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ABSTRACT 

This paper focuses on the online energy-saving operation control problem for passenger and 

freight trains running in a single-track railway line. Firstly, we design a centralised 

optimisation method to generate energy-saving reference profiles for both passenger and 

freight trains, in order to improve the punctuality of passenger trains and to reduce the total 

running time of freight trains in a central way. Secondly, we propose the distributed model 

predictive control (DMPC) based online trajectory optimisation problems for both types of 

trains, subject to their respective operational constraints including safety, punctuality, static 

speed limits and temporary speed restrictions. Then we formulate an online train operation 

control algorithm based on the centralised optimisation method for the initialisation of train 

trajectories and the DMPC method for the online trajectory planning. Finally, the proposed 

algorithm is applied to case studies of passenger and freight trains in a single track railway, 

and the numerical simulation results show that the proposed algorithm can realise online 

control for energy-saving train operation in the presence of input disturbances and temporary 

speed restrictions. 

KEYWORDS 

optimal train control; energy-saving operation; distributed model predictive control; 

passenger and freight mixed lines. 

1. INTRODUCTION 

Rail transportation is becoming increasingly important in public transportation systems due to its colossal 

transportation capacity, passenger comfort, punctuality and energy efficiency. The Automatic Train Operation 

(ATO) system, which represents a key component of train control systems, enables automatic control and 

regulation of train operation. This not only alleviates the labour burden on drivers but also decreases 

operational energy consumption, ultimately ensuring operation safety and reliability [1]. In recent decades, 

significant efforts have been made to come up with advanced ATO control algorithms for achieving accurate, 

fast and stable tracking control in response to the enlarging railway networks and increasing train speeds.  

The ATO system computes a speed profile for the upcoming journey prior to the train’s departure from the 

station. This profile is the reference signal for the ATO system and sets the target position and speed at a given 

time. It is crucial for ensuring punctuality and energy efficiency during automatic train operation. The 
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generation of the recommended speed profile is usually modelled as an optimisation problem, and the 

optimisation problem can be solved by a variety of methods, which can be roughly classified into two groups: 

direct and indirect methods. Indirect methods, including Pontryagin’s Maximum Principle [2], have been 

widely used for train optimal control problems. Using Pontryagin’s Maximum Principle, Ichikawa [3] derived 

optimal regimes for energy-efficient train driving on level tracks. Subsequent studies applied this principle to 

generate optimal train driving strategies with considering varying slopes, speed limits and force constraints 

[4–5].  

One of the main challenges of these indirect methods mentioned above is the complexity involved in 

deriving switching conditions for the optimal regimes. In contrast, the direct method works by transforming 

the original optimal train control problem into constrained mathematical programming problems. In recent 

years, the pseudospectral method, a type of direct method, has gained popularity in solving train optimal 

control problems. This is largely due to its faster convergence speed and better computational accuracy [6–

10]. Wang and Goverde [6] proposed a novel approach for optimising multi-train trajectories on single-track 

lines, where the multi-train trajectory optimisation is formulated as a multiple-phase optimal control problem 

and solved by a pseudospectral method. Wang and Goverde [7] studied the train trajectory optimisation 

problem with consideration of general operational constraints as well as signalling constraints, in which the 

train trajectory optimisation problem is also formulated as a multiple-phase optimal control model and solved 

by a pseudospectral method. Su [8] focused on the development of an automatic train driving strategy by 

utilising the pseudospectral method, aiming to minimise traction energy consumption for single train 

operations. Ye and Liu [9] considered a combined train control and scheduling problem involving multiple 

trains, and they successfully solved this problem by using the Matlab software package GPOPS Version 5.1, 

which is based on the Radau pseudospectral method. Li et al. [10] introduced a model for optimising the 

vertical alignment of lines with the objective of minimising both energy consumption and running time 

deviation, in which an exact solution approach, known as the Gaussian Pseudospectral Method, is utilised.  

However, most of these literatures mentioned above are limited to offline computation of the train’s 

reference trajectory, relying on fixed operational parameters such as train resistance coefficients and static 

speed limits. If the ATO system of a certain train still follows the offline-determined reference profile in the 

presence of input disturbances or Temporary Speed Restriction (TSR), it may cause unnecessary energy 

consumption or even lead to disorder of the whole line. Therefore, it is crucial to investigate online control 

strategies for energy-efficient train operation, which has attracted increasing attention. Zhao et al. [11] 

proposed a hybrid approach for determining priority weights of emergency alternatives, using the Weighted 

Ordered Weighted Averaging operator to aggregate preference matrices based on the emergency response task 

model. Yan et al. [12] introduced a moving horizon optimisation scheme to dynamically determine the 

reference speed profile for trains under changeable situations. This method employs the immune differential 

evolution algorithm in each moving horizon to achieve optimal results. Then Yan et al. [13] extended this 

approach to handle cooperative trajectory planning for multiple trains using the ant colony optimisation 

algorithm. However, it is important to acknowledge that intelligent or heuristic algorithms cannot always 

confirm the optimal and converging solutions [14–15], leading to the implementation difficulty in real-time 

scenarios. For comprehensive reviews on train online control, we refer to [16–20].  

Moreover, to support regional economic growth and enhance the competitiveness of railways in freight 

transportation, some railways are actively pursuing a passenger-freight mixed operation mode, in which both 

passenger and freight trains coexist and operate in a common line. Obviously, passenger and freight trains have 

significant differences in operation demands and constraints, bringing challenges to traffic regulation and 

management. However, the existing work on optimal train control problem for passenger-freight mixed lines 

is still limited. Liu and Dessouky [21] studied the joint problem of scheduling passenger and freight trains for 

complex railway networks and presented a novel heuristic optimisation algorithm. According to the author’s 

most recent knowledge, the online control for energy-efficient train operation in passenger-freight mixed lines 

with considering operational disturbances or TSR is still open.  

Inspired by the aforementioned discussions, this paper proposes an online control algorithm based on 

distributed model predictive control (DMPC) for energy-saving train operation in passenger-freight mixed 

lines with taking into account input disturbances or TSR. Firstly, we propose a centralised optimisation method 

to generate reference trajectories for multiple passenger and freight trains in a single-track railway line, which 

is executed before all the trains depart from their initial stations. Next, we construct the DMPC based online 

trajectory optimisation problems for both types of trains, subject to their respective operational constraints 

including safety, punctuality, static speed limits and temporary speed restrictions. Then we formulate an online 
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train control algorithm by applying the centralised optimisation method at initialisation and solving the DMPC 

based optimisation problems at each time step during operation. Finally, we present numerical simulation 

examples to validate the efficiency of our proposed algorithm, in which the optimisation problems are solved 

by using GPOPS-II [22–23] based on the pseudospectral method.  

The remaining part of this paper is outlined as described below. Section II introduces the energy-saving 

operation control problem for passenger and freight trains running in a single-track railway line. An online 

train operation control algorithm is proposed in Section III, including a centralised optimisation method for 

the initialisation of train trajectories and a receding horizon optimisation method based on the DMPC. Section 

IV illustrates the efficiency of our proposed algorithm through numerical case studies. Section V concludes 

the paper. 

2. PROBLEM FORMULATION 

2.1 Single-track railway with passenger and freight trains 

We study the energy-efficient train control problem for both types of passenger and freight trains running 

in a single-track railway. As shown in Figure 1, consider a single-track railway line that features intermediate 

stations with multiple tracks, allowing trains to meet and overtake each other. The total number of stations is 

𝑀. Let 𝑧𝑚,𝑚 = 1,2, … ,𝑀 denote the position of station 𝑚. Trains operate from the starting point 𝑧1 to the 

endpoint 𝑧𝑀. Passenger trains stop at every station while freight trains are not required to stop at intermediate 

stations. Let 𝑄𝑡 = 𝑄𝑝 ∪ 𝑄𝑓 , where 𝑄𝑡  represents the collection of trains, 𝑄𝑝  represents the collection of 

passenger trains and 𝑄𝑓 represents the collection of freight trains.  

 
Figure 1 – Illustration of a single-track railway with 𝑀 stations, in which 𝑧𝑚 denotes the position of the mth station 

with 𝑚 = 1,2, … ,𝑀 

2.2 Basic train dynamic model 

For the operation of train 𝑖 ∈ 𝑄𝑡, the dynamic model with position 𝑠 as the independent variable can be 

written as follows: 

{
 
 

 
 𝑑𝑣𝑖(𝑠)

𝑑𝑠
=
𝑢𝑖1(𝑠) + 𝑢𝑖2(𝑠) − 𝑅𝑖

𝑡𝑟𝑎𝑖𝑛(𝑣𝑖) − 𝑅𝑖
𝑙𝑖𝑛𝑒(𝑠)

𝑚𝑖𝑣𝑖(𝑠)

𝑑𝑡𝑖(𝑠)

𝑑𝑠
=

1

𝑣𝑖(𝑠)

 
(1) 

where 𝑣𝑖(𝑠) is the velocity of train 𝑖 at position 𝑠, 𝑡𝑖(𝑠) is the time of train 𝑖 at position 𝑠, 𝑚𝑖 is the mass 

of train 𝑖 , 𝑢𝑖1(𝑠)  and 𝑢𝑖2(𝑠) are the traction and braking forces of train 𝑖  respectively. The maximum 

traction and braking forces of freight trains are greater than those of passenger trains, and they have different 

traction characteristic curves. 𝑅𝑖
𝑡𝑟𝑎𝑖𝑛(𝑣𝑖) is the fundamental resistance resulting from both mechanical and 

aerodynamic friction, typically represented by the Davis equation: 

𝑅𝑖
𝑡𝑟𝑎𝑖𝑛(𝑣𝑖) = 𝑎𝑖 + 𝑏𝑖𝑣𝑖 + 𝑐𝑖𝑣𝑖

2 
(2) 

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are positive coefficients that depend on the particular train. Furthermore, 𝑅𝑖
𝑙𝑖𝑛𝑒(𝑠) is the linear 

resistance arising from the track slope: 

...... ......

Direction of train operation

m 1m  M1 2

1z mz Mz
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𝑅𝑖
𝑙𝑖𝑛𝑒(𝑠) = 𝑚𝑖𝑔 𝑠𝑖𝑛 𝛼(𝑠) ≈ 𝑚𝑖𝑔 𝑡𝑎𝑛 𝛼(𝑠) 

(3) 

where 𝛼(𝑠) represents the angle of inclination of the track at position 𝑠 and 𝑔 denotes the acceleration due 

to gravity. The approximation in Equation 3 holds when 𝛼(𝑠) is small. 

Due to complex environmental factors, the train will inevitably be subject to external disturbance during 

operation. In this paper, we take input disturbances into account, and then the train dynamic model (1) can be 

reformulated as: 

{
 
 

 
 𝑑𝑣𝑖(𝑠)

𝑑𝑠
=
𝑢𝑖1(𝑠) + 𝑢𝑖2(𝑠) + 𝑟𝑎𝑛𝑑𝑖 − 𝑅𝑖

𝑡𝑟𝑎𝑖𝑛(𝑣𝑖) − 𝑅𝑖
𝑙𝑖𝑛𝑒(𝑠)

𝑚𝑖𝑣𝑖(𝑠)

𝑑𝑡𝑖(𝑠)

𝑑𝑠
=

1

𝑣𝑖(𝑠)

 
(4) 

where 𝑟𝑎𝑛𝑑𝑖 denotes a random number to represent the input disturbance of train 𝑖.  

2.3 Train operation control objective 

For passenger train 𝑖 ∈ 𝑄𝑝, the timetable indicates scheduled arrival and departure times at every station. 

Each train departs from the starting point 𝑧1 with speed 0 at a given time 𝑇𝑖,1
𝑑 , then runs along the track and 

arrives at the endpoint 𝑧𝑀 with speed 0 at a given time 𝑇𝑖,𝑀
𝑎 . Thus, we have: 

𝑡𝑖(𝑧1) = 𝑇𝑖,1
𝑑 , 𝑣𝑖(𝑧1) = 0,

𝑡𝑖(𝑧𝑀) = 𝑇𝑖,𝑀
𝑎 , 𝑣𝑖(𝑧𝑀) = 0

 
(5) 

Moreover, to facilitate passenger boarding and alighting, the passenger train must adhere to the timetable 

and stop at each intermediate station: 

𝑣𝑖(𝑧𝑚) = 0,𝑚 = 2,3, … ,𝑀 − 1 
(6) 

𝑡𝑖,𝑚
𝑎 (𝑧𝑚) = 𝑇𝑖,𝑚

𝑎 ,𝑚 = 2,3,… ,𝑀 − 1 
(7) 

𝑡𝑖,𝑚
𝑑 (𝑧𝑚) = 𝑇𝑖,𝑚

𝑑 ,𝑚 = 2,3,… ,𝑀 − 1 (8) 

where 𝑡𝑖,𝑚
𝑎 (𝑧𝑚) is actual arrival time of train 𝑖 at station 𝑚, and 𝑡𝑖,𝑚

𝑑 (𝑧𝑚) is actual departure time of train 𝑖 

at station 𝑚. Moreover, 𝑇𝑖,𝑚
𝑎  and 𝑇𝑖,𝑚

𝑑  denote scheduled arrival and departure times of train 𝑖 at station 𝑚.  

During train operation, it is essential to consider the constraints on traction and braking forces, velocity and 

inter-train spacing: 

0 ≤ 𝑢𝑖1(𝑠) ≤ 𝑢𝑖1
𝑚𝑎𝑥(𝑣𝑖) 

(9) 

−𝑢𝑖2
𝑚𝑎𝑥(𝑣𝑖) ≤ 𝑢𝑖2(𝑠) ≤ 0 

(10) 

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥(𝑠) 
(11) 

𝑡𝑖(𝑠) − 𝑡𝑖−1(𝑠) ≥ 𝑇𝑚𝑖𝑛 (12) 

where 𝑢𝑖1
𝑚𝑎𝑥(𝑣𝑖) and 𝑢𝑖2

𝑚𝑎𝑥(𝑣𝑖) are the maximum traction and braking forces respectively, 𝑉𝑚𝑎𝑥(𝑠) is the 

train speed limit at position 𝑠 and 𝑇𝑚𝑖𝑛 denotes the minimum safe spacing for train operation. 

The control objective for passenger trains is to enhance the punctuality and minimise traction energy 

consumption, hence we define the following cost function for passenger train 𝑖: 

𝐽𝑖
𝑝
= ∑ {𝑤𝑖𝑝 ∙ [𝑡𝑖,𝑚

𝑎 (𝑧𝑚) − 𝑇𝑖,𝑚
𝑎 ]

2
+∫ 𝑢𝑖1(𝑠)𝑑𝑠

𝑧𝑚

𝑧𝑚−1

}

𝑀

𝑚=2

 
(13) 

where 𝑤𝑖𝑝 > 0  is a weight coefficient utilised to strike a balance between the punctuality and energy 

efficiency for passenger trains. 
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For freight train 𝑖 ∈ 𝑄𝑓 , it follows the same constrains as a passenger train at the initial and terminal 

stations, while passing through the intermediate stations without requirement of stops. The freight train is 

bound by the same operation constraints as the passenger train. Therefore, the freight train adheres to constrains 

(5) and constrains (9)-(12). 

The control objective for freight trains is to minimise total running time and traction energy consumption, 

hence we define the following cost function for freight train 𝑖: 

𝐽𝑖
𝑓
= ∫ [𝑤𝑖𝑓 ∙

1

𝑣𝑖(𝑠)
+ 𝑢𝑖1(𝑠)] 𝑑𝑠

𝑧𝑀

𝑧1

 
(14) 

where 𝑤𝑖𝑓 > 0 is a weight coefficient utilised to strike a balance between the time-saving objective and 

energy efficiency for freight trains.  

Since the presence of input disturbances or TSR would bring propagating delays, simply tracking the 

offline-determined reference profile may be infeasible or cause unnecessary energy consumption. Therefore, 

this paper aims at solving the online control problem for passenger and freight trains running in a single-track 

railway line, taking into account constraints (5)–(12) for passenger trains and constraint (5), (9)–(12) for freight 

trains, with the goal of being energy-efficient, punctual and time-optimal (13)–(14). 

3. DMPC BASED ONLINE TRAIN OPERATION CONTROL  

We firstly consider the centralised optimisation problem to determine the optimal state trajectories and 

arrival times for both passenger and freight trains, before they depart from the initial station. Then we construct 

the DMPC based trajectory optimisation problems for both passenger and freight trains. Finally, we formulate 

an online train operation control algorithm by applying the centralised optimisation method at initialisation 

and solving the DMPC-based optimisation problems at each time step during operation. 

3.1 Centralised optimisation of train trajectories 

Centralised optimisation of train trajectories is to improve the punctuality of passenger trains, reduce the 

total running time of freight trains and save the total operation energy consumption. The centralised 

optimisation problem for all trains is written as follows: 

𝑚𝑖𝑛 ∑ 𝐽𝑖
𝑝

𝑖∈𝑄𝑝

+ ∑ 𝐽𝑖
𝑓

𝑖∈𝑄𝑓

 (15) 

subject to the dynamic constraints as Equation 1 for train 𝑖 ∈ 𝑄𝑡, the operation constraints for train 𝑖 ∈ 𝑄𝑡: 

{
 
 

 
 0 ≤ 𝑢𝑖1(𝑠) ≤ 𝑢𝑖1

𝑚𝑎𝑥(𝑣𝑖), 𝑖 ∈ 𝑄𝑡
−𝑢𝑖2

𝑚𝑎𝑥(𝑣𝑖) ≤ 𝑢𝑖2(𝑠) ≤ 0

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥(𝑠)

𝑡𝑖(𝑠) − 𝑡𝑖−1(𝑠) ≥ 𝑇𝑚𝑖𝑛

 
(16) 

the state constraints at all stations for train 𝑖 ∈ 𝑄𝑝: 

{

𝑡𝑖,𝑚
𝑑 (𝑧𝑚) = 𝑇𝑖,𝑚

𝑑 ,𝑚 = 1,2,… ,𝑀 − 1 , 𝑖 ∈ 𝑄𝑝

𝑡𝑖,𝑚
𝑎 (𝑧𝑚) ∈ [𝑇𝑖,𝑚

𝑎 − 𝑡𝑎, 𝑇𝑖,𝑚
𝑎 + 𝑡𝑎],𝑚 = 2,3, … ,𝑀

𝑣𝑖(𝑧𝑚) = 0,𝑚 = 1,2,… ,𝑀

 
(17) 

the state constraints at the initial and terminal stations for train 𝑖 ∈ 𝑄𝑓: 

{

𝑡𝑖,1
𝑑 (𝑧1) = 𝑇𝑖,1

𝑑  , 𝑖 ∈ 𝑄𝑓

𝑡𝑖,𝑀
𝑎 (𝑧𝑀) ∈ [𝑇𝑖,𝑀

𝑎 − 𝑡𝑎, 𝑇𝑖,𝑀
𝑎 + 𝑡𝑎]

𝑣𝑖(𝑧𝑚) = 0,𝑚 = 1,𝑀

 
(18) 

where 𝑡𝑎 is the allowable deviation from the scheduled arrival time 𝑇𝑖,𝑚
𝑎 ,𝑚 = 2,3,… ,𝑀. 
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By addressing the centralised optimisation problem, we can effectively determine the reference state 

trajectories and control trajectories for all trains. We note that solving the centralised optimisation problem is 

time-consuming, making it hard to execute in real-time. Hence the centralised optimisation will be applied 

offline before all trains depart from the initial station. On the other hand, simply tracking the offline-determined 

reference trajectories may be infeasible or cause unnecessary energy consumption in the presence of input 

disturbances or TSR. Therefore, the next subsection centres on the online optimisation of the train control 

strategy and arrival times with considering the presence of input disturbances and the temporary speed 

restriction. 

3.2 Distributed model predictive control for train trajectory optimisation 

We presume that each train is independently organised and has the ability to compute and interact with 

other trains. We employ the predecessor-following topology, as illustrated in Figure 2, to simulate the 

communication among trains on a single-track railway that accommodates both passenger and freight trains. 

In greater detail, train 𝑖  can only acquire information from train 𝑖 − 1 , and train 1  does not receive 

information from any other trains. Trains with blue windows denote passenger trains, while those with red 

windows denote freight trains. In this subsection, we aim to design the control law 𝑢𝑖1(𝑠) and 𝑢𝑖2(𝑠) for each 

train 𝑖 utilising the DMPC approach. 

 
Figure 2 – Predecessor-following communication topology among the trains 

The model predictive control approach iteratively applies optimal control within a shifting time horizon 

[24]. At every time step, the most recent system information is utilised to compute the optimal control input 

by minimising a predefined cost function over a set prediction horizon. 

The problem of energy-efficient control can be modelled as an optimisation problem that considers train 

velocity and time as the state variables, and traction and braking forces as the control inputs. Let 𝑥𝑖(𝑠) =
[𝑣𝑖(𝑠), 𝑡𝑖(𝑠)]

𝑇 and 𝑢𝑖(𝑠) = [𝑢𝑖1(𝑠), 𝑢𝑖2(𝑠)]
𝑇. Rewrite Equation 1 into the following compact form: 

�̇�𝑖(𝑠) = 𝑓𝑖(𝑥𝑖(𝑠), 𝑢𝑖(𝑠)) 
(19) 

For passenger train 𝑖 ∈ 𝑄𝑝, we address the optimal train control problem within the interval [𝑠𝑖, 𝑧𝑛𝑖], where 

𝑠𝑖 denotes the present position of train 𝑖, and 𝑧𝑛𝑖 denotes the position of the next station along the operation 

direction from its current position 𝑠𝑖  (i.e. 𝑧𝑛𝑖−1 ≤ 𝑠𝑖 < 𝑧𝑛𝑖 ). The cost function pertaining to the energy-

efficient train control problem at current time step 𝑘, spanning the prediction horizon from 𝑠𝑖 to 𝑧𝑛𝑖, can be 

stated as follows: 

𝐽𝑖,𝑝 = ∫ 𝑢𝑖1(𝑠)𝑑𝑠, 𝑖 ∈ 𝑄𝑝

𝑧𝑛𝑖

𝑠𝑖

 
(20) 

The initial condition of the problem is [𝑣𝑖(𝑠𝑖), 𝑡𝑖(𝑠𝑖)], which denotes the velocity and time of train 𝑖 at 

current position 𝑠𝑖. At the end of the prediction horizon, the terminal states have to satisfy the following: 

𝑣𝑖(𝑧𝑛𝑖) = 0, 𝑡𝑖(𝑧𝑛𝑖) ∈ [𝑇𝑖,𝑛𝑖
𝑎 − 𝑡𝑎, 𝑇𝑖,𝑛𝑖

𝑎 + 𝑡𝑎] 
(21) 

In order to avoid conflicts, the safe constraint should be satisfied: 

Train i+1 Train i Train i-1

... ...

Direction of train operation

Direction of information transmission



Promet – Traffic&Transportation. 2024;36(6):1039-1053.   Traffic Engineering  

1045 

𝑡𝑖(𝑠) − 𝑡𝑖−1
𝑝 (𝑠) ≥ 𝑇𝑚𝑖𝑛 

(22) 

where 𝑡𝑖−1
𝑝
(𝑠) is the predicted time sequence calculated by train 𝑖 − 1 at the previous time step 𝑘 − 1, and 

𝑇𝑚𝑖𝑛 denotes the minimum safe spacing for train operation. 

Temporary speed restrictions are a common occurrence during the train operation: 

{
0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥

𝑝 (𝑠) = 𝑉𝑠𝑠𝑙
𝑝 (𝑠),   𝑠 ∈ [𝑠𝑖 , 𝑧𝑛𝑖]

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥
𝑝 (𝑠) = 𝑚𝑖𝑛{𝑉𝑠𝑠𝑙

𝑝 (𝑠), 𝑉𝑡𝑠𝑟
𝑝 (𝑠)} ,   𝑠 ∈ [𝑠𝑟 , 𝑠𝑟+1] 

 
(23) 

where 𝑉𝑠𝑠𝑙
𝑝
(𝑠) is the static speed limit and 𝑉𝑡𝑠𝑟

𝑝
(𝑠) is the temporary speed limit for passenger trains. Therefore, 

the maximum speed for passenger train 𝑉𝑚𝑎𝑥
𝑝
(𝑠) is a piecewise-constant function relative to the position 𝑠. 

Let 𝑠𝑟 and 𝑠𝑟+1 be the starting and ending positions of the area affected by the TSR. We further assume that 

the ATO system receives the TSR information before the train enters this area, which is within the prediction 

period.  

The energy-efficient control problem for passenger trains at the current time step 𝑘, within the prediction 

horizon from 𝑠𝑖 to 𝑧𝑛𝑖, can be formulated as follows: 

𝑚𝑖𝑛 𝐽𝑖,𝑝 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 

�̇�𝑖(𝑠) = 𝑓𝑖(𝑥𝑖(𝑠), 𝑢𝑖(𝑠)),   𝑠 ∈ [𝑠𝑖 , 𝑧𝑛𝑖]

𝑣𝑖(𝑧𝑛𝑖) = 0, 𝑡𝑖(𝑧𝑛𝑖) ∈ [𝑇𝑖,𝑛𝑖
𝑎 − 𝑡𝑎, 𝑇𝑖,𝑛𝑖

𝑎 + 𝑡𝑎]

0 ≤ 𝑢𝑖1(𝑠) ≤ 𝑢𝑖1
𝑚𝑎𝑥(𝑣𝑖)

−𝑢𝑖2
𝑚𝑎𝑥(𝑣𝑖) ≤ 𝑢𝑖2(𝑠) ≤ 0

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥
𝑝 (𝑠) = 𝑉𝑠𝑠𝑙

𝑝 (𝑠),   𝑠 ∈ [𝑠𝑖 , 𝑧𝑛𝑖]

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥
𝑝 (𝑠) = 𝑚𝑖𝑛{𝑉𝑠𝑠𝑙

𝑝 (𝑠), 𝑉𝑡𝑠𝑟
𝑝 (𝑠)} ,   𝑠 ∈ [𝑠𝑟, 𝑠𝑟+1]

𝑡𝑖(𝑠) − 𝑡𝑖−1
𝑝 (𝑠) ≥ 𝑇𝑚𝑖𝑛

 (24) 

For freight train 𝑖 ∈ 𝑄𝑓, we address the optimal train control problem within the interval [𝑠𝑖, 𝑧𝑀]. The cost 

function pertaining to the energy-efficient train control problem at current time step 𝑘, spanning the prediction 

horizon from 𝑠𝑖 to 𝑧𝑀, can be stated as follows: 

𝐽𝑖,𝑓 = ∫ 𝑢𝑖1(𝑠)𝑑𝑠, 𝑖 ∈ 𝑄𝑓

𝑧𝑀

𝑠𝑖

 
(25) 

At the end of the prediction horizon, the terminal states have to satisfy the following: 

𝑣𝑖(𝑧𝑀) = 0, 𝑡𝑖(𝑧𝑀) ∈ [𝑇𝑖,𝑀
𝑎 − 𝑡𝑎, 𝑇𝑖,𝑀

𝑎 + 𝑡𝑎] 
(26) 

The energy-efficient control problem for freight trains at the current time step 𝑘, within the prediction 

horizon from 𝑠𝑖 to 𝑧𝑀, can be formulated as follows: 

𝑚𝑖𝑛 𝐽𝑖,𝑓 

𝑠. 𝑡.

{
 
 
 
 

 
 
 
 

�̇�𝑖(𝑠) = 𝑓𝑖(𝑥𝑖(𝑠), 𝑢𝑖(𝑠)),   𝑠 ∈ [𝑠𝑖 , 𝑧𝑀]

𝑣𝑖(𝑧𝑀) = 0, 𝑡𝑖(𝑧𝑀) ∈ [𝑇𝑖,𝑀
𝑎 − 𝑡𝑎, 𝑇𝑖,𝑀

𝑎 + 𝑡𝑎]

0 ≤ 𝑢𝑖1(𝑠) ≤ 𝑢𝑖1
𝑚𝑎𝑥(𝑣𝑖)

−𝑢𝑖2
𝑚𝑎𝑥(𝑣𝑖) ≤ 𝑢𝑖2(𝑠) ≤ 0

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥
𝑓 (𝑠) = 𝑉𝑠𝑠𝑙

𝑓 (𝑠),   𝑠 ∈ [𝑠𝑖 , 𝑧𝑀]

0 ≤ 𝑣𝑖(𝑠) ≤ 𝑉𝑚𝑎𝑥
𝑓 (𝑠) = 𝑚𝑖𝑛{𝑉𝑠𝑠𝑙

𝑓 (𝑠), 𝑉𝑡𝑠𝑟
𝑓 (𝑠)} ,   𝑠 ∈ [𝑠𝑟, 𝑠𝑟+1]

𝑡𝑖(𝑠) − 𝑡𝑖−1
𝑝 (𝑠) ≥ 𝑇𝑚𝑖𝑛

 (27) 

where 𝑉𝑚𝑎𝑥
𝑓

 is the maximum speed for freight train, 𝑉𝑠𝑠𝑙
𝑓
(𝑠) is the static speed limit and 𝑉𝑡𝑠𝑟

𝑓
(𝑠) is the 

temporary speed limit for freight train. 
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3.3 Online train operation control algorithm 

Denote {𝑡𝑘}𝑘=0
+∞  as the set of sampling and control updating time instants. We also let 𝑘 stand for 𝑡𝑘. In 

problems (24) and (27), the real-time state [𝑣𝑖(𝑠𝑖), 𝑡𝑖(𝑠𝑖)] is measured at the current position 𝑠𝑖 (𝑡𝑖(𝑠𝑖) =
𝑡𝑘). The optimal control sequences [𝑢𝑖1

∗ (𝑠), 𝑢𝑖2
∗ (𝑠)] within prediction horizon can be obtained by solving 

problem (24) or (27), with only the initial control vector [𝑢𝑖1
∗ (𝑠𝑖), 𝑢𝑖2

∗ (𝑠𝑖)] implemented in the system. At the 

subsequent step 𝑘 + 1, the updated state is used to re-solve the optimal control problem (24) or (27), and also 

only the initial control vector is used for the system. By repeatedly solving a set of optimal control problems 

in a moving horizon approach, this DMPC-based method addresses the online train control problem based on 

the most up-to-date system information. 

The main procedure of the DMPC algorithm for online train operation control in mixed passenger and 

freight lines is summarised in Algorithm 1.  
Algorithm 1 

Input: the position 𝑧𝑚 of station 𝑚, the real-time state [𝑣𝑖(𝑠𝑖), 𝑡𝑖(𝑠𝑖)] of train 𝑖 measured at the 

current time 𝑡𝑘  (𝑡𝑖(𝑠𝑖) = 𝑡𝑘 ), the scheduled arrival time 𝑇𝑖,𝑚
𝑎  of train 𝑖 at station 𝑚, the scheduled 

departure time 𝑇𝑖,𝑚
𝑑  of train 𝑖 at station 𝑚, and the temporary speed limit 𝑉𝑡𝑠𝑟

𝑝
(𝑠) and 𝑉𝑡𝑠𝑟

𝑓
(𝑠).  

Output: the optimal control [𝑢𝑖1
∗ (𝑠), 𝑢𝑖2

∗ (𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑛𝑖]  for the passenger train or [𝑢𝑖1
∗ (𝑠),

𝑢𝑖2
∗ (𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑀] for the freight train, and the predicted state trajectories [𝑣𝑖

𝑝(𝑠), 𝑡𝑖
𝑝(𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑛𝑖] 

for the passenger train or [𝑣𝑖
𝑝(𝑠), 𝑡𝑖

𝑝(𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑀] for the freight train. 

1) Initialisation: Before departure, load data from the ATO database, such as speed limits and train 

parameters. Then, solve the centralised optimisation problem Equations 15–18 to calculate the reference 

position and speed trajectories for the trip, and set the current control step 𝑘 = 0. 

2) Train 𝑖 measures the real-time state [𝑣𝑖(𝑠𝑖), 𝑡𝑖(𝑠𝑖)] and solves energy-efficient control problem (24) 

or (27) based on the measured state. Take the optimal control [𝑢𝑖1
∗ (𝑠), 𝑢𝑖2

∗ (𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑛𝑖] for the 

passenger train or [𝑢𝑖1
∗ (𝑠), 𝑢𝑖2

∗ (𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑀] for the freight train, as the operation strategy within 

prediction horizon. 

3) Update the predicted state trajectories [𝑣𝑖
𝑝(𝑠), 𝑡𝑖

𝑝(𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑛𝑖]  for the passenger train or 

[𝑣𝑖
𝑝(𝑠), 𝑡𝑖

𝑝(𝑠)], 𝑠 ∈ [𝑠𝑖, 𝑧𝑀] for the freight train stored previously. 

4) Train 𝑖 transmits its updated predicted state trajectories to the following train 𝑖 + 1. 

5) Implement only the first component [𝑢𝑖1
∗ (𝑠𝑖), 𝑢𝑖2

∗ (𝑠𝑖)] of the optimal control sequences obtained 

from step 2) to train 𝑖. 
6) Let 𝑘 = 𝑘 + 1 and return to step 2). 

4. SIMULATION RESULTS 

In this section, we present numerical examples that clearly validate the efficiency of our advanced 

algorithm. The optimisation problems mentioned in Section III can be solved by using pseudospectral methods, 

which transform the train control problem into a nonlinear programming (NLP) problem at the Legendre-

Gauss-Radau (LGR) orthogonal collocation points. The transformed mathematical programming problem can 

then be solved by using the existing optimisation solvers such as GPOPS-II. And we solve the centralised 

optimisation problem by using GPOPS-II by transforming it into a multi-phase optimal control problem. All 

experiments in this section are conducted in MATLAB by using the optimisation solver GPOPS-II on a 

computer with 1.90GHz AMD CPU and 16G RAM. 

4.1 Simulation scenario setting 

Assuming there are four stations on the route, with a distance of 30 kilometres between each station. There 

are three passenger trains and a freight train running in this track, the first three being passenger trains and the 

last being freight train. For passenger trains, the original scheduled running time between an interval is 700 

seconds and dwell time in a station is 120 seconds. For freight train, the original scheduled running time 

between the initial and terminal stations is 3170 seconds. The allowable floating value 𝑡𝑎 of original scheduled 

arrival time 𝑇𝑖,𝑚
𝑎  is set to 30 seconds. The static speed limit 𝑉𝑠𝑠𝑙

𝑝
(𝑠) for passenger trains is set to 55 m/s, while 

freight trains have a static speed limit of 45 m/s. Safe margin 𝑇𝑚𝑖𝑛 is set to 240 seconds. Weight coefficient 

𝑤𝑖𝑝 and 𝑤𝑖𝑓 are set to 108 and 107.  
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We select the CRH3 train and HXD1 electric locomotive for simulation in the experiment, and the freight 

vehicle used for simulation is the C80 freight vehicle. The parameter information for the CRH3 train and freight 

train is presented in Tables 1 and 2, respectively. 

Table 1 – Basic parameters of CRH3 train 

Property Values 

a (N/kg) 0.0141612 

b (N s/m kg) 5.0400×10-4 

c (N s2/m2 kg) 1.9912×10-5 

Train mass (t) 536 

Maximum operating speed (m/s) 55 

Table 2 – Basic parameters of freight train 

Property Values 

a (N/kg) 100.76 

b (N s/m kg) 0.5222 

c (N s2/m2 kg) 0.0138 

Train mass (t) 10676 

Maximum operating speed (m/s) 45 

 

The CRH3 train’s maximum traction and braking forces, each expressed in kN, are stated as follows: 

𝑢𝑖1
𝑚𝑎𝑥(𝑣𝑖) =

{
 

 300 − 0.285𝑣𝑖 ,   𝑣𝑖 <
119𝑘𝑚

ℎ
31500

𝑣𝑖
, 𝑣𝑖 ≥

119𝑘𝑚

ℎ

 
(28) 

𝑢𝑖2
𝑚𝑎𝑥(𝑣𝑖) =

{
 

 300 − 0.285𝑣𝑖 ,   𝑣𝑖 <
106.7𝑘𝑚

ℎ
28800

𝑣𝑖
, 𝑣𝑖 ≥

106.7𝑘𝑚

ℎ

 (29) 

The HXD1 electric locomotive’s maximum traction and braking forces, each expressed in kN, are stated as 

follows: 

𝑢𝑖1
𝑚𝑎𝑥(𝑣𝑖) =

{
 
 

 
 760,   0 < 𝑣𝑖 ≤

5𝑘𝑚

ℎ

779 − 3.8𝑣𝑖 ,
5𝑘𝑚

ℎ
< 𝑣𝑖 ≤

65𝑘𝑚

ℎ
34560

𝑣𝑖
,   𝑣𝑖 >

65𝑘𝑚

ℎ

 
(30) 

𝑢𝑖2
𝑚𝑎𝑥(𝑣𝑖) =

{
 
 

 
 

461𝑣𝑖
5

,   0 < 𝑣𝑖 ≤
5𝑘𝑚

ℎ

461,
5𝑘𝑚

ℎ
< 𝑣𝑖 ≤

75𝑘𝑚

ℎ
34560

𝑣𝑖
,   𝑣𝑖 >

75𝑘𝑚

ℎ

 (31) 
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4.2 Simulation results and analysis 

We present two numerical examples to demonstrate the efficiency and energy efficiency of the proposed 

DMPC-based online train control algorithm for passenger and freight trains. The first example solves the online 

train control problem in the presence of input disturbances. In the second example, we take TSR into account 

to verify the efficiency of the proposed algorithm. In both examples, we will compare the train operation result 

under the online control of Algorithm 1 with that under offline control. Offline control represents executing the 

centralised optimised control input sequence into the system. 

Example 1 (Scenarios with input disturbances): We generate random numbers from -9000 to 9000 to 

simulate the real-time input disturbances in Equation 4 by using the rand function in MATLAB. The results of 

these experiments are depicted in Figures 3–4 and presented in Table 3. 

 
Figure 3 – The position trajectories of all trains under Algorithm 1 in Example 1 

 
Figure 4 – Speed trajectories of all trains in Example 1 under Algorithm 1 (blue curves) and offline control (red curves) 
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Table 3 – The arrival states and energy consumption in Example 1 

 Train 𝒊 (𝒗𝒊(𝒛𝟐), 𝒕𝒊,𝟐
𝒂 ) (𝒗𝒊(𝒛𝟑), 𝒕𝒊,𝟑

𝒂 ) (𝒗𝒊(𝒛𝟒), 𝒕𝒊,𝟒
𝒂 ) Energy 

Offline control 

𝑖 = 1 (10.1 m/s, 703.5 s) (10.5 m/s, 1522.6 s) (10.2 m/s, 2342.9 s) 

2.15127×1010 kJ 

𝑖 = 2 (9.9 m/s, 1184.2 s) (9.8 m/s, 2004.6 s) (9.9 m/s, 2824.2 s) 

𝑖 = 3 (10.2 m/s, 1663.3 s) (10.6 m/s, 2482.5 s) (9.6 m/s, 3304.9 s) 

𝑖 = 4 - - (3.5 m/s, 4564.1 s) 

Algorithm 1 

𝑖 = 1 (0.0 m/s, 704.4 s) (0.0 m/s, 1525.2 s) (0.0 m/s, 2343.6 s) 

1.98522×1010 kJ 

𝑖 = 2 (0.0 m/s, 1185.6 s) (0.0 m/s, 2006.4 s) (0.0 m/s, 2827.2 s) 

𝑖 = 3 (0.0 m/s, 1666.8 s) (0.0 m/s, 2490.0 s) (0.0 m/s, 3308.4 s) 

𝑖 = 4 - - (0.0 m/s, 4576.8 s) 

 

 

Figure 3 shows the position trajectories of all trains under Algorithm 1. In Figure 4, the red curves represent 

speed trajectories of all trains under the offline control, while the blue curves represent speed trajectories of 

all trains under Algorithm 1. Figure 4 shows that input disturbances cause fluctuations in speed profiles of all 

trains under Algorithm 1. And the fluctuations of the freight train are larger than that of the passenger trains. This 

may be because passenger trains have fixed stopping time at each station. Conversely, the DMPC optimisation 

of freight train is done for the terminal position every time, with a larger optimisation range than passenger 

trains. Moreover, a single centralised optimisation takes 288 seconds and is not applicable to online train 

control. However, the average solution time under Algorithm 1 for each step is 0.39 seconds, which is less than 

the sampling time period of 1.2 seconds, allowing for online train control to be achievable.  

As shown in Table 3, the offline control makes the train arrive at the station at an unsafe speed when there 

is input disturbance. For example, the speed of passenger trains at the second, third and fourth stations is close 

to 10 m/s. However, the online control algorithm based on the DMPC can successfully make the trains stop at 

each station. Furthermore, the traction energy consumption of the four trains calculated by offline control and 

Algorithm 1 are 2.15127×1010 kJ, and 1.98522×1010 kJ, respectively. It reveals that trains controlled by Algorithm 

1 consume less traction energy under the input disturbances. 

To evaluate the performance of Algorithm 1 with a larger number of trains, we conduct an experiment that 

involved five passenger trains and two freight trains, the results of which are depicted in Figures 5–6. Figure 5 

shows the position trajectories of five passenger trains and two freight trains under Algorithm 1. In Figure 6, the 

red curves represent speed trajectories of all trains under the offline control, while the blue curves represent 

speed trajectories of all trains under Algorithm 1. Solving the single centralised optimisation problem for the 

offline control takes 36.85 minutes, which is more than seven times of the solution time for the case with four 

trains. However, the average solution time under Algorithm 1 at each step is 0.38 seconds, which is similar as 

that for the case with four trains. It indicates that the solution time of centralised optimisation severely increases 

with the number of trains, while the solution time of Algorithm 1 based on the DMPC would not increase with 

the number of trains. As shown in Figure 6, the offline control makes the train arrive at the station at an unsafe 

speed when there is input disturbance. However, the online control algorithm based on the DMPC can 

successfully make the trains stop at each station. Furthermore, the traction energy consumption of the seven 

trains calculated by offline control and Algorithm 1 are 3.91403×1010 kJ and 3.61587×1010 kJ, respectively, 

revealing that Algorithm 1 proposed in this paper can also decrease the total traction energy consumption. 



Promet – Traffic&Transportation. 2024;36(6):1039-1053.   Traffic Engineering  

1050 

 
Figure 5 – The position trajectories of seven trains under Algorithm 1 in Example 1 

 
Figure 6 – Speed trajectories of seven trains in Example 1 under Algorithm 1 (blue curves) and offline control (red curves) 

Example 2 (Scenarios with TSR): A TSR of 40 m/s for passenger trains and 35 m/s for freight train occurs 

at the interval [45, 50] km, and the four trains will receive this TSR information at 961.2 seconds. The 

simulation results obtained are depicted in Figures 7–8 and shown in Table 4. 

 
Figure 7 – The position trajectories of all trains under Algorithm 1 in Example 2 
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Figure 8 – Speed trajectories of all trains in Example 2 under Algorithm 1 (blue curves) and offline control (red curves) 

Table 4 – The arrival states and energy consumption in Example 2 

 Train 𝒊 (𝒗𝒊(𝒛𝟐), 𝒕𝒊,𝟐
𝒂 ) (𝒗𝒊(𝒛𝟑), 𝒕𝒊,𝟑

𝒂 ) (𝒗𝒊(𝒛𝟒), 𝒕𝒊,𝟒
𝒂 ) Energy 

Offline control 

𝑖 = 1 (0.0 m/s, 700.0 s) (0.0 m/s, 1520.0 s) (0.0 m/s, 2340.0 s) 

2.15127×1010 kJ 

𝑖 = 2 (0.0 m/s, 1180.0 s) (0.0 m/s, 2000.0 s) (0.0 m/s, 2820.0 s) 

𝑖 = 3 (0.0 m/s, 1660.0 s) (0.0 m/s, 2480.0 s) (0.0 m/s, 3300.0 s) 

𝑖 = 4 - - (0.0 m/s, 4580.0 s) 

Algorithm 1 

𝑖 = 1 (0.0 m/s, 706.8 s) (0.0 m/s, 1548.0 s) (0.0 m/s, 2350.8 s) 

2.21945×1010 kJ 

𝑖 = 2 (0.0 m/s, 1190.4 s) (0.0 m/s, 2029.2 s) (0.0 m/s, 2826.5 s) 

𝑖 = 3 (0.0 m/s, 1671.6 s) (0.0 m/s, 2506.8 s) (0.0 m/s, 3309.6 s) 

𝑖 = 4 - - (0.0 m/s, 4609.2 s) 

 

As shown in Figure 7, the position trajectories of all trains bend slightly in the second section due to TSR. 

In Figure 8, the red curves represent speed trajectories of all trains under the offline control, while the blue 

curves represent speed trajectories of all trains under Algorithm 1. As illustrated in Figure 8, offline control fails 

to meet the temporary speed restrictions. However, all trains satisfy the temporary speed restrictions within 

the interval [45, 50] km under Algorithm 1. And because the trains are informed of the temporary speed 

restrictions in advance, the trains strategically accelerate prior to reaching the section to arrive at the next 

station timely. And it can be seen from Table 4 that trains consume more traction energy due to TSR during 

operation. 

5. CONCLUSION 

In this paper, we propose an online control algorithm for energy-saving train operation in mixed passenger 

and freight lines. Firstly, we design a centralised optimisation method to generate energy-saving reference 

profiles for both passenger and freight trains, considering their respective operational objectives and 

constraints. The method aims to improve the punctuality of passenger trains and to reduce the total running 

time of freight trains. Secondly, we propose the DMPC based online trajectory optimisation method for both 

types of trains, subject to operational constraints such as safety, punctuality, static speed limits and temporary 
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speed restrictions. Then we formulate an online train operation control algorithm based on the centralised 

optimisation method for the initialisation of train trajectories and the DMPC method for the online trajectory 

planning. Finally, we conduct two numerical experiments, the first one of which involves four trains subject 

to input disturbances in operation, and the second one examines the impact of TSR on the train operation. The 

simulation results clearly demonstrate the effectiveness and energy efficiency of our proposed algorithm. 
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王丹丹，邓恒，詹璟原，张利国 

基于模型预测控制的客货共线列车节能运行在线控制 

摘要 

论文研究单线铁路上客货共线列车的在线节能运行控制问题。首先，设计了一个集

中式优化方法，为客运和货运列车生成节能参考速度曲线，以集中式的方法提高客

运列车的准时性和减少货运列车的总运行时间。然后，提出了基于分布式模型预测

控制（DMPC）的在线轨迹优化问题，该问题适用于两种类型的列车，并且它们受到

各自的运营约束，包括安全性、准时性、静态限速和临时限速。然后，设计了一种

客货共线列车在线节能运行控制算法，算法使用集中式优化方法初始化列车运行轨

迹，并采用 DMPC 方法对列车运行轨迹进行在线规划。最后，将提出的算法应用于

单线铁路上客货共线列车的案例研究，数值模拟结果表明，所提算法能够在存在输

入干扰和临时限速的情况下，实现列车运行的在线节能控制。 
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