds. 
Efficiency and energy were calibrated using certified standards 
(CBSS2 MIX, Eurostandard CZ, Czech Republic). The participating 
laboratory is accredited according to the ISO/IEC 17025 standard 
and the quality assurance was carried out by participation in 
proficiency testing provided by the IAEA and the European 
Commission’s Joint Research Centre (40).

The detailed procedure for the analysis of  soil samples, peak 
analysis, and self-attenuation corrections has been described in detail 
elsewhere (41–44). The typical values of  the detection limit (for 
measurements of  80,000 s) were 1 Bq/kg for 232Th and 226Ra, 2 Bq/
kg for 40K, 3 Bq/kg for 210Pb, and 4 Bq/kg for 238U.

The radiological effects of  the legacy site and the surrounding 
soil on the local population were assessed by calculating the radium 
equivalent index (Raeq), external absorbed dose rate (Ḋ), and annual 
effective dose (E). The Raeq is used to define a uniform value with 
respect to radiation exposure in case the ash from the waste site 
were to be used as building material and is calculated using Equation 
1.

Raeq = ARa + 1.43ATh + 0.077AK   [1]

where ARa, ATh and AK are the activity concentrations of  226Ra, 
232Th and 40K, respectively.

The weights were based on the estimation that 370 Bq/kg of  
226Ra, 259 Bq/kg of  232Th, and 4810 Bq/kg of  40K produce the same 
gamma-ray dose. If  the Raeq values exceed the threshold value of  
370 Bq/kg, the material will produce exposure higher than 1.5 mSv/
year to local residents (45–47).

The UNSCEAR guidelines (9) provide the absorbed dose rates 
(Ḋ) in nGy/h due to gamma radiation in air at 1 m above the ground 
for uniform distribution of  naturally occurring radionuclides (226Ra, 
232Th, and 40K). The absorbed dose rates were calculated as follows:

Ḋ = 0.462ARa + 0.621ATh + 0.0417AK  [2]

The annual effective dose (E) in mSv was also calculated 
according to the UNSCEAR guidelines (9):

E = Ḋ (nGyh-1) × 8760(hyr-1) × 0.2 × 0.7(SvGy-1) [3]

where 0.7 Sv/Gy is the conversion coefficient from the absorbed 
dose in air to the effective dose received by adults, while 0.2 is the 
outdoor occupancy factor assuming that adults spend 20 % of  their 
time outdoors.

Statistical analysis

Correlation between trace elements and Bonferroni correction 
were run on the PAST statistical software (PAST version 4.17, 
University of  Oslo, Norway) assuming the significance level of  
P<0.05. For correlations between radionuclides 238U, 235U, 226Ra, 
232Th, 40K, and trace elements we used Spearman’s rank correlation 
ran on IBM SPSS software (IBM SPSS Statistics for Windows, 

version 23.0, Armonk, NY, USA) also assuming the significance 
level of  P<0.05.

RESULTS AND DISCUSSION

PIXE findings

Table 2 compares the values of  major elements (given in %) 
and of  minor and trace elements (given as mg/kg) measured in 12 
soil samples with the SRM 2710 Montana Soil. Relative errors for 
most major elements are up to 10 %, while for some trace elements, 
errors are higher due to very low elemental concentrations that are 
around the PIXE limits of  the detection.

Figure 3 shows typical PIXE spectra collected with the SDD 
detector optimised for low energy X-rays (Figure 3a) and Si(Li) 
detector for higher X-ray energy (Figure 3b).

Mean concentrations and standard deviations of  major, minor, 
and trace elements of  the 12 studied soil samples are listed in Tables 
3–5. Table 3 shows the concentrations of  major elements in 
percentages, while Tables 4 and 5 show concentrations of  minor 
and trace elements as mg/kg. The last row of  each table shows 
average limits of  detection (LOD) for each element.

Earlier, Petrović (48) reported soil elemental composition at 
Štrmac measured with high-resolution mass spectrometry with 
inductively coupled plasma (HR-ICP-MS) (Tables 4 and 5). Only 
one soil sample was taken near our sampling location 1. The reported 
concentration ranges mostly correspond to ours, save for Cu, Sr, 
and Pb, which are higher (Table 5). Differences in Pb concentrations 
are probably owed to differences in the measurement methods 
employed, as sample preparation for ICP-MS involves dissolving 
samples in acids, which may render Pb and Rb extraction from the 
soil incomplete. Even so, this comparison confirms that our PIXE 
method is satisfactorily accurate.

Compared to the values from the literature for world soils (Table 
6), our measurements show much higher levels for Ni, Cr, P, and S. 
Higher P levels apply only to samples 7–12. Pb, Zn, and Ni levels 
are also elevated in almost all samples, but to a lesser extent. Similar 
findings were reported by previous studies (26–29). Moreover, the 
concentration of  Se is extremely elevated, but since these 
measurements are around the PIXE’s LOD, it is difficult to draw 
definitive conclusions about soil contamination with Se at Štrmac. 
Previous measurement with ICP-MS (16, 26–29) clearly confirm 
that high Se levels are owed to its high content in Raša coal, which 
is also true for coal in general (49). According to the Geochemical 
Atlas of  the Republic of  Croatia (50), coastal Croatia has the highest 
concentrations of  most potentially toxic elements (PTE) in Croatia 
and higher than the world/European average.

Spatial arrangement of  S and V

S and V were chosen for spatial comparison because both 
elements are known to have elevated concentrations in Raša coal 
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Table 2 Comparison between measured and certified values for standard reference materials SRM 2710 and PTXRFIAEA08 Natural Soil*

Element
SRM 2710 Natural soil

Mean±SD Certified 
value ± error

Relative error 
(%) Mean ± SD Certified 

value ± error
Relative error 

(%)
Mg 0.8±0.2 0.853±0.04 -6.3 - - -
Al 6.5±0.2 6.44±0.08 1.1 17.99±0.06 15.2±0.4 18.4
Si 27.0±0.3 29.0±0.2 -6.8 17.68±0.06 18.7±0.4 -5.4
S 0.26±0.01 0.240±0.006 8.1 0.109±0.05 0.071±0.004 54.5
K 2.03±0.04 2.1±0.1 -3.7 0.023±0.003 0.034±0.002 -33.1
Ca 1.12±0.02 1.25±0.03 -10.3 - - -
Fe 3.28±0.03 3.4±0.1 -3.1 8.82±0.03 9.0±0.3 -2.2
Na 9000±400 11400±600 -21.3 - - -
P 1400±200 1060±150 30.7 - - -
Ti 2670±60 2830±100 -5.7 9200±100 9410±380 -1.9
V 90±20 76.6±2.3 21.5 280±50 270±19 4.7
Cr 80±30 39 98.0 30±20 31±3 6.7
Mn 9700±200 10100±400 -4.1 180±30 174±13 2.8
Ni 21±2 14.3±1 49.2 - - -
Cu 3150±40 2950±130 6.7 50±10 36±3.4 48.1
Zn 7100±100 6952±91 1.6 40±10 69±6 -34.2
Ga - - - 50±20 33±3 45.9
As 400±100 626±38 -27.6 - - -
Se - - - 60±40 2.3±0.3 2354.1
Br 250±50 15±2 1524.0 - - -
Sr - - - 30±30 4.6±0.6 562.3
Zr - - - 200±50 266±18 -23.8
Ba 540±70 707±51 -23.5 - - -
Hg 140±80 33±2 316.2 - - -
Pb 6800±200 5532±80 22.1 - - -

* Concentrations of  major elements (Mg, Al, Si, K, Ca, Fe) and S are given in percentage, of  minor and trace elements in mg/kg, and data accuracy as 
relative error in percentage

Table 3 Major and minor element concentrations (in %) in measured soil samples with limits of  detection (LOD) for each element

Soil samples Mg Al Si S K Ca Fe
1 1.5±0.1 2.3±0.2 2.2±0.1 3.6±0.2 0.015±0.09 29±3 1.58±0.02

2 1.25±0.01 7.91±0.03 22.82±0.07 0.180±0.005 1.45±0.01 7.21±0.03 4.22±0.04

3 1.29±0.004 9.22±0.03 26±1 0.09±0.01 1.5±0.1 1.11±0.03 4.92±0.06

5 1.13±0.01 8.85±0.03 27.90±0.09 0.09±0.004 1.43±0.01 0.984±0.009 4.73±0.08

6 0.82±0.01 6.3±0.02 19.32±0.03 2.94±0.01 0.763±0.008 6.94±0.02 3.44±0.02

7 1.03±0.03 5.3±0.1 16±1 0.06±0.01 1.25±0.03 19.4±0.04 2.574±0.08

8 1.03±0.01 8.34±0.04 28.4±0.1 0.293±0.006 1.43±0.01 1.31±0.01 4.33±0.07

9 1±0.01 7.88±0.03 30.5±0.1 0.227±0.006 1.34±0.01 1.26±0.01 4.1±0.08

10 0.98±0.01 8.76±0.03 31.11±0.08 0.156±0.006 1.34±0.01 0.862±0.09 4.43±0.09

11 0.89±0.01 8.24±0.04 26.9±0.01 0.176±0.006 1.29±0.01 1.19±0.01 3.95±0.07

12 1.25±0.02 1.17±0.01 1.16±0.01 8.26±0.04 -- 26.2±0.1 0.93±0.01

LOD 0.01 0.007 0.006 0.007 0.005 0.01 0.002
LOD – limit of  detection
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and ash (27), and their elevated concentrations in soil samples 
indicate soil contamination originating from the landfill. Although 
the comparison shows a rather weak correlation between S and V, 
their distribution by locations above and below the median mostly 
coincides (Table 7). The exceptions are location 12, with 
concentration above the median for S and below the median for V, 
and location 3, with concentration below the median for S and above 
the median for V. Generally, locations further away from the landfill 
have lower concentrations of  either element, with the exception of  
locations 3 for S and 12 for V. This suggests that the source of  soil 
pollution with S and V in Štrmac is ash from the landfill, but this 

connection is not unequivocal, as there are spatial variations in the 
distribution of  elements.

Correlation and distribution of  element levels

Previous research (26–28) showed positive and statistically 
significant (p<0.05) Kendall-Tau correlation between S, Se, and V 
in Raša coal and Raša coal ash samples. In this study we determined 
a positive (r>0.5) and statistically significant (p<0.05) correlation 
between S and As (r=0.58; p=0.013), and a negative (r<-0.5) and a 

Table 4 Minor and trace element concentrations (in mg/kg) in measured soil samples with limits of  detection (LOD) for each element and comparison 
with trace element concentrations obtained with HR-ICP-MS in one sample taken close to location 1 reported by Petrović (48)

Soil samples Na P Cl Ti V Cr Mn Co Ni
1 -- -- -- 1180±70 200±10 160±40 200±100 -- 20±10

2 1600±100 600±60 140±30 4170±70 150±20 450±40 1490±60 -- 140±10

3 2300±100 760±60 120±10 5030±80 150±20 300±100 1700±100 -- 159±6

5 2600±100 740±60 150±30 5390±70 140±20 350±30 2170±70 170± 30 144±9

6 2000±100 130±60 200±30 4510±70 210±20 320±40 1000±50 -- 104±8

7 1230±40 400±100 160±60 2600±200 90±10 400±200 500±40 -- 82±4

8 3300±100 1470±70 130±30 4850±70 200±20 380±30 1770±60 -- 100±10

9 2400±100 890±70 230±30 4740±70 150±20 270±30 1340±60 -- 126±8

10 4000±200 800±70 120±30 6070±80 140±20 570±40 1370±60 -- 110±8

11 3800±200 1350±80 400±40 5810±80 120±20 380±30 2180±70 -- 85±8

12 -- -- 100±30 710±60 130±20 100±60 360±80 -- --

Petrović (48) -- -- -- -- 183 167 -- -- 96.3

LOD 200 100 50 40 50 50 60 200 10
LOD – limit of  detection

Table 5 Trace element concentrations (in mg/kg) in measured soil samples with limits of  detection (LOD) for each element and comparison with trace 
element concentrations obtained with HR-ICP-MS in one sample taken close to location 1 reported by Petrović (48)

Soil Samples Cu Zn As Se Br Rb Sr Y Pb
1 180±50 70±20 20±10 20±10 30±10 -- 550±20 60±20 70±40

2 73±9 120±10 -- -- 30±30 210±40 250±30 -- 120±90

3 51±6 160±50 -- -- -- 360±50 70±50 -- 130±20

5 44±8 130±10 -- -- 60±30 330±40 140±30 -- 200±100

6 86±8 130±10 -- -- 40±20 130±30 210±30 -- 170±80

7 30±30 90±10 -- -- 20±20 120±20 504±6 -- 90±60

8 39±8 110±10 -- 20±20 60±30 260±40 100±30 -- 200±100

9 37±7 120±10 -- -- -- 230±40 130±20 -- 110±90

10 24±8 100±10 -- 40±20 30±30 220±40 90±20 -- 100±100

11 41±7 100±10 -- 23±9 -- 180±30 130±20 -- 140±90

12 72±9 13±7 20±10 -- -- -- 580±40 -- --

Petrović 37.8 120 14.8 21.8 -- -- 128 -- 48.2

LOD 10 20 20 30 40 50 30 20 90
LOD – limit of  detection
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Table 6 Measured elements in this study (mg/kg) compared to world soils and Croatian legislation

Element This research 
(mg/kg)

Croatian 
legislation (51) 

(mg/kg)

World soils (52, 53) 
(mg/kg)

World soils (54) 
(mg/kg)

Topsoil Europe (54) 
(mg/kg)

Geochemical 
atlas (50) 
(mg/kg)

Al 11700–92200 80000 78500
As 20 30 5 6.83 11.6 18
Br 20*–60 10 10
Ca 8620–290000 14000 13300
Cl 100–400 300 300
Co 170* 60 10 11.3 10.4 18
Cr 100–570 120 80 59.5 94.8 121
Cu 24–180 120 25 38.9 17.3 35.5
Fe 9300–49200 35000 41800
K 150–10500 14000 12500
Mg 8900–15000 9000 6800
Mn 200–2180 530 488 524 1082
Na 1230–4000 10000 3400
Ni 20–159 75 20 29 37 74.6
P 130–1470 750 650
Pb 70*–200 150 17 32 48.7
Rb 120–360 65 68 87
S 600–82600 800
Se 20*–40 0.3 0.44
Si 22000–311100 280000
Sr 70–580 240 130 86
Ti 710–6070 4000 7038 6070 4300
V 90–200 90 129 68 148
Y 60 20 23 23 28
Zn 13*–160 200 70 267 68.1 108

* Levels below LOD. Values from the Geochemical Atlas of  Croatia are given as medians for coastal Croatia

Table 7 Ranking of  sampling locations by measured S and V levels (from 
highest to lowest)

Sampling 
location S (%) Sampling 

location V (mg/kg)

12 8.26 6 210
1 3.6 1 200
6 2.94 8 200
8 0.293 2 150
9 0.227 3 150
2 0.18 9 150
11 0.176 5 140

10 0.156 10 140

3 0.09 12 130

5 0.09 11 120

7 0.06 7 90
Levels above the median are highlighted in boldface

statistically significant correlation between S and Al (r=-0.587; 
p=0.012) and S and Fe (r=-0.514 and p=0.0278).

The R value for the S-Se correlation is 0.0237 (p=0.919) and 
for S-V 0.443 (p=0.0581). We believe that the absence of  significant 
correlation between S and Se is owed to the unreliability of  the 
PIXE method in characterising Se in these samples. The S-V 
correlation is close to significance, and it is possible that the rounding 
of  measurement figures had an influence on this outcome. However, 
the Bonferroni correction showed that only Al-Fe (p=0.021), Rb-Fe 
(p=0.049), and Na-Ti (p=0.049) correlations were statistically 
significant. This indicates that some of  the other correlation 
coefficients could be falsely significant, probably due to heterogeneous 
composition of  soil samples, and that the correlation between these 
elements is the most reliable.

Due to the limitations of  the PIXE method, the levels of  rare 
earth elements – Ce, Be, Sc, Ri, and Li – were not determined in 
this study. However, we did find a positive and statistically significant 
correlation between Al and Ti, Fe and Ni, and Fe and Mn. The Cu-
Zn correlation was positive but not statistically significant (r=0.112; 
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Figure 3 PIXE spectra of  the soil 
sample taken with (a) SDD and (b) Si(Li) 
detector induced with 2 MeV protons

p=0.631). The results for the positive S-As correlation, which would 
normally indicate that As contamination at the landfill originated 
from Raša coal, are not reliable, as As was mostly below the detection 
limit. For the same reason, we found no correlations between Co 
and other elements.

Correlation between Al and Fe (Fe also correlates with Rb and 
K, Ni and Zn) stands out due to high correlation coefficients and 
small p-values (r=0.927, p=7.18*10-5). Considering the importance 
of  Al, K, and Fe in the lithosphere and the formation of  minerals, 
it is probably a natural correlation, but the additional correlation 
with Ni and Zn indicates a certain influence of  the local foundry 
and/or heating plant in Štrmac.

Pollution indices

Pollution indices (PIs) are a simple way to assess the degree of  
pollution of  soil, but they should be taken with reserve (55). The 
simplest of  PIs, the single pollution index (SPI), is calculated by 
dividing a single heavy metal or PTE concentration in soil with 
“background geochemical values” or reference values such as those 
found in the Geochemical Atlas of  Croatia (50). Other PIs for 
individual elements require additional data from different soil 
horizons or from a greater number of  samples (56), which was out 
of  our study’s scope.

If  we apply pollution categorisation described by Kowalska et 
al. (56), the soil pollution at the Štrmac landfill is very strong for S, 

Se, Co, and Cu (Table 8). This is in line with reports of  high soil 
pollution indices in the wider area of  Labin, including Štrmac for 
Hg, Cd, V, Se, Pb, Cr, Zn, Cu, U, and S (26–28), in which S had the 
highest and V the lowest index. Those indices were based on 
corresponding background levels reported in the Geochemical Atlas 
of  Croatia (50). Our study shows a similar result regarding the 
relationship of  S and V with other elements.

The lowest PIs are those calculated with the reference 
background levels taken from Croatian legislation for agricultural 
land (51). This legislation focuses on a small number of  PTEs that 
the legislator considers relevant and sets their pollution limits. Even 
in these terms, the pollution is high for Cr and moderate for Cu and 
Ni. In contrast, the PIs for As, Pb, and Zn are below these limits 
for the soil to be considered polluted.

Radioactivity findings

Tables 9 and 10 show activity concentrations on naturally 
occurring radionuclides 232Th, 238U, 226Ra, 210Pb, and 40K in soil and 
ash samples. Activity concentrations of  238U, 226Ra and 210Pb were 
higher in ash samples, while 232Th and 40K activity concentrations 
were higher in soil samples. These results are in line with previous 
reports (9, 10, 19). Furthermore, the ranges of  232Th, 238U, 226Ra, 210Pb, 
and 40K  in soil samples (Table 10) are in good agreement with previous 
measurements of  soil samples in this part of  Croatia (43, 44).
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Table 8 Pollution indices of  selected elements in respect to reference values from Table 6 used in PI calculation*

Variables Croatian ordinance (51) World soils (52, 53) World soils (54) Topsoil Europe (54) Geochemical atlas 
of  Croatia (50)

As 0.67 4 2.93 1.72 1.11
Co 2.83 17 15.04 16.35 9.44
Cu 1.5 7.2 4.63 10.4 5.07
Cr 4.75 7.13 9.58 6.01 4.71
Fe 1.41 1.18
Mn 4.11 4.47 4.16 2.01
Ni 2.12 7.95 5.48 4.3 2.13
Pb 0.93 8.24 4.38 2.87
S 103.25
Se 133.33 90.91
Sr 2.42 4.46 6.74
V 2.22 1.55 2.94 1.35
Zn 0.8 2.29 0.6 2.35 1.48

* obtained by dividing the highest element level in the range with respective reference value

Table 9 Activity concentrations (Bq/kg) of  natural radionuclides in soil and ash samples from Štrmac

Sample code Sample type
238U 232Th 226Ra 210Pb 40K

Activity concentration ± relative uncertainty (Bq/kg)

1st
 fi

el
d 

ca
m

pa
ig

n

0

Soil

99±7 22±2 81±1 231±47 134±4

2 58±6 44±2 44.1±0.9 52±47 433±10

6 62±8 57±2 58.9±0.8 160±31 446±10

7 50±4 20.8±0.9 23.2±0.6 171±33 354±9

9 72±6 51±2 75±1 219±37 453±11

11 138±9 67±3 81±1 238±37 464±12

14
Ash

458±10 17±2 349±3 288±29 302.6±0.9

15 372±9 16±2 314±3 240±46 319±1

2nd
 fi

el
d 

ca
m

pa
ig

n

A1

Ash

605±13 44±2 295±2 306±24 188±4

A2a 567±10 34±2 440±2 318±20 183±6

A2b 413±10 32±3 465±4 260±42 149±7

A3a 440±15 42±3 551±3 341±31 173±7

A3b 828±19 41±2 681±3 393±29 140±6

A3c 401±12 29±2 376±2 303±24 162±7

B1a 663±15 18±1 405±3 392±26 147±5

B1b 306±8 16±1 341±2 227±27 147±6

B2a 340±9 18±1 332±3 240±40 36±2

B2b 308±8 13±1 316±2 168±31 137±8

B2c 403±9 21±2 396±3 296±25 55±3

B3a 304±7 7±1 326±2 230±37 141±6

B3b 459±12 13±1 318±3 251±24 160±5

C1 88±6 10±2 96±1 49±39 147±5

C2 211±7 27±2 274±2 149±19 226±6

D1 236±11 18±2 236±2 204±35 153±6

D2 250±7 9±1 225±2 193±33 118±5
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Table 11 summarises radium equivalent indices (Raeq), absorbed 

dose rates (D), and annual effective doses (E) in ash and soil 
calculated from activity concentrations of  226Ra, 232Th, and 40K. The 
Raeq in most ash samples exceeded the threshold of  370 Bq/kg. Its 
wide range (122–751 Bq/kg) is probably owed to the inhomogeneity 
of  the mined coal used for heating. To make use of  this ash, it 
should be mixed it with other non-radioactive materials in ratios 
that comply with Croatian legislation (57).

The calculated absorbed dose rates originating from ash are 
higher than the background values for the Istrian region (70–
80 nGy/h) (44), considering that the mean rate is 184 nGy/h, and 
the maximum is 346 nGy/h, about four times higher than the 
background rates.

The mean annual effective doses range from 0.05 mSv in soil 
to 0.42 mSv in ash. For comparison, the worldwide mean dose in 
soil is 0.07 mSv and ranges from 0.3 to 0.6 mSv across countries 
(9).

Spearman’s rank correlation shows positive (r>0.9) and 
statistically significant (P<0.05) correlation between radionuclides 
238U, 235U 226Ra, 232Th, 40K and trace elements Na, P, and Ti. Only Sr 
correlated negatively (r=-0.98; P=0.005) with 238U, 235U, 226Ra, and 
40K. We did not find any correlations between 210Pb and any trace 
elements. However, due to a small number of  soil samples, we 
cannot make solid conclusions on these correlations. In case of  
possible future remediation efforts, a more detailed investigation 
with a larger number of  samples is required.

The future of  the Štrmac legacy site is not known. Our findings, 
however, can inform remediation operations, should such decision 
be made. We already have positive precedents of  remediation of  
coal fly ash deposition sites in Croatia (10, 58). Moreover, fly ash 

can be used in construction industry. In European countries (France, 
Denmark, Italy, Germany, and the Netherlands) 85–100 % of  
produced coal fly ash is used for the production of  cement, concrete, 
and ceramics (59, 60). There is also potential to extract rare earth 
elements, which are highly concentrated in coal fly ash, for use in 
batteries, lightweight alloys, and medical equipment, amongst several 
other applications, as reported elsewhere (61).

CONCLUSIONS

This characterisation of  an abandoned ash dump in Štrmac 
(Labin locality, Croatia) provides important knowledge on the impact 
of  trace elements and radionuclides on the environment and local 
community as it can help design better cleaning systems at 
combustion plants and improve deposition sites in the future.

Our findings show that all of  the observed elements (Hg, Cd, 
V, Se, Pb, Cr, Zn, Cu, U, and S) highly contaminate soil. Furthermore, 
they confirm that the PIXE method is an acceptable supplemental 
non-destructive method for soil analysis, especially for highly 
concentrated elements such as sulphur, but cannot be used as the 
only research method.

High activity concentrations of  238U, 226Ra, and 210Pb found in 
ash samples, radium equivalent indices exceeding the limit values, 
and the absorbed dose rates four times higher than background 
clearly highlight the need to remediate this legacy site.

We believe that our findings provide valuable information 
necessary for designing future deposition sites from the NORM 
industry and for remediating the current site or for using coal fly 
ash as raw material in the future.

Table 10 Mean, minimum, and maximum activity concentrations (Bq/kg) of  natural radionuclides in soil and ash samples from Štrmac

Sample type
238U 232Th 226Ra 210Pb 40K

Activity concentration (Bq/kg)

Soil

Average±SD 80±33 44±19 61±23 179±70 381±127

Min 50 21 23 52 134

Max 138 67 81 239 464

Ash

Average±SD 403±174 22±12 355±125 255±84 162±67

Min 88 7 96 49 36

Max 828 44 681 393 319

Table 11 Mean radium equivalent indices (Raeq), absorbed dose rates (Ḋ), and annual effective doses (E) in soil and ash samples at the Štrmac legacy site 
calculated from activity concentrations of  activity concentration of  226Ra, 232Th, and 40K

Sample type Raeq (Bq/kg) Ḋ (nGy/h) E (mSv/year)

Ash (n=19) 399 (122–751) 184 (57–346) 0.23 (0.07–0.42)

Soil (n=6) 153 (80–213) 71 (38–99) 0.09 (0.05–0.12)

Ranges are given in parentheses
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Karakterizacija tla i pepela analizom elemenata u tragovima i radionuklida s napuštenog odlagališta pepela povezanoga s 
nekadašnjom industrijom raškog ugljena

Sastav elemenata u tragovima i radionuklida na odlagalištu pepela i u tlu odražava aktivnosti izgaranja koje su se provodile u prošlosti na 
superorgansko-sumpornom (SHOS) raškom ugljenu u zapadnoj Hrvatskoj. Posljedice na okoliš od napuštenog odlagališta ugljena i pepela 
bit će dugotrajne te se tijekom tog razdoblja mogu osloboditi velike količine čestica ugljena i pepela u okoliš. Cilj ovog istraživanja bio je 
doprinijeti znanju o ovoj temi i istražiti potencijalni utjecaj na okolno tlo i lokalno stanovništvo. Za karakterizaciju lokacije, uzorci pepela 
i tla prikupljeni su tijekom dviju kampanja uzorkovanja. Elementi u tragovima istraženi su elementarnom analizom pomoću rendgenske 
emisije inducirane česticama (PIXE). Analize radionuklida provedene su visokorezolucijskom gama-spektrometrijom. Određeni su sljedeći 
prirodni radionuklidi: 232Th, 238U, 226Ra, 210Pb i 40K. PIXE analiza pokazala se korisnom u karakterizaciji uzoraka onečišćenog tla iz Štrmca 
te je dala rezultate u skladu s prethodnim istraživanjima. Analize radionuklida pokazale su veće koncentracije aktivnosti 238U, 226Ra i 210Pb 
u uzorcima pepela. Indeksi koji su se koristili za procjenu radioloških učinaka odlagališta na lokalno stanovništvo pokazali su vrijednosti 
više od preporučenih, a stope apsorbirane doze za lokalno stanovništvo bile su do četiri puta veće od vrijednosti pozadinskog zračenja. 
Rezultati ovog istraživanja upućuju na potrebu istraživanja starih lokacija u industriji ugljena, kao i na važnost sanacije takvih lokacija.

KLJUČNE RIJEČI: NORM; pepeo; PIXE; radionuklidi; raški ugljen; štetni elementi u tragovima; tlo


