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 The widespread use of deepfake technology in recent years has 
made it extremely difficult to differentiate between real and fake 
images, usually AI-generated images. Effective detection 
techniques are desperately needed because one can generate fake 
images and spread them with ease. This research paper examines 
how effective the SWIN Transformer, a new transformer-based 
architecture, is for detecting deep fake images. The foundation of 
the suggested detection framework is an architecture made up of 
bottleneck, encoder, and decoder parts which is a type of SWIN 
transformer. It uses various self-attention mechanisms and 
advanced features to analyse the images closely whether it is a real 
image or a deepfake one. It relies on the concept of shifted windows 
during the processing of the images and is considered more 
effective than the traditional CNN methods. Our test results show 
how well the SWIN Transformer-based method performs in 
precisely recognizing deep fake images. The accuracy is found to 
be 97.91\% for CelebDF dataset and 95.715\% for FF++ dataset. 
The AUC for the newly modelled SWIN transformer is 0.99 and 
0.9625 for CelebDF and FF++ datasets respectively. The Log 
Loss was calculated to be 0.034 for CelebDF dataset and 0.1573 
for FF++ dataset. The proposed methodology not only enhances 
the accuracy of detecting manipulated images but also offers 
potential for scalable and efficient deployment in real-world 
scenarios where the proliferation of deepfakes presents significant 
challenges to maintaining trust and authenticity in visual media. 
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1 Introduction 

 

Human faces play a crucial role in communication, association of information, and identity in human 
civilization. From access control and payment, to unlocking our phones, face recognition is an inevitable part 
of our life now. They manipulate facial images to commit fraud and pose as genuine users. This type of 
manipulation has become ubiquitous and raises eyebrows specifically in social media content. The level at 
which realism has been achieved in face synthesis is truly alarming. In recent years, advanced deep learning 
technologies have led to the rise of these deepfakes. These are highly realistic fake images and videos created 
using artificial intelligence [1]. They pose a big challenge to the credibility of digital content because they can 
make it seem like people are doing or saying things they never actually did. This creates an urgent need for 
effective ways    to spot and reduce the spread of deepfake content. To tackle this problem, researchers are 
exploring different methods for detecting deepfakes. Deepfake is primarily a face-swapping algorithm that 
makes use of Neural Networks to create new images [2]. The facial features are mapped from one image to the 
other giving it a realistic look. The creation of deepfake includes an encoder, a bottleneck and a decoder [3]. 
The encoder compresses the original image by reducing its dimensions. The bottleneck produces the 
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compressed representation of our data. Following the bottleneck, we have the decoder which takes in the vector 
and turns it into the full-sized image. So input is taken from the encoder which is then reconstructed back. 
Figure.1 represents the general architecture of deepfake. 

 

 
 

Figure 1. General DeepFake Architecture 
 
Many research works have been proposed. Initial works detect the tampering through visual biological 

artifacts like inconsistent head poses and unnatural eye blinking. With the rise of learning-based methods, 
some studies have developed frameworks that extract features from spatial domains. These frameworks have 
shown excellent performance on specific datasets. A few methods detect forged faces through Spatial, 
Steganalysis, and Temporal features. This adds a stream of simplified Xception with a constrained convolution 
layer and an LSTM [4]. Many current approaches to deep fake detection oversimplify the problem by treating 
it as a straightforward binary classification task [5]. They focus on creating advanced feature extractors and 
then use a simple method to distinguish between real and fake faces. However, the photo-realistic counterfeits 
bring significant challenges to this binary classification framework. The deepfake detection problem has hence 
been redefined as a fine-grained classification problem. A promising approach is using SWIN Transformers, 
a type of deep learning model. They use self-attention mechanisms and advanced feature analysis to closely 
examine images. This helps capture both the overall context and fine details accurately. Our research focuses 
on understanding how SWIN Trans-formers work and how well they can identify AI-generated images, 
particularly deepfakes. We’ll study the inner workings of the SWIN Transformer model and test how reliable 
it is at spotting deepfakes across different datasets and situations. The goal is to provide useful insights into 
computer vision and deepfake detection. By studying SWIN Transformers, we hope to give people better tools 
to fight against fake media and promote trust and honesty in digital platforms [7]. Here, we will proceed to 
critically analyse SWIN transformers, it is nothing but a significant and powerful innovation of vision 
transformers (ViT). Transformers ‘exceptional performance has been demonstrated in various computer vision 
tasks, such as instance segmentation, image classification, and object detection [8]. The study uses machine 
learning algorithms to investigate the relationship between overall health, blood pressure and stroke risk. The 
study also analyses databases of stroke patients and reviews the literature to assess the impact of health 
indicators on stroke risk and evaluate the effectiveness of identified algorithms Findings aims to improve 
seizure prevention, treatment, and diagnostic tools and to help researchers understand algorithm performance 
for seizure prediction [26]. 

Traditional transformers lack the ability to process images patch by patch. This is where the SWIN 
Transformer comes in, it divides the image into non-overlapping shifted windows to initiate efficient and 
scalable computation [9]. The problem of quadratic complexity (usually found in vanilla transformers) is easily 
tacked by its hierarchical design whilst computing high- resolution images. SWIN Transformer is also ideal 
for a large and small dataset due to its adaptability as a result of its design. The image is first divided into 
patches in a hierarchical manner. Then, these patches are merged as the network goes deeper to capture both 
global and local features. The window-based self- attention and shifted windows concept reduces computation 
ultimately improving the performance. SWIN Transformers truly have emerged and lived up to the idea of a 
ground- breaking advancement in the world of computer vision and technology [10]. Its ability to be flexible, 
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scalable and act as an efficient solution for visual recognition tasks allows it to make way for new 
breakthroughs in the deep learning and computer vision space. Coupled with its capability to capture long 
range dependencies, without a doubt, SWIN Transformers are indeed a promising choice for modelling 
complex visual patterns It would not be surprising at all if, SWIN Transformers, are at the forefront of research 
and practical implementations in various deepfake detection, segregation and other visual imagery related 
issues.  

Other than object and Deepfake detection, upon researching we have come across applications of SWIN 
transformer in across a spectrum of domains [11]. To name a few; Remote photoplethysmography for heart 
rate measurement, transformers in medical image segmentation, brain and vision transformers for autism 
spectrum disorder diagnosis and classification, air pollution measurement based on a hybrid convolutional 
neural network with a spatial-and-channel attention mechanism, and Earth Observation. The paper follows a 
structured approach: we begin with an overview of deepfake technology and the importance of effective 
detection methods. Next, we delve into existing research on deepfake detection and Transformer architectures 
in computer vision. We then introduce our model, explaining how we’ve adapted the SWIN Transformer for 
deepfake detection. After that, we detail our experimental setup, including datasets, training methods, and 
evaluation criteria. Following this, we present and analyse our experimental results, discussing their 
implications and limitations. Finally, we conclude by summarising our key findings and suggesting future 
research directions. This structured approach aims to make our research methodology, results, and 
contributions accessible to readers. 

 
2 Literature Review 

 

The margin at top should be set to 3.5 cm, while bottom, left and right margin should be set to 2 cm. The 
header position from the top should be set at 2.3 cm. The text of the paper should be arranged in sections and 
when necessary, into subsections. Sections should be numerated with one Arabic numeral, and subsection with 
two Arabic numerals e.g. 1.1, 1.2, 1.3 etc. The paper's title should be brief and informative, it must also clearly 
describe the paper's subject matter. The emergence of SWIN Transformers represents a pivotal advancement 
in bridging the gap between language and vision domains, particularly in the realm of deepfake detection. By 
employing a hierarchical transformer architecture with shifted windows, SWIN Transformers efficiently 
compute representations, facilitating multi-scale modelling with linear computational complexity. This 
transformative capability extends beyond deepfake detection, with applications spanning various domains. In 
[12], in order to improve computational efficiency, the authors devised a hierarchical Transformer with shifted 
windows, which limits self-attention to non-overlapping local windows. This facilitates cross-window 
connections, enabling flexible modelling at different scales with linear computational complexity relative to 
image size. In [13], the authors present SWINIR, which consists of components for high-quality im- age 
reconstruction, deep feature extraction, and shallow feature extraction. Multiple residual SWIN Transformer 
blocks (RSTBs), each with SWIN Transformer layers and a residual link, are integrated by the deep feature 
extraction module. Tasks including JPEG compression artifact reduction, colour and grayscale image 
denoising, and different types of image super-resolution—classical, lightweight, and real-world—are all 
covered by the model. 

In [14], the authors explored scaling SWIN Transformer to 3 billion parameters, enabling training with 
images up to 1,536x1,536 resolution. Innovations include residual post- normalization and scaled cosine 
attention for model stability. They introduced a log-spaced continuous bias technique to effectively transfer 
pretrained models from low to higher resolution images and windows. In [15], the authors employed shifted 
windows with multi-head self-attention (W-MSA/SW- MSA) for texture preservation. The network comprised 
input modules, feature extraction modules, and output modules, with a novel multi-channel loss integrating 
sensitivity maps. In [16], the authors introduced DS-TransUNet, a deep medical image segmentation 
framework that combines a conventional U-Net design with hierarchical SWIN Transformer. By simulating 
multiscale contexts and non-local dependencies in medical images, it improves the quality of semantic 
segmentation. In [17], the authors devised a window shift scheme enhancing feature transfer for defect 
detection, utilizing an improved Vision Transformer. Annotated 4000+ images of metal defects, achieving 
superior performance in surface-defect detection. Fine-tuned the model via transfer learning for enhanced ac- 
curacy. 
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In [18] The authors introduced MoBY, a self-supervised learning method employing Vision Transformers. 
After 300 epochs of training, it combined MoCo v2 and BYOL to obtain high accuracy on ImageNet-1K linear 
evaluation: 72.8% and 75.0% top-1 accuracy with DeiT-S and SWIN-T, respectively. In [19] the authors 
proposed a method incorporating intra- domain fusion using self-attention and inter-domain fusion employing 
cross-attention to integrate long dependencies within and across domains. This enables full extraction of 
domain- specific information, cross-domain complementary integration, and maintenance of global intensity 
perspective.  In [20], the authors have proposed a novel semantic segmentation framework for RS images 
called ST-U-shaped network (UNet), which embeds the SWIN transformer into the classical CNN- based 
UNet. In [21], in order to recover the low-resolution compressed image, the authors have presented the 
Hierarchical SWIN Transformer (HST) network, which simultaneously captures the hierarchical feature 
representations and improves each- scale representation using SWIN transformer. In [22], the authors proposed 
a cross-modality fusion model, SWINNet, with the purpose of RGB-D and RGB-T salient object detection. It 
is aided with the SWIN Transformer to extract the hierarchical features, boosted up by an attention mechanism 
which bridges the gap between two modalities, and guided    by edge information to sharp the contour of salient 
objects. In [23], the authors have investigated key challenges including the use of transformers in different 
learning paradigms, improving model efficiency, and coupling with other techniques. In [6], the authors 
presented AVFakeNet, a deepfake detection frame- work integrating audio-visual modalities. Their unified 
model, Dense SWIN Transformer Net (DST-Net), consists of input, feature extraction, and output blocks. 
Dense layers compose the input and output blocks, while a customized SWIN Trans- former module is 
employed in the feature extraction block. 

In this work [24], the authors introduced semantically- relevant contrastive learning (SRCL), enhancing 
SSL, which compares instance relevance to produce more positive pairs. In order to improve universal feature 
representations for histopathology problems, a hybrid model called CTransPath—which combines a CNN and 
multi-scale SWIN Transformer—is used to pretrained on unlabelled histopathological pictures. This model 
functions as a collaborative local- global feature extractor. In [25], the authors enhanced SWIN Transformer 
with CNN advantages, introducing Local Perception SWIN Transformer (LPSW) to boost local perception for 
small-scale object detection. They developed SAIEC frame- work to improve segmentation accuracy. Overall, 
in image pro- cessing, SWIN Transformers demonstrate remarkable efficacy in tasks such as image restoration 
[13] and resolution scaling [14][21]. Their versatility extends to the field of medical science, where they 
contribute to faster MRI processing [15], as well as enhancing medical image segmentation and analysis 
through integration into frameworks like U-Net [16][20][23]. Notably, the SWIN Transformer’s segmentation 
accuracy renders it suitable for applications in salient feature detection [22] and remote sensing object detection 
[25]. The unique attributes of SWIN Transformers, including the shifting windows and hierarchical structure, 
enable the effective collection of multi-scale characteristics critical for discerning subtle discrepancies 
indicative of deepfake manipulation like in AVFakeNet [6]. The diverse applications of SWIN Transformers 
underscore their versatility and effective- ness across various domains. Their ability to capture intricate details 
at multiple scales positions them as valuable tools for detecting anomalies indicative of deepfake manipulation. 
As the threat of deepfake proliferation continues to escalate, leveraging SWIN Transformers offers a promising 
avenue for enhancing detection capabilities and preserving the integrity of visual media. 

 
3 Proposed Model 

 

This work deals with the efficacy of SWIN Transformers, a sophisticated class of deep-learning models 
leveraging self-attention mechanisms and advanced feature analysis. By closely scrutinizing images, they 
adeptly capture both overarching context and intricate details. Specifically, we investigate their effectiveness 
in discerning AI-generated images, with a particular emphasis on deepfakes. The details architecture of the 
complete module is represented in Figure.2. In Figure.2 the modules 1(a),1(b) are patch partitioning and 1(c) 
represents liner embedding, 1(d),1(e) and 1(f) represents SWIN block, SWIN transformer and region merging 
and the details diagram shown in Figure.3, Figure.4 and Figure.5. 

 
3.1 Architectural Description 
 
The input image first passes through the following blocks: 
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1. Encoder: The primary aim of encoders in classification is to look for the target region and extract 
contextual and required characteristics from them. 

2. Patch Partitioning: Image originally being of the size 256 × 256, is further divided into patches of 4 × 
4 size. This forms a grid of 64 × 64 size. Here it starts with a small patch size and then increases the 
patch sizes as the layers increase. Each small image portion/ patch is a coloured image with Red, 
Green, and Blue as its colour channels. The RGB input image is first divided into non-overlapping 
windows. Each patch is then handled like a token and has its feature set transformed to raw pixel 
values. The final feature set dimension size increase to 4 × 4 × 3 = 48. 
 

 
 

Figure 2. Detailed Architecture to Detect Deepfake Images 
3.2 Linear Embedding:  

Converts images to a numerical form (sequence of tokens) or AD (Arbitrary Size). As trans- 
former works with a sequence of tokens. This helps converts a patch into a C-dimensional token 
(dependent on the the model size). Each token from a patch lets us calculate the attention followed 
by a feature extraction. 

 

 
Figure 3. SWIN block in SWIN transformer 

3.3 SWIN block in Transformer:  
 

The SWIN block differs from MSA (multi-head self-attention layer) by utilising shifted windows. Both 
the WMSA (window-based) and SWMSA units are used in the SWIN transformer blocks.  The composition 
of the block is depicted in the schematic diagram. Displacing window by [M/2, M/2] px from the regularly 
partitioned windows. (here 2 × 2 shift, M=4 patch size) Disadvantage of shifted window partitioning is that 
this con- figuration has more windows and some windows are smaller in second configuration as compared to 
the first configuration. SWIN transformer solves this problem using cyclic shifting windows, where the 
windows on the fringes are padded with each other. In the last portion of the image, A and C are not next to 
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each other in real life, hence passed through Masked MSA Displacing window by [M/2, M/2] px from the 
regularly partitioned windows. (here 2 × 2 shift, M=4 patch size). The disadvantage of shifted window 
partitioning is that this configuration has more windows and some windows are smaller in the second 
configuration as compared to the first configuration. SWIN transformer solves this problem using cyclic 
shifting windows, where the windows on the fringes are padded with each other These are not next to each 
other in real life, hence passed through Masked MSA. The transformer architecture of the SWIN block is 
shown in Figure.3. 

 
3.4 SWIN Transformer:  

 

Layer Normalization helps in estimating the normalization statistics without introducing any more 
dependencies between the training set shifted window multi-head self-attention- It takes the O/P of W-MSA 
shift all windows according to the parameter and compute W-MSA in shifted windows. 

 Multi-Layer Perceptron: It is a dense layer which trans- forms any input dimension to the desired 
dimension. 

 W-MSA: It uses dot product-based attention encoding for each product, w.r.t all other patches as 
input image. The overall architecture of SWIN transformer is shown in Fig.4. 
 

3.5 Region Merging: 
 

The input patches are divided into equal 4 parts combined by this layer. This boosts the feature dimension 
by 4 times, a linear layer later reduces the feature dimensions back to the original 2. This entire procedure is 
carried out three times paired with SWIN transformer blocks. SWIN transformer selectively merges adjacent 
patches to capture the global information properly by merging 4 patches, we keep on increasing the resolution. 
Fig.5 shows the region merging for boosting feature dimension. 
 
 

 
 

Figure 4. SWIN transformer architecture 

3.6 Decoder: 
 

Region Expansion: As part of the decoding process of the SWIN Transformer, the image is upsampled 
using features from the SWIN block to improve the observation of finer details. 
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Figure 5. Region Merging for boosting feature dimension 

 

3.7 Bottleneck Prediction: 
 
The bottleneck block uses two successive SWIN Transformer units to overcome the difficulty of learning with 
deeper layers. By strategically balancing dimensionality and feature resolution, this method maximises the 
model’s learning and representational capabilities. Together, these essential elements give the SWIN 
Transformer the ability to absorb and interpret visual data well for a variety of tasks. An additional key feature 
of the SWIN Transformer is input padding, where the model ensures the handling of images of varying 
dimensions, of any height or width if it’s a multiple of 32. This feature increments the flexibility of the overall 
pre- processing. The hierarchical partitioning functionality allows the capture of both local and global features 
as the network deepens (layers increase), by merging the smaller patches into larger ones. The larger image 
and patch detect the global and local features of the image respectively. The complete block diagram of this is 
shown in Figure 6. This phase consists of 2 subsections:  
 

 
 

Figure 6. Complete Block Diagram 
 

 Pooling layer: Here we witness the following procedures taking place. Dimensionality reduction - 
usually used to control overfitting in a dataset and decreasing the number of parameters. Here we 
witness the following procedures taking place. Dimensionality reduction, usually used to control 
overfitting in a dataset and decreasing the number of parameters. Feature Extraction aids in keeping 
the most relevant features and discarding the rest. Spatial Hierarchy, enables the network to go deeper 
and capture an increasing resolution of global and abstract features. 

 Fully Connected Layer the FC layer is the final stage    of this model, responsible for converting the 
extracted features into a format that can be easily used to make predictions and draw conclusions. It 
consists of one or more fully connected layers of neurons, where the number of neurons depends on 
the size of the input dataset and the complexity of the task. As we approach the output layer, the 
number of neurons gradually decreases. Since we are performing binary classification (Deep/Fake), 
we will use a single output neuron with the most appropriate activation function. 
 



S. R. Mishra et al.: Advanced deepfake detection… 52 
________________________________________________________________________________________________________________________ 

4 Result and Discussion 
 

The proposed model has been assessed on Celeb-df and FaceForensics++ datasets on the basis of accuracy 
and AUC. Additionally, the following preprocessing could be potentially useful for our dataset to ensure that 
the data is suitable for training a machine-learning model and can lead to improved model performance. 
Determining whether a dataset of photos needs pre-processing depends on the nature of the dataset, the specific 
task you’re aiming to perform, and the characteristics of the images. Here are some common reasons why you 
might consider pre-processing a dataset of photos: 

 
 Image Quality: Check for variations in image quality, such as lighting conditions, resolution, or noise. 

Pre- processing may involve standardizing image quality to ensure consistency. 
 Normalization: Normalize pixel values to a common scale. This is important if the images have 

varying 
 intensity levels, ensuring the model receives consistent input. 
 Noise Removal: Remove noise or artifacts from images that might interfere with model training or 

affect the quality of predictions. 
 Data Augmentation: Apply data augmentation techniques to artificially increase the diversity of the 

dataset. This can involve random rotations, flips, or adjustments to brightness and contrast. 
 Labelling Consistency: Ensure labelling consistency within the dataset. If labels are inaccurate or 

inconsistent, it can affect the model’s performance. 
 Outlier Detection: Identify and handle outliers, which may be images that don’t conform to the typical 

characteristics of the dataset. 
 Data Balancing: Check if the dataset is imbalanced (some classes have significantly fewer samples 

than others) and consider strategies like oversampling or under sampling to address this imbalance. 
 Missing or Corrupt Data: Identify and handle missing or corrupt images in the dataset. We have also 

compared it with traditions CNN models and presented the data in the Table 1, 2, 3 and 4 below. The 
same also can be visualised on Celeb-df and FaceForensics++ dataset in Figure.7, Figure.8, Figure.9. 

 
Table 1. Xception 

 
 

  Parameters  

Dataset Accuracy AUC Log Loss 

CalebDF 97 0.99 0.0712 

FaceForensic++ 91.05 0.96 0.2342 
 

 Table 2. Restnet3D 
 
 

  Parameters  

Dataset Accuracy AUC Log Loss 

CalebDF 97 0.99 0.0748 
FaceForensic++ 90.36 0.96 0.3224 

 

 
Table 3. Res2Net-101 

 
 

  Parameters  

Dataset Accuracy AUC Log Loss 

CalebDF 98.95 1 0.0237 
FaceForensic++ 93.48 0.97 0.2165 
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Table 4. SWIN-T 
 
 

  Parameters  

Dataset Accuracy AUC Log Loss 

CalebDF 97.91 0.99 0.034 
FaceForensic++ 95.715 0.9625 0.1573 

 
The graphs denote the comparison of the various CNN models and SWIN transformer on the two datasets, 

Celeb-df and FF++. It can be observed that SWINT gives much better accuracy on the FaceForensics++ dataset 
which is a more complex dataset in comparison to Celeb-DF overshadowing its falling behind with Res2Net-
101 in the Celeb-DF dataset since Celeb-DF is a simpler dataset. Hence, we can conclude that SWINT performs 
much better considering the complexity of the datasets. The project has achieved partial fulfilment, yielding 
several outcomes. 

A partial solution for deepfake detection has been implemented, showcasing effectiveness in identifying 
manipulated content to some extent, though improvements in coverage and accuracy are needed. Valuable 
insights gleaned from the project have informed future research directions and enhancements in deepfake 
detection methodologies. 

Additionally, a prototype or proof-of-concept implementation has been developed, demonstrating 
fundamental functionality and laying the groundwork for further refinement. The project has also identified 
limitations and gaps in the proposed methodology, such as scalability issues and technical challenges, 
providing crucial insights for future iterations. Furthermore, the partial completion of the project has set the 
stage for future collaborations and endeavours. Researchers can build upon the existing framework, leveraging 
insights gained and addressing remaining challenges to advance the field of deepfake detection. Although the 
project’s partial fulfilment does not constitute a fully operational deepfake detection system, it has nonetheless 
contributed valuable knowledge and paved the way for ongoing advancements in combating synthetic media 
manipulation. 

 

 

Figure 7. Model vs Accuracy 
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Figure 8. Model vs AUC 

 

Figure 9. Model vs Log Loss 

5 Conclusion  
 

In our research, we introduced a modified SWIN Trans- former architecture tailored for the classification 
of deepfake images. To assess the effectiveness of our approach, we conducted evaluations using the Celeb-df 
and FF++ datasets, which are widely used benchmarks in the field of deepfake detection. Our results indicate 
that our modified SWIN Trans- former architecture exhibits promising capabilities in identifying deepfake 
images. Specifically, we observed that our model outperformed traditional CNN models in terms of 
classification accuracy and overall performance. The hierarchical structure and attention mechanisms inherent 
in SWIN Transformers enable better capture of spatial and contextual information, leading to more robust 
classification outcomes. Overall, our study underscores the potential of SWIN Transformer-based architectures 
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for deepfake detection tasks. The enhanced performance that we observed in our assessments underscores the 
effectiveness of our suggested methodology and its potential to foster progress in countering the spread of 
deepfake media. 
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