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ABSTRACT 

This paper presents a novel traffic flow prediction method emphasising heterogeneous 

vehicle characteristics and visual density features. Traditional models often overlook the 

variety of vehicles, resulting in inaccuracies. The proposed method utilises visual techniques 

to quantify traffic features, such as mixed flow and vehicle accumulation, enhancing dynamic 

density estimation and flow fluidity. We introduce a spatio-temporal prediction model that 

integrates various data types, capturing complex dependencies and improving accuracy. This 

research advances traffic flow prediction by considering the diverse nature of vehicles and 

leveraging visual data, offering valuable insights for intelligent transportation systems. 

Experimental results demonstrate the superiority of this approach over conventional 

methods, especially in capturing traffic flow fluctuations. 

KEYWORDS 

heterogeneous traffic flow; spatio-temporal modelling; traffic flow prediction; visual traffic 

quantification. 

1. INTRODUCTION 

Accurate short-term traffic flow prediction is crucial for urban managers, as it can help them make informed 

decisions and alleviate issues such as traffic congestion [1]. Unlike long-term forecasting, which addresses 

broader planning and infrastructure development, short-term prediction focuses on managing rapidly changing 

traffic conditions influenced by diverse social and economic demands. The presence of pedestrians and 

vehicles with different transportation functions significantly affects traffic flow dynamics. In particular, the 

role of heterogeneous vehicles in traffic prediction is becoming an increasingly indispensable key factor that 

cannot be ignored. 

Current short-term traffic flow prediction models often overlook these distinctions, typically assuming a 

homogenised vehicle system. Large vehicles, for instance, can significantly influence the driving behaviour of 

smaller vehicles, leading to mobility bottlenecks, uneven traffic flow distribution and reduced road traffic 

circulation capacity [2, 3]. Such conditions diminish road user satisfaction and escalate the risk of accidents 

due to the mixed vehicle types, discrete traffic flows and uneven speed distributions. Traditional heterogeneous 

traffic flow models typically use the personal capacity unit (PCU) to standardise vehicles of different types 

and sizes into a single measurement. It simplifies the analysis by treating all vehicles as equivalent to a standard 

passenger car. However, this method overlooks the unique impacts of vehicles of varying sizes and 

functionalities on traffic dynamics. 

Although advancements in deep learning have helped to capture temporal and spatial dependencies in traffic 

flow prediction, current research exhibits two main shortcomings. (1) There is insufficient emphasis on visual 
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methods, which offer the advantages of low installation and maintenance costs for visual sensors and can 

provide multidimensional quantitative data compared to traditional ground induction coils [4–6]. (2) Many 

models focus on integrating external factors at both macro and micro scales, overlooking the specific impacts 

of heterogeneous vehicle types on short-term traffic flow dynamics [7, 8]. To address these issues, a 

heterogeneous traffic flow prediction method based on visual density features is proposed. The contributions 

of this paper are as follows: 

 We propose a vision-based method for quantifying heterogeneous traffic features. In real traffic scenarios, 

heterogeneous traffic features such as mixed flow features, free flow and queueing states have a 

significant impact on traffic flow. The mixed flow features are quantified by using a multi-scale target 

detection method. By quantifying vehicle accumulation over different periods, we achieve dynamic 

density estimation of road traffic. By analysing the distribution and changes in vehicle speeds, as well as 

the movement patterns of vehicles in the road network, we assess the fluidity of traffic flow. This realises 

a multidimensional quantification of traffic flow features using visual methods. 

 We construct a spatio-temporal prediction model for multidimensional heterogeneous traffic features. 

This model effectively integrates various types of data, including spatial (location, distribution) and 

temporal (time series) data, as well as the heterogeneous features of different vehicle types. By combining 

macroscopic flow and microscopic heterogeneous features, it captures the complex dependencies and 

patterns within traffic flow. This approach allows for more comprehensive learning of historical traffic 

data, and more accurately reflects the real impact of heterogeneous features such as vehicle model 

differences on the dynamic changes in traffic flow. 

 The experimental results show that our heterogeneous traffic flow prediction method, based on visual 

density features, significantly improves prediction accuracy. The proposed method can effectively capture 

significant fluctuations in traffic flow and provide more precise forecasts than previous methods. 

The rest of this paper is organised as follows. Related works about deep traffic flow prediction are given in 

Section 2. Then, the proposed heterogeneous traffic flow prediction method based on visual density features 

is introduced in Section 3. Afterwards, experimental results are presented in Section 4. Finally, Section 5 

concludes this paper. 

2. RELATED WORKS 

Research in short-term traffic flow prediction has traditionally leaned on statistical models like historical 

averaging (HA) [9], support vector regression (SVR) [10] and regression analysis. While these methods are 

celebrated for their straightforward interpretations and effectiveness in limited data scenarios, they are often 

complemented by newer technologies. For instance, Haghani et al. [11] have enhanced traffic management 

through the use of Bluetooth sensors for accurate freeway travel time data, while Adu-Gyamfi et al. [12] 

applied empirical mode decomposition (EMD) in analysing probe-sourced traffic speed data to assess 

reliability. These advancements underscore a broader trend of integrating sophisticated data collection and 

analysis techniques into traditional traffic prediction frameworks. 

Building on these foundations, the focus has increasingly shifted towards advanced deep learning methods 

that utilise spatio-temporal features. He et al. [13] developed an end-to-end spatio-temporal 3D densenet 

multiscale convLSTM-resnet network (ST-3DDMCRN) for predicting future traffic flow accurately, capturing 

traffic data slices’ local regional spatio-temporal information and breaking through the limitation of traditional 

residual neural network (ResNet) [14] networks in capturing long-range spatial correlations. Guo et al. [15] 

proposed a hierarchical graph convolutional network, considering the natural hierarchical structure of traffic 

systems which is composed of the micro layers of road networks and the macro layers of region networks. 

Zhang et al. [16] introduced a multi-scale self-attention network for investigating multi-grained temporal 

dynamics across various time resolutions, with an aggregation layer to model the underlying dependencies 

across multi-level temporal dynamics. Moreover, this hierarchical graph neural network via attentive graph 

diffusion paradigm, enables spatial semantics from local-level to global-level traffic pattern representations. 

To more realistically simulate actual road conditions, some researchers have attempted to integrate more 

external features to better predict traffic. Yang et al. [17] proposed a multi-feature traffic prediction model 

based on convolutional neural networks, which integrates external factors like weather and holidays to predict 

traffic flow. To address the issue that traditional data-driven traffic flow prediction methods tend to ignore 
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traffic self-features, and are usually influenced by various complex factors, this model categorises traffic flow 

and further aligns and integrates the learned features with external factors through a logistic regression layer 

to generate the final prediction results, achieving notable accuracy and efficiency. Similarly, Yang et al. [18] 

proposed a hybrid deep learning structure for short-term traffic speed prediction, combining convolutional 

neural networks and long short-term memory networks. External factors like weather conditions and air quality 

can influence travellers’ driving behaviour and cause fluctuations in traffic speed. Based on traffic engineering 

theory, this model uses a data-fusion method to measure the impact of environmental factors. To enhance 

model performance, an attention mechanism is introduced. Through the convolutional block attention module, 

the model network can emphasise important channels and pixels of input features and suppress unnecessary 

ones, thereby improving the accuracy of traffic prediction. 

Although these models have enhanced prediction accuracy to varying degrees, they have all neglected the 

distinct features of heterogeneous types in influencing traffic flow. In actual road situations, the impact of 

different heterogeneous types on traffic flow varies. Larger vehicles, due to their greater size and poorer 

dynamic performance compared to smaller vehicles, are prone to creating numerous moving bottlenecks, thus 

significantly impacting traffic flow. With an increasing proportion of large vehicles, the standard deviation of 

vehicle following distances in the traffic flow gradually reduces, increasingly affecting the stability of the 

traffic flow. This leads to significant increases in traffic delays and, in severe cases, can result in traffic 

congestion and accidents [19]. In view of this, this paper proposes a heterogeneous traffic flow prediction 

model based on visual features to explore the impact of heterogeneous features on traffic flow. 

3. METHODOLOGY 

This paper further explores the impact of integrating heterogeneous visual features on traffic flow 

prediction, building upon the consideration of flow states [20]. To better simulate actual road traffic conditions, 

we initially merge the acquired heterogeneous traffic feature data. Subsequently, we delve into uncovering the 

hidden spatial and temporal dependencies within these data features to predict traffic flow. 

3.1 Heterogeneous flow mixing rate 

Typically, larger vehicles have greater length and width than smaller vehicles, and they have a more 

significant impact on road traffic flow. The mixing rate of large vehicles is one of the crucial parameters for 

assessing road safety and traffic congestion [21]. The uneven distribution of traffic flow states across different 

areas of the road network, reflecting the variation in traffic flow composition, is an important feature that 

cannot be overlooked. 

Quantifying heterogeneous traffic flow differs from homogeneous traffic flow, as it requires identifying the 

specific type of each vehicle to determine the impact of different vehicle types on traffic flow. In this paper, 

buses and trucks are considered large vehicles, while others are categorised as small vehicles. We use the 

machine vision detection algorithm called You Only Look Once v8 (YOLO v8) to count the number of vehicles 

in each category. We use a loss function 𝐿𝑑𝑒𝑡 as defined in Equation 2 to train the detection model: 

𝑦𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑐) =
𝑒𝑥𝑐

∑ 𝑒𝑥𝑐𝐶
𝑐=1

 (1) 

𝐿𝑑𝑒𝑡 = − ∑ 𝑔𝑐 𝑙𝑜𝑔(𝑦𝑐)

𝐶

𝑐=1

 (2) 

where 𝐶 denotes the total number of classes, 𝑥𝑐 denotes the predicted value of class 𝑐, 𝑦𝑐 denotes the predicted 

probability of class 𝑐, and 𝑔𝑐 denotes the true label of class 𝑐. The feature of the mixing rate of heterogeneous 

flow 𝜌 is defined as follows: 

𝑞𝑛,𝑡 = ∑ 𝑞𝑛,𝑡
𝑐

𝐶

𝑐=1

 (3) 

𝜌𝑛,𝑡 = ∑ 𝜇𝑐

𝑞𝑛,𝑡
𝑐

𝑞𝑛,𝑡

𝐶

𝑐=1

 (4) 
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𝜌𝑛 = [𝜌𝑛,1, 𝜌𝑛,2, ⋯ , 𝜌𝑛,𝑇] (5) 

𝜌 = [𝜌1, 𝜌2, ⋯ , 𝜌𝑁]𝑇 
(6) 

where 𝑞𝑛,𝑡
𝑐  denotes the total number of heterogeneous vehicles in class 𝑐 at time 𝑡 at node 𝑛, and 𝑞𝑛,𝑡 denotes 

the sum of the quantities of all heterogeneous types at time 𝑡 at node 𝑛, 𝜇𝑐 denotes the scaling factor for class 

𝑐 , 𝜌𝑛,𝑡  denotes the feature of heterogeneous mixing rate at time 𝑡  at node 𝑛 , 𝜌𝑛  denotes the feature of 

heterogeneous mixing rate across 𝑇 moments at node 𝑛, and 𝑁 denotes the total number of nodes. It is related 

to the current traffic flow state of the road. Generally, in non-free flow states, large vehicles have a greater 

impact on traffic flow. 

3.2 Heterogeneous flow density state 

Obtaining traffic density states is crucial for traffic flow prediction, as well as reducing congestion and 

aiding in planning the routes of relevant vehicles. Traffic density is primarily measured as the number of 

vehicles per unit length. Additionally, microscopic analyses of traffic flow can also estimate density indirectly 

by measuring the headway, or the space between vehicles, which provides insights into traffic patterns and 

congestion. A problem with these methods is that they do not account for the specific impact of different types 

of vehicles on traffic density states. In reality, in real road traffic conditions, large vehicles, due to their longer 

size and weaker acceleration and deceleration capabilities, tend to seek stable driving distances rather than 

higher speeds, compared to smaller vehicles. Also, large vehicles psychologically impact most surrounding 

drivers, causing them to consciously adjust the distance between their vehicles and the large vehicle, thereby 

affecting traffic flow. This indicates that the impact of large vehicles on road traffic density is different from 

that of smaller vehicles. 

In heterogeneous traffic flow density prediction models considering vehicle types, the goal of the loss 

function is to minimise the error between the predicted values and the actual traffic flow state. The loss function 

𝐿𝑡𝑓𝑝 is presented as follows. 

𝐿𝑡𝑓𝑝 = − 𝑙𝑜𝑔 (
𝑒𝑝𝑟𝑜𝑏(𝑔𝑡)

∑ 𝑒𝑝𝑟𝑜𝑏(𝑖)1
𝑖=0

) 
(7) 

This loss focuses on the prediction accuracy of traffic density states. Based on the original cross-entropy 

loss, it compares the difference between the model’s predicted traffic state (such as free or queued) and the 

actual state. 𝑝𝑟𝑜𝑏(𝑖) denotes the model’s predicted probability of road traffic density state 𝑖, and 𝑔𝑡 denotes 

the actual road traffic density state. In this paper, road traffic density state is divided into two categories: free 

(0) and queue (1). Therefore, the feature of traffic density state 𝐷 considering heterogeneous factors can be 

represented as follows: 

𝑑𝑛,𝑡 = {
1,     if  𝑝𝑟𝑜𝑏𝑛,𝑡(1) ≥ 𝑝𝑟𝑜𝑏𝑛,𝑡(0)

0,     else
 

(8) 

𝑑𝑛 = [𝑑𝑛,1, 𝑑𝑛,2, ⋯ , 𝑑𝑛,𝑇] (9) 

𝐷 = [𝑑1, 𝑑2, ⋯ , 𝑑𝑁]𝑇 
(10) 

where, 𝑝𝑟𝑜𝑏𝑛,𝑡(𝑖) represents the model’s predicted probability of road traffic density state 𝑖 at time 𝑡 at node 

𝑛, 𝑑𝑛,𝑡 represents the traffic density state score at time 𝑡 at node 𝑛, and 𝑑𝑛 denotes the feature of traffic density 

state across 𝑇 moments at node 𝑛. 

3.3 Prediction for heterogeneous traffic flow 

As shown in Figure 1, this paper presents a heterogeneous traffic flow prediction model based on visual 

methods. The model mainly consists of two modules: the heterogeneous quantification module and 

the dependencies fusion module. 
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Figure 1 – The overview of our proposed model for heterogeneous flow prediction 

1) The heterogeneous quantification module is utilised for the acquisition of heterogeneous traffic data 

features. By quantifying traffic flow, mixing rates and density states using visual methods, we obtain the 

mixing rate feature matrix 𝜌𝑁×𝑇, traffic flow feature matrix 𝑄𝑁×𝑇 (as shown in Equation 12), and traffic 

density state feature matrix 𝐷𝑁×𝑇. We concatenate these heterogeneous features to form the input matrix 

𝑋𝑁×3𝑇, as shown in Equation 13. Unlike most models that suffer from the drawback of having a single type 

of input feature, our data features, after fusion, can more accurately simulate real road traffic conditions. 

𝑞𝑛 = [𝑞𝑛,1, 𝑞𝑛,2, ⋯ , 𝑞𝑛,𝑇] 
(11) 

𝑄 = [𝑞1,  𝑞2,   ⋯ ,  𝑞𝑁]𝑇 (12) 

𝑋 = [𝜌, 𝑄, 𝐷] 
(13) 

2) The dependencies fusion module searches for the spatio-temporal dependency of the fused features. We 

employ the widely used gated recurrent unit (GRU) [22] model, combined with a multi-head attention 

mechanism, for capturing temporal dependency. The features, the temporal dependency of which has been 

captured, can be represented as follows. 

𝐻𝑇 = 𝐺𝑅𝑈(𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋)) 
(14) 

To capture spatial dependency, we combine the features processed by the GRU model with the adjacency 

matrix, inputting these features into the 𝑘-hop graph and (𝑘 − 1)-hop graph of the central node respectively 

for graph convolution, which aggregates the spatial features. Then, we fuse these features after pooling. These 

procedures can be represented as follows: 

𝐻(1)�̂�2 = (�̂�2𝐻𝑇𝑊(0))𝑊(1) (15) 

𝐻𝑓𝑜𝑟 = �̂�1𝜎 (𝑃𝑚𝑎𝑥(𝐻(1)) + 𝑃𝑚𝑒𝑎𝑛(𝐻(1))) 𝑊(2) (16) 

𝐻𝑟𝑒𝑣 = �̂�2
𝑟𝑒𝑣𝐻𝑇𝑊(3) (17) 

𝐻𝑇𝑆 = 𝜎(𝐻𝑓𝑜𝑟 + 𝐻𝑟𝑒𝑣) 
(18) 

where 𝑊(𝑖) denotes the weight parameters of the 𝑖-th layer, 𝐻(𝑖) denotes the hidden representation of the 𝑖-th 

hidden layer, 𝑃𝑚𝑎𝑥(⋅) means the max pooling function, 𝑃𝑚𝑒𝑎𝑛(⋅) means the mean pooling function, 𝜎(⋅) 

means the rectified linear unit (ReLU) activation function, �̂�𝑘 denotes the 𝑘-hop normalised adjacency matrix 

of the central node, �̂�𝑘
𝑟𝑒𝑣 denotes the flow-reverse 𝑘-hop normalised adjacency matrix of the central node, 

𝐻𝑓𝑜𝑟 means the flow-forward features, 𝐻𝑟𝑒𝑣 means the flow-reverse features and 𝐻𝑇𝑆 means the features the 

spatio-temporal dependency of which has been captured. 

Finally, two fully connected layers are applied for traffic flow prediction, and the result 𝑌  can be 

represented as follows. 
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𝑌 = 𝐹𝐶(𝐹𝐶(𝐻𝑇𝑆)) 
(19) 

4. EXPERIMENTS 

4.1 Dataset and metrics 

We utilise the STREETS [23] dataset for evaluation. STREETS is a novel traffic flow dataset from publicly 

available web cameras in the suburbs of Chicago, IL, providing over 4 million still images across 2.5 months 

and one hundred web cameras in suburban Lake County, IL. These cameras are divided into two distinct 

communities described by directed graphs, count vehicles to track traffic statistics and capture road images 

every 5 minutes. 

In experiments, we use the Gurnee community road network in the STREETS dataset. The traffic flow data 

from 5 June 2019 to 13 June 2019 are used for training, and those on 14 June 2019 are used for evaluation. 

Moreover, we set the node 28-IL 21 at Washington East-inbound as a central node. 

To comprehensively evaluate traffic flow prediction, we apply 3 metrics: mean absolute error (MAE), mean 

absolute percentage error (MAPE) and root mean squared error (RMSE). These metrics can be represented as 

follows: 

𝑀𝐴𝐸 =
1

𝑆
∑|𝑌𝑠 − �̂�𝑠|

𝑆

𝑠=1

 
(20) 

𝑀𝐴𝑃𝐸 =
1

𝑆
∑ |

𝑌𝑠 − �̂�𝑠

𝑌𝑠
|

𝑆

𝑠=1

× 100% (21) 

𝑅𝑀𝑆𝐸 = √
1

𝑆
∑(𝑌𝑠 − �̂�𝑠)

2
𝑆

𝑠=1

 (22) 

where 𝑌𝑠  denotes the true label of sample 𝑠, �̂�𝑠  denotes the prediction of sample 𝑠, and 𝑆 denotes the total 

number of samples in the test set. 

It is worth mentioning that we only consider heterogeneous vehicles in this paper. Although other factors 

such as pedestrians can also influence the traffic flow, they are not taken into account to simplify the 

complexity of the model. 

4.2 Experiments settings 

By default, we set the batch size to 64, learning rate to 0.001 and the epoch to 10,000, using a stochastic 

gradient descent optimiser with momentum of 0.9. The length of historical traffic flow used for prediction is 

12. We use only a single-layer GRU structure for capturing temporal dependency in traffic data and set the 

number of heads in the multi-head attention mechanism to 3. The scaling factor for large vehicles is set to 70, 

and that for small vehicles is set to 30. 

All experiments are run on an Ubuntu 18.04.5 LTS system, equipped with an Intel i7-9700K CPU and an 

NVIDIA GeForce RTX 2080 GPU. We implement our method with Python 3.6 and Pytorch 1.7. 

4.3 Traffic flow prediction 

Table 1 shows the results of traffic flow prediction for the next 15/30/60 minutes on the STREETS dataset. 

We compare our method with 7 baselines, including HA [9], SVR [10], feedforward neural network (FNN) 

[24], GRU [22], a combined model of graph convolution network and long short-term memory (GCN-LSTM) 

[25], spatio-temporal residual graph attention network (ST-RGAN) [26] and vision based spatial-temporal 

forecasting (V-STF) [20]. Compared to other baselines, our method incorporates the feature of a heterogeneous 

traffic flow mixing rate, achieving the best results in both MAE and RMSE metrics. These results demonstrate 

that the feature of heterogeneous traffic flow mixing rate plays an important role in traffic flow prediction. The 

incorporation of this feature improves the accuracy of traffic flow prediction, benefitting traffic flow 

prediction. 
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Table 1 – Comparison of the proposed method with the state-of-the-art methods in traffic flow prediction 

Method MAE MAPE (%) RMSE  

HA [9] 5.49/5.48/5.41 23.57/23.10/23.76 7.65/7.70/7.55 

SVR [10] 5.04/5.01/5.26 24.98/24.52/24.94 6.62/6.66/7.02 

FNN [24] 5.09/4.98/5.27 24.54/24.39/25.61 6.76/6.62/6.74 

GRU [22] 5.05/5.05/5.14 25.27/23.92/25.03 6.53/6.52/6.77 

GCN-LSTM [25] 5.04/5.03/5.13 24.82/23.76/24.90 6.61/6.75/6.74 

ST-RGAN [26] 4.72/4.88/4.76 22.13/23.74/23.19 6.37/6.59/6.37 

V-STF [20] 4.81/4.71/5.01 23.37/23.06/23.24 6.22/6.30/6.68 

Ours 4.51/4.40/4.52 23.43/22.34/23.31 5.97/5.91/5.84 

Note: The bold values are the best results for each metric. 

Figures 2-4 illustrate the detailed traffic flow prediction from 5:00 to 17:00. Compared to HA [9] and SVR 

[10], our method can capture the sudden changes in traffic flow. For example, the ground truth of traffic flow 

is 5 at 9:45 and is above 13 from 9:50 to 10:30 as shown in Figure 2. It can be observed that the prediction of 

our proposed method is close to the ground truth, while the prediction of SVR does not exceed 9 and the 

prediction of HA does not exceed 6. 

 
Figure 2 – Detailed comparison of our method with HA and SVR 

As shown in Figure 3, the FNN [24] model has abnormal cases where the prediction is less than 0 and much 

larger than the ground truth. Compared to GRU [22], our method can make a more accurate prediction when 

the traffic flow abruptly changes, such as at 9:00, 10:00 and 12:30. 

 
Figure 3 – Detailed comparison of our method with FNN and GRU 
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As can be seen in Figure 4, the performance of our method is close to GCN-LSTM [25] and ST-RGAN [26] 

in most cases. However, these two models tend to make a larger prediction, and our method outperforms them 

overall as depicted in Table 1. 

 
Figure 4 – Detailed comparison of our method with GCN-LSTM and ST-RGAN 

4.4 Ablation study 

Table 2 shows the results of ablation experiments on the STREETS dataset, which are acquired from traffic 

flow prediction for 15/30/60 minutes. Method (a) is the baseline GRU+GCN. Method (b) is based on method 

(a) and incorporates 𝑘-hop features. Method (c) is the integration of method (b) and traffic flow density 

features. Method (d) combines method (c) and traffic flow mixing rate features. With the addition of modules 

or features including GCN, 𝑘-hop, density state and mixing rate from method (a) to (d), the performance of 

the method increases, which proves the effectiveness of these modules or features on traffic flow prediction. 

Table 2 – Ablation results on the STREETS dataset 

Method MAE MAPE (%) RMSE  

(a) GRU+GCN 5.91/5.84/6.15 25.91/29.99/30.69 8.02/7.96/8.30 

(b) GRU+GCN+𝑘-hop 4.91/4.90/5.03 24.69/24.08/24.48 6.64/6.54/6.69 

(c) GRU+GCN+𝑘-hop+density state 4.81/4.71/5.02 23.37/23.06/23.24 6.22/6.30/6.68 

(d) GRU+GCN+𝑘-hop+density state+ 

mixing rate 
4.51/4.40/4.52 23.43/22.34/23.31 5.97/5.91/5.84 

Note: The bold values are the best results for each metric. 

5. CONCLUSION 

In this paper, we proposed a method for predicting traffic flow by leveraging visual heterogeneous traffic 
flow features. Initially, a visual object detection framework was employed to classify road objects and identify 
distinct traffic features such as large vehicles, small vehicles, non-motor vehicles and pedestrians. Following 
this, we quantified and fused features such as flow, heterogeneous density and road mixing rate to enhance the 
predictive accuracy of our model. This comprehensive approach enabled our model to not only consider flow 
features but also integrate heterogeneous density and road mixing rate features, thereby facilitating accurate 
predictions in varying traffic states, including free flow and queuing. 

However, our method is subject to certain limitations. The reliance on visual sampling for the entire road 
network dataset restricts our capability to finely quantify the interactions between large and small vehicles. 
Additionally, factors such as lane count, speed limits, weather conditions and road anomalies also significantly 
impact traffic flow predictions but are not fully integrated into the current model. 

Moving forward, future research should focus on refining the quantitative relationships between different 
types of heterogeneous traffic and extending the model to incorporate a broader array of influencing factors. 
This will not only improve the model’s robustness but also enhance its practical usability in diverse traffic 
conditions and environments. By addressing these limitations and expanding the scope of variables included 
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in the analysis, we aim to set a new standard in traffic flow prediction accuracy, particularly during non-
periodic peak flow periods. 
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王钦阳，陈婧，宋颖，李小冬，许文强 

一种融合视觉量化特征的异质交通流预测方法 

摘要： 

本文提出了一种强调异质车辆特征和视觉密度特征的新的交通流预测方法。传统交

通流预测模型往往会忽视车辆的多样性，导致预测不准确。提出的方法利用视觉技

术量化混合流量和车辆堆积等交通特征，加强了动态密度估计和流量流动性。我们

引入了一个时空预测模型，其集成了各种数据类型，能捕获复杂的依赖关系并提高

准确性。本研究通过考虑车辆的多样性并利用视觉数据来提升交通流量预测性能，

为智能交通系统提供有价值的见解。实验结果表明，提出的方法优于传统方法，特

别是在捕获交通流波动方面。 

关键词： 

异质交通流，时空建模，交通流量预测，视觉交通量化 


