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ABSTRACT 

Vessel trajectory prediction is important in maritime traffic safety and emergency 

management. Vessel trajectory prediction using vessel automatic identification system (AIS) 

data has attracted wide attention. Deep learning techniques have been widely applied to 

vessel trajectory prediction tasks due to their advantages in fine-grained feature learning and 

time series modelling. However, most deep learning-based methods use a unified approach 

for modelling AIS data, ignoring the diversity of AIS data and the impact of noise on 

prediction performance due to environmental factors. To address this issue, this study 

introduces a method consisting of temporal convolutional network (TCN), convolutional 

neural network (CNN) and convolutional long short-term memory (ConvLSTM) to predict 

vessel trajectories, called TCC. The model employs TCN to capture the complex correlation 

of the time series, utilises CNN to capture the fine-grained covariate features and then 

captures the dynamics and complexity of the trajectory sequences through ConvLSTM to 

predict vessel trajectories. Experiments are conducted on real public datasets, and the results 

show that the TCC model proposed in this paper outperforms the existing baseline algorithms 

with high accuracy and robustness in vessel trajectory prediction. 

KEYWORDS 

Automatic Identification System (AIS) data; vessel trajectory prediction; deep learning; 

neural network. 

1. INTRODUCTION 

Maritime transport is one of the most important global trade transports, undertaking the task of trans -

oceanic transportation of most goods. With vigorous development of the global economy, maritime 

activities have been increasing, especially in busy seas, and the water traffic environment has become 

more and more complex bringing great challenges to maritime vessel traffic management [1] and 

navigation safety [2]. Therefore, accurate vessel trajectory prediction has become an indispensable part 

of marine transportation and maritime management [3]. AIS (Automatic Identification System) [4] is a 

system for the automatic identification and localisation of vessels, which records the vessel’s activities at 

different times and locations, and can provide its dynamic information (current position, current speed to 

the ground, current heading to the ground, etc.), navigation information and static information of nearby 

vessels (maritime mobile service identification number, vessel name, etc.), which provides rich data for 

vessel trajectory prediction. 
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In recent years, many vessel trajectory prediction studies have been carried out based on AIS data. 

Earlier, based on traditional mathematical models [5] and physical principles, the basic principles of 

Newtonian mechanics, nonlinear differential equations, and other methods were applied to model the 

vessel’s trajectory by combining the speed, heading, position and velocity information in the vessel’s AIS 

data, and then the linear interpolation was used to predict the vessel’s position [6–9]. However, these 

methods usually rely on predefined motion patterns, are less robust to noise and error data in AIS data, 

lacking the ability to respond flexibly to autonomous vessel behaviours and changes in the external 

environment, thus limiting their application in dynamic and complex marine environments. Later, some 

researchers implemented machine learning methods such as Support Vector Regression (SVR) [10], and 

k-Nearest Neighbour Algorithm (k-NN) [11] to model the vessel’s motion state and predict the future 

vessel’s position by learning the patterns in the historical AIS data, but when dealing with the large-scale 

AIS data, the computational and storage requirements are high, the parameter selection is complicated 

and has limited adaptability to nonlinear dynamic environments.  

With the deepening research of deep learning techniques in computer vision, natural language 

processing and other fields, some researchers started to use deep neural networks to model AIS to achieve 

the prediction of vessel trajectories. For example, Volkova [12] et al. tried to verify the possibility of 

vessel trajectory prediction based on the AIS dataset using neural network models. Kim [13–14] et al. 

used a convolutional neural network (CNN) to extract features from latitude, longitude and other covariate 

information of AIS data for the prediction of future vessel trajectories. Although CNN can effectively 

extract spatial features from vessel trajectory data, including the vessel’s motion speed, heading change, 

etc., it is more suitable for extracting local features. However, its capture of global long-term dependencies 

is relatively limited and may not be able to fully utilise the global information of the vessel’s trajectory. 

Yang [15–16] et al. implemented recurrent neural networks (RNNs) to extract vessel coordinates from 

AIS data. Features such as speed and heading in AIS data were encoded appropriately thereby real ising 

the prediction of the vessel’s future position. However, due to the limited memory units of RNN, it is 

difficult to capture long-term dependencies in long sequential data, which may lead to performance 

degradation. Gao [17–18] et al. used a Long Short-Term Memory (LSTM) network to model the vessel’s 

coordinate information to predict the future trajectory of the vessel. The performance of the LSTM model 

highly depends on the quality and completeness of the input data. The prediction may also be affected by 

the absence or incorrect data. Wang [19] et al. combined CNN and LSTM to predict the future trajectory 

of a vessel. They used a CNN module for extracting data on the relation vessel between different variables 

(e.g. latitude, longitude, speed and ground course) and an LSTM module for capturing temporal 

dependencies. However, one of the key shortcomings of their approach was trying to capture all the 

features of the available information and model them comprehensively, leading to a significant increase 

in the model complexity. This indiscriminate modelling of all information not only increases model 

complexity but also introduces redundancy and noise that may hinder the model’s ability to identify 

relevant patterns and make accurate predictions. Furthermore, the model may struggle with overfitting, 

especially when trained on constrained or noisy data, affecting its generalisation performance over unseen 

real-world trajectories. 

Although there have been some achievements in research regarding vessel trajectory prediction based 

on deep neural network modelling AIS data, there are limitations in the existing research. For example, 

Zhang [20] et al. proposed a time-series convolutional network model to achieve the prediction of vessels 

in inland waterways or to show relevant prediction performance over a longer period in specific situations, 

and it is difficult to predict accurately the behaviour under extreme weather conditions. Second, the 

complexity of the marine environment and the interaction between vessels and the ocean may lead to  

noises and relying solely on latitude and longitude information may result in a model unable to capture 

accurately the characteristics of the data. It may result in large errors [21]. Finally, some researchers use 

all AIS data directly as inputs, ignoring its heterogeneity. This makes it difficult to capture all the features 

of AIS data or capture many irrelevant or redundant features through only a single model, leading to 

performance degradation [22]. In addition, too many features may increase the complexity of the model, 

making it more difficult to learn effective patterns. Different categories of data stocks may exhibit 

different features, and the inability to distinguish between different categories may lead to performance 

degradation of the model [23]. 
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Therefore, when it comes to the navigation situation of vessels at sea, the vessel trajectory data is often 

affected by various interferences, and even missing latitude and longitude information may occur. So we 

need a model that can make full use of other information in the dataset to judge the vessel’s navigation 

status. Moreover, the robustness and adaptability of the vessel trajectory prediction model need to be 

further improved to adapt to the ever-diversifying application scenarios. 

To solve the above problems, an innovative vessel trajectory prediction model named TCN-CNN-

ConvLSTM model, referred to as the TCC model, is proposed in this paper. The model is based on neural 

network to realise the modelling of different types of AIS data, separate the data with different focuses in 

the AIS dataset and finally predict the vessel trajectory through feature fusion [24]. Specifically, for the 

time series data generated in vessel voyages that contain long-term temporal dependencies, we use TCN 

to capture the long-term dependencies of the time series. For the covariate information in vessel 

navigation, we use CNN for modelling to capture fine-grained vessel features. Finally, we implement a 

feature fusion to predict the behaviour of the vessel accurately. Our main contributions are as follows: 

1) We propose a new hybrid network model, TCC, which utilises TCN [25] and CNN models to achieve 

modelling of time series and feature extraction of covariate information. Our model captures the long-term 

temporal dependencies by using TCN, and feature extraction of covariate information by using CNN which 

captures the vessel’s navigational state information. Random weights are added to refine the feature 

representation to capture the vessel navigation features comprehensively. 

2) ConvLSTM [26] is utilised to learn the tensor information encoded by TCN and CNN networks, giving our 

model the ability to predict future vessel trajectories. It combines the benefits of TCN for capturing long-

term temporal dependencies with the ability of CNN to extract features of vessel sailing states.  

3) The proposed method is compared with commonly used methods based on real AIS datasets and state-of-

the-art ones. The results show that the accuracy and robustness of the proposed method are higher than the 

existing models. 

2. TCC MODEL 

In this section, the general architecture of the TCC model is described. The model consists of TCN, CNN 

and ConvLSTM, which we divided into three modules. The principles and roles of each module are described 

in detail separately. Based on the vessel’s AIS dataset, the proposed method predicts the vessel’s trajectory 

using time-series data fusion, optimised for the characteristics of the data. 

2.1 General Model Architecture 

For vessel trajectory prediction, it is assumed that there is a sequence of consecutive vessel trajectories 

𝑙1, 𝑙2, ⋯ , 𝑙𝑡, ⋯ , 𝑙𝑇 of length 𝑇, where 𝑙𝑡 consists of the AIS information of LAT, LON, SOG, COG, and Heading 

of the vessel at the moment 𝑡. The aim is to predict the vessel’s trajectory coordinates 𝑙𝑇+1, 𝑙𝑇+2, ⋯ , 𝑙𝑇+𝑛, ⋯ , 𝑙𝑇+𝑁 
within the latter 𝑇 + 𝑁  moments, where 𝑙𝑇+𝑛  denotes the vessel’s coordinates at the 𝑙𝑇+𝑛  moment and 

consists of LAT and LON. Therefore, the task can be represented as Formula 1. 

𝑙𝑇+1, 𝑙𝑇+2, ⋯ , 𝑙𝑇+𝑛, ⋯ , 𝑙𝑇+𝑁 = 𝑓(𝑙1, 𝑙2, ⋯ , 𝑙𝑡 , ⋯ , 𝑙𝑇) (1) 

The AIS data is firstly segmented into two parts based on the characteristics of the vessel’s trajectory. The 
first part is the vessel’s latitude and longitude sequence 𝑙, including the vessel’s longitude (LON) and latitude 
(LAT). The second part is the vessel’s covariate information 𝑐 , including surface speed (SOG), surface 
heading (COG) and true heading angle (Heading). 

The sequence of vessel’s latitude and longitude coordinates 𝑙 with history length 𝑇 is then modelled using 
the TCN neural network to capture the long-term dependencies. Meanwhile, the second module uses a 
convolutional neural network CNN to extract features from the vessel covariates c of history length 𝑇 to mine 
useful information.Convolution layer extracts patterns in covariate data through local convolution operations 
and generates feature maps. The extracted features then pass through a linear layer and are mapped to the 
desired output dimension, thus integrating with the output of the TCN module. Finally, the encoded tensor 
sequences are inputted into the ConvLSTM module to predict the future vessel trajectories.  

The vessel trajectory prediction process is shown in Figure 1, detailing the description of each module. More 
detailed processing and parameterisation of each module is described in the following sections 2.2 to 2.4. 
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Figure 1 – The overall architecture of the TCC model. l and c denote the position coordinates (LAT, LON) and covariate information 

(COG, SOG, Heading) of the vessel at time T, respectively. 

2.2 Module 1: TCN Trajectory Modelling Module 

For the vessel trajectory coordinate sequence, we use the TCN Trajectory Modelling Module to model the 

long-term dependence of the longitude and latitude sequence. It enhances the model’s ability to deal with long-

term dependencies by introducing innovative structures such as dilation convolution.  

In this network, the number of input features is set to 2 (longitude and latitude). The network consists of 

three convolutional layers, the number of output channels for each layer is set to 128, and the size of the 

convolutional kernel is 7. In addition, the dilation rate of the convolutional layer increases layer by layer, 

starting at 1, and each layer is 1, 2 and 4. The increasing expansion rate of each layer allows the model to 

capture long-term dependencies at different levels, enhancing the ability to process sequence data, while 

balancing the model’s learning power and computational complexity with appropriate convolution kernel size 

and the settings of channel number to efficiently process the features of the input data. 

By sampling the input at intervals during the convolution process, dilated convolution allows the model to 

expand the receptive field with a limited number of parameters and thus better capture long-term dependencies. 

We consider each longitude and latitude as a time step. For a sequence 𝐿 𝜖 {𝐿0, 𝐿1, ⋯ , 𝐿𝑡 , ⋯ , 𝐿𝑇−1} of vessel 

trajectories in time length 𝑇, 𝐿𝑡 consists of the vessel’s longitude and latitude at moment t, the expansion 

convolution operation 𝐹 can be expressed as Formula 2. 

𝐹(𝑡) = ∑ 𝑓(𝑖) ∙ 𝐿𝑡−𝑑∙𝑖

𝑘−1

𝑖=0

 
(2) 

where 𝑑 is the dilation rate, 𝑘 is the convolutional kernel size and 𝑘 − 𝑑 ∙ 𝑖 is the past direction. After that, a 

series of operations are performed, including adding random weights, regularisation and using activation 

functions to generate the output of a complete residual block. Then the output of the previous residual block 

is used as the input of the next residual block, and each residual block is connected in sequence. The series of 

transformations in the residual block is recorded as 𝜑 and the result of the residual connection is recorded as 

𝐿𝑇. The process is expressed as Formula 3. 

𝐿𝑇 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝜑(𝑥) + 𝑥) (3) 

Finally, a linear layer mapping is used to generate the final tensor sequence. The final tensor sequence 

modelled by the TCN Trajectory Modelling Module is denoted as 𝐿𝑚 , expressed as Formula 4. 

𝐿𝑚 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐿𝑇) (4) 

2.3 Module 2: CNN Feature Extraction Module 

The vessel trajectory data is first prepared into a format suitable for CNN. In this module, a one-dimensional 

convolution layer is used to process context information. The number of input channels is 3, indicating that 

three features such as speed, heading and true heading are processed, and the number of output channels is 
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also 3. The size of the convolution kernel is set to 2, which defines the window size of the convolution 

operation. 

Each sample has three features, i.e. SOG, COG and Heading. We consider the above information as 

channels and then apply a Convolutional Neural Network (CNN) for feature extraction. Each feature 

corresponds to a feature map and the length of the input sequence determines the size of the feature map. In 

the convolutional layer, local features can be extracted from the sequence data by setting a convolutional kernel 

of an appropriate size. The convolution kernel performs a convolution operation with the input sequence to 

produce a feature map. The convolution operation moves in the horizontal direction to capture features at 

different locations. The output of the convolutional layer is nonlinearly transformed using the ReLU activation 

function and a bias term is added to the final convolutional operation to make the model more flexible in fitting 

the data, thus enhancing the expressive power of the network. The convolution operation can be expressed as 

Formula 5. 

𝑌𝑖,𝑗 = (𝐶 ∗ 𝐾)(𝑖, 𝑗) ∑ ∑ 𝐶(𝑖 + 𝑚, 𝑗 + 𝑚)𝐾(𝑚, 𝑛) + 𝑏𝑓 (5) 

where 𝐶 is the input sequence, 𝐾 represents the convolution kernel and 𝑌 is the output after convolution. 

Notation 𝑏𝑓  is the bias term of the fth convolution kernel. Notations 𝑖  and 𝑗  represent the position 

coordinates in y, respectively. Notations 𝑚 and 𝑛 represent the position coordinates of the convolution 

kernel, respectively. 

The value of each position of the output feature map 𝑌 represents the local features of the input sequence. 

The one-dimensional convolution operation is repeated at different positions of the input data until the entire 

input sequence is covered, thereby obtaining various local features of the entire input sequence.  

After the convolution operation, the data is fed into the pooling layer to reduce the size of the feature map 

and retain the main feature information, while reducing the number of parameters and the amount of 

computation. 

The convolutional and activation function layers are grouped into one layer and stacked after the pooling 

operation to build a deeper feature extraction network. This allows the gradual extraction of higher-level 

feature representations. The data is fed into a fully connected layer to map the pooled data features to the target 

value space. Finally, a linear layer was added, and a deeper mapping using the activation function ReLU was 

adjusted to the shape of the data that could be collocated with the TCN network for input into the ConvLSTM 

network. 

Overall, the added linear layer achieves further mapping and feature extraction of the encoded speed, 

heading and bow direction information by learning weights and bias terms to generate the final feature 

representation of the speed information. 

2.4 Module 3: ConvLSTM Trajectory Prediction Module 

The network structure of ConvLSTM can be viewed as an LSTM network with a convolution kernel, where 

the convolution kernel is used to perform convolution operations on the input data. At each time step, the 

convolution operation scans the entire sequence in the temporal dimension to capture the spatio-temporal 

information. 

In this ConvLSTM network, the number of feature graph channels is set to 5, and the network has 2 layers 

of ConvLSTM, the first layer of which has a hidden state dimension of 32 and the second layer of which has 

a hidden state dimension of 3. Each convolution layer uses a 3 × 3 convolution kernel. The space size of the 

input data is 16 × 16. 

ConvLSTM can extract both spatial and temporal features of spatio-temporal data to capture spatio-

temporal dependencies in vessel trajectory prediction. Especially for problems that need to consider motion 

and temporal variations in the vessel trajectory, ConvLSTM combines the memory units of LSTM to capture 

these long-term dependencies effectively, thus improving the accuracy of vessel trajectory prediction. The 

following is the detailed processing: 

The vessel trajectory information extracted by TCN modelling and CNN features is spliced and adapted 

into a shape suitable for the ConvLSTM network input, which is represented as a spatio-temporal sequence 

𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑡, ⋯ , 𝑥𝑇} where 𝑥𝑡 denotes the vessel tensor data at the moment 𝑡 a five-dimensional tensor 

data. At each time step, the input data is passed to the ConvLSTM model. The ConvLSTM model consists of 

multiple ConvLSTM layers. Each ConvLSTM layer consists of a set of Convolutional Kernels and a set of 
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Gate Units. The Convolutional Kernels are used to process the spatio-temporal features of the input data. The 

Gate Units are used to control the updating and forgetting of the Memory Units. The input data affects the state 

and hidden state of the Memory Units through convolutional and gating operations. At each time step, the 

ConvLSTM model updates the memory cell states and hidden states of the current time step based on the 

current input data and the ones of the previous time step. These state updates are done through a series of 

convolution operations, element-by-element multiplications and activation functions. At each time step, we 

record the hidden state output of the last ConvLSTM layer and repeat this process for the entire sequence until 

all time steps have been processed. Finally, we added the fully connected layer (linear layer) to map the hidden 

state to the final prediction, denoted as Formula 6. 

�̂� = 𝐿𝑖𝑛𝑒𝑎𝑟(ℎ𝑡) (6) 

where �̂� is the prediction result and 𝐿𝑖𝑛𝑒𝑎𝑟 is the linear layer operation. 

2.5 Loss function 

We adopted the commonly used Mean Squared Error (MSE) as the loss function for our trajectory 

prediction model. The rationale for this choice is the significant impact of changes in coordinates. For example, 

a 1-degree difference in latitude or longitude can result in an actual distance difference of over 100 nautical 

miles. Given the substantial amount of vessel data in our dataset, MSE is particularly effective because it 

squares the errors during computation, thereby penalising larger errors (outliers) more severely. This 

characteristic ensures that the model focuses on reducing substantial errors, enhancing its robustness and 

performance even with the presence of anomalies. 

Furthermore, MSE is typically calculated after normalising the predicted data. In certain scenarios, if the 

value of the loss function is too small, the gradients may approach zero. This leads to the vanishing gradient 

problem, where the model fails to update its parameters effectively, thereby impeding the learning process. In 

our approach, we addressed this issue by modifying the loss function. Specifically, we adjusted the total loss 

value to be the sum of the MSE of the denormalised trajectory coordinates and the MSE of the normalised 

trajectory coordinates. 

This method is designed to better reflect the model’s performance on actual trajectory coordinates and 

ensure consistent optimisation across different data scales. By considering both the accuracy of the model’s 

predictions and its performance in the actual trajectory space, the proposed approach enhances the model’s 

effectiveness and generalisation ability in trajectory prediction tasks. The calculation for the loss function is 

shown in Formula 7. 

𝜇𝑀𝑆𝐸 =
1

𝑇
∑ [(𝑝𝑇+𝑠

𝑝𝑟𝑒𝑑
+ 𝑝𝑇+𝑠

𝑡𝑟𝑢𝑒)
2

+ (𝑛𝑇+𝑠
𝑝𝑟𝑒𝑑

+ 𝑛𝑇+𝑠
𝑡𝑟𝑢𝑒)

2
]

𝑇

𝑠=1

 

(7) 

where 𝑝𝑇+𝑠
𝑝𝑟𝑒𝑑 is the value representing the true longitude or latitude of the model output; 𝑝𝑇+𝑠

𝑡𝑟𝑢𝑒 is the value 

representing the true longitude or latitude of the vessel; 𝑛𝑇+𝑠
𝑝𝑟𝑒𝑑

 is the value representing the true longitude or 

latitude normalised by the model output; 𝑛𝑇+𝑠
𝑡𝑟𝑢𝑒  is the value representing the true longitude or latitude 

normalised by the vessel; and 𝜇𝑀𝑆𝐸 represents the final MSE result. 

3. EXPERIMENTS AND RESULTS 

In this section, we conduct experiments on the predictive effectiveness of different models using real AIS 

data to demonstrate the superiority of the proposed model. In Section 3.4, we conduct an ablation experiment 

on the model to verify the effectiveness of Modules 1 and 2. 

3.1 Dataset 

We obtained AIS data covering Hawaiian waters from the online portal of the U.S. Marine Cadastre 

(https://marinecadastre.gov). During the initial clean up, we paid special attention to a key type of vessel 

(Vessel Nos. 70-79) that carried significant cargo in order to gain a deeper understanding of cargo vessel 

activity in Hawaiian waters. In the next step of our data cleaning, we further weeded out data that had 

navigational malfunctions, such as anchoring or stopping midway through a voyage. Such filtering helps 
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ensure that our dataset is more realistic and reliable. In order to generate a smoother and more regularised 

trajectory dataset, we used linear interpolation to resample the time and regularise the time intervals to 3-

minute intervals, thus eliminating some irregularities and noise in the data. 

The raw AIS information has many types of information, and in this paper, the fields that may have an 

impact on the vessel’s trajectory are extracted. This includes Maritime Mobile Service Identity (MMSI), Full 

UTC date and time (BaseDateTime), Latitude (LAT), Longitude (LON), Speed Over Ground (SOG), Course 

Over Ground (COG) and True Heading Angle (Heading). 

We divided the processed AIS dataset in the ratio of training set (80%) and test set (20%). The training 

dataset covers the period from 1 January 2022 to 28 February 2022, with 294 complete trajectory groups and 

66,752 coordinate points. The test dataset is from 1 March 2022 to 29 April 2022 with 90 complete trajectory 

groups and 16,323 coordinate points. 

In this study, each trajectory coordinate point is a real trajectory coordinate with contextual information. 

The vessel AIS information of consecutive 2, 4, 6 and 8 trajectory coordinate points are used as inputs. The 

model outputs the latitude and longitude values of the vessel trajectory at the latter 2, 4, 6 and 8 time points, 

i.e. the data of the first 6, 12, 18 and 24 minutes are used to predict the trajectory data of the latter 6, 12, 18 

and 24 minutes, respectively. The batch size is 8. The initial learning rates are all 0.001 and the number of 

training rounds is 150. Vessel trajectory prediction experiments were conducted on a Windows 10 system with 

a single NVIDIA GeForce GTX 1080Ti. PyTorch was used for model construction. A stochastic objective 

function optimisation algorithm (Adam) was used to adjust the learning rate according to the gradient of each 

parameter, and the parameters were dynamically updated during the training process. 

3.2 Evaluation metrics 

Evaluation metrics for trajectory prediction are important criteria for assessing the deviation and accuracy 

of the prediction results from the true trajectory. We used the metrics Mean Absolute Error (MAE), Final 

Displacement Error (FDE), Average Displacement Error (ADE), which are commonly used in the field of 

trajectory prediction [29-30].  

The Haversine [31] formula calculates the Euclidean distance between latitude and longitude. The formula 

is based on the cosine theorem of a spherical triangle and calculates the curvilinear distance between two points. 

The formula is expressed in the form of a great circle distance, which represents the shortest distance between 

two points on the Earth’s surface. The mathematical expression is shown in Formula 8 (in nautical miles). 

𝑑 = 2 ∙ 𝑟 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 (√𝑠𝑖𝑛2 (
∆𝑙𝑎𝑡

2
) + 𝑐𝑜𝑠(𝑙𝑎𝑡1) ∙ 𝑐𝑜𝑠 (𝑙𝑎𝑡2) ∙ 𝑠𝑖𝑛2 (

∆𝑙𝑜𝑛

2
)) ∙ 1.852 (8) 

where 𝑑 is the spherical distance between two points on the Earth and 𝑟 is the spherical distance between 

two points on the Earth averaged over the radius of the Earth (approximately 6371 kilometers); 𝑙𝑎𝑡1 and 𝑙𝑎𝑡2 

are the latitudes (in radians) of the two points; ∆𝑙𝑎𝑡 is the difference between the latitudes of the two points; 

and ∆𝑙𝑜𝑛 is the difference between the longitudes of the two points. 

MAE is the average absolute value of the prediction error, which is used to measure the overall prediction 

accuracy of the model. For vessel trajectory prediction, MAE reflects the average deviation of the predicted 

trajectory from the actual trajectory at all points. For a trajectory containing n points, MAE can be expressed 

as Formula 9. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑡𝑖|

𝑛

𝑖=1
 

(9) 

where 𝑝𝑖 is the value of the longitude or latitude of the point 𝑖 of the predicted trajectory and 𝑡𝑖 is the value 

of the longitude or latitude of the point 𝑖 of the true trajectory. 

FDE is the distance between the last point of the predicted trajectory and the actual end point. It is 

specifically used to measure the accuracy of the model in predicting the final position. FDE can be expressed 

as Formula 10. 

𝐹𝐷𝐸 = 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝑝𝑙 , 𝑡𝑙) (10) 
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where 𝑝𝑙 is the last coordinate point of the predicted trajectory and 𝑡𝑙 is the last coordinate point of the true 

trajectory. 

ADE is the average offset error between the predicted trajectory and the actual trajectory. It calculates the 

distance from each point in the predicted trajectory to the corresponding real point and then averages the values. 

ADE can be expressed as Formula 11. 

𝐴𝐷𝐸 =
1

𝑛
∑ 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝑝𝑖 , 𝑡𝑖)

𝑛

𝑖=1
 

(11) 

3.3 Experimental results and analysis 

In this section, we use the real AIS dataset to experiment and discuss the effects of each model. Section 

3.3.1 is the metrics results of all models on the real AIS dataset and Section 3.3.2 uses different models to 

perform trajectory prediction visualisation analysis on real vessel data. 

Experimental results 

In order to validate the TCC model proposed in this paper, three classical models in the field of vessel 

trajectory are selected, which are SVR [10], BiLSTM [17] and ConvLSTM [26], and two advanced models 

are also selected, which are ConvLSTM_Seq2Seq model [27] and LSTM_RNN [28]. We calculate the training 

time and testing time of all models. The test time here is for the entire test dataset, which contains 90 sets of 

tracks, and the results are shown in Table 1. The unit is minute. 

Table 1 – Results for train and test time over time steps for all models 

Metric Time step TCC ConvLSTM BiLSTM SVR LSTM_RNN 
ConvLSTM

_Seq2seq 

train 6min 1397.42 680.23 565.10 563.78 607.34 759.43 

 12min 1525.17 842.50 598.75 577.55 644.68 823.79 

 18min 1562.50 950.22 623.46 628.72 678.99 845.25 

 24min 1627.21 1017.50 797.37 636.25 691.11 847.52 

test 6min 2.38 1.59 1.08 1.02 2.48 2.95 

 12min 2.50 2.02 1.12 1.03 2.41 3.61 

 18min 3.01 2.39 1.18 1.08 2.47 3.86 

 24min 3.12 3.04 1.21 1.13 2.46 4.41 

 

As can be seen from Table 1, although the training time of the TCC model is longer than that of other models, 

its testing time is not the longest. Therefore, if the TCC model is applied to the real-time prediction of a single 

trajectory, its effect is still considerable. In order to prove the validity and accuracy of the TCC model, we 

further carried out validation experiments. 

The results of ADE and FDE are shown in Table 2, and the MAE results in latitude and longitude directions 

are shown in Figure 2a and Figure 2b, respectively. One can observe that the difference between the metrics 

results of all the models is not very large with a time step of 6 minutes. The ADE and MAE metrics of the 

TCC model exceed the other models only by a small advantage, while the SVR model is slightly better in terms 

of the FDE metrics, but its advantage is only 0.0352 nautical miles less than that of the TCC model. This 

situation may arise because there is relatively less information about the vessel state in the case of a shorter 

time step, and therefore less influence on the future vessel trajectory. It also implies that the TCN modelling 

module and the CNN feature extraction module may not use their potential advantages at this time step. As the 

prediction time step increases, we can observe that the prediction errors of all models show a gradual increase. 

This trend may be partly due to the increased complexity of the prediction task because of the increased time 

step, such that longer prediction time steps imply more uncertainty and variability, which in turn increases the 

prediction error. However, it is encouraging to note that the TCC model maintains its superior performance 
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even when the prediction time step increases. First, the TCC model outperforms other models in all evaluation 

metrics, including average distance error (ADE), final distance error (FDE) and mean absolute error (MAE), 

for prediction time steps of 12, 18 and 24 minutes. 

Table 2 – Results for the ADE and FDE metrics over time steps for all models 

Metric Time step TCC ConvLSTM BiLSTM SVR LSTM_RNN 
ConvLSTM_S

eq2seq 

ADE 6min 0.5856 0.6479 0.7657 0.7310 0.8963 0.9000 

 12min 0.8920  1.0513  1.3859  1.2696  1.4827 1.4250 

 18min 1.0319  1.6127  2.1041  2.2487  2.1482 2.5507 

 24min 1.4950 2.3745 3.1008 2.9885 2.9585 2.7854 

FDE 6min 0.7664 0.8359 0.8718 0.7312 0.8873 1.0011 

 12min 1.2700  1.5320  1.4752  1.2728  1.4816 1.4809 

 18min 1.6560  2.5276  2.2899  2.2590  2.1458 2.7778 

 24min 2.4628 3.6234 3.2825 2.9970 3.0352 2.8296 

 

(a) 

 

(b) 

Figure 2 – a) MAE results for different time steps of latitude; b) MAE results for different time steps of longitude 

It is particularly noteworthy that in terms of the ADE metrics, the error of the TCC model grows by only 

0.1399 nautical miles when the time step increases from 12 to 18 minutes, while the other models show a much 

larger increase in error. The reason may be that as the prediction time step increases, the feature information 

carried by the trajectory sequence becomes richer, but the task complexity of trajectory prediction also 

increases. The increase in time step increases the feature information carried by the trajectory sequence. This 

makes the TCN modelling module more accurate in modelling longitude and latitude information. It also 

enriches the CNN feature extraction module’s understanding of vessel speed, heading and steering angle 

information, thereby more accurately capturing the vessel’s feature information. When dealing with more 

complex tasks, other models do not make full use of AIS information at longer prediction time steps, nor do 

they specifically use the rich vessel navigation characteristics in AIS data, resulting in larger error increments 

for other models. The error growth of other models is also larger. This shows that the TCC model has better 

robustness and stability than other baseline models and can better adapt to different prediction time periods, 

thus maintaining lower prediction errors. 

Trajectory visualisation of different models 

We selected two vessels with different sailing conditions and predicted real vessel trajectories using the 

TCC model as well as other models for conditions with time steps of 6, 12, 18 and 24 minutes. The complete 

trajectories were constructed iteratively, containing 48 trajectory points with a total time step of 144 minutes, 

and the comparison results of the trajectories are presented in Figures 3a–3d and Figures 4a–4d. The black line 

segment ‘True’ represents the real vessel trajectory, and the red, green, purple, blue, grey and pink colours 

represent the trajectories predicted by the neural network models TCC, ConvLSTM, SVR, BiLSTM, 

LSTM_RNN, and ConvLSTM_Seq2Seq, respectively. 
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(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 3 – a), b), c) and d) are the predicted results of different models for vessel 1 with time step of 6, 12, 18, 24 minutes 

respectively 

  

(a) 

  

(b) 

  

(c) 

  

(d) 

Figure 4 – a), b), c) and d) are the predicted results of different models for vessel 2 with time step of 6, 12, 18, 24 minutes 

respectively 

From the experimental results, we find that the TCC model and other baseline models can predict the future 

sailing trend of the vessel at different time steps. This indicates that all models have the ability to predict vessel 

trajectory, capturing the characteristics and trends of vessel navigation to some extent. Comparing the 

trajectory prediction results of vessel 1 in Figures 3a–3d and vessel 2 in Figures 4a–4d, we can clearly see the 

prediction effects of different models at different time steps. As the time step increases, the difference in 

predicted trajectories is gradually revealed, which may be because the vessel trajectory changes less in a shorter 

period of time, whereas it may be affected by more factors in a longer period of time, and thus the performance 

of the model varies in different time periods. For a more detailed analysis, we calculated more detailed metrics 

results for the predictions of vessel 1 and vessel 2 separately. Table 3 and Table 4 show the detailed metrics 

results for vessel 1 and vessel 2, respectively, for all models under different forecasting time step conditions. 

Figures 5a–5b and Figures 5c–5d are the results of calculating the MAE for vessel 1 and vessel 2, respectively. For 

the prediction trajectory of vessel 1, under the condition of a prediction time step of 6 minutes, the SVR model 

exhibited the poorest performance. The final point of the predicted trajectory of LSTM_RNN exceeds the 

actual trajectory by a large margin, which may be caused by the fact that it fails to capture the change in the 

vessel’s speed. The TCC model slightly outperforms the others by a weak advantage, and the difference of 

predicted trajectories between the models is not significant. This circumstance may be attributed to the fact 

that the navigation trajectory of vessel 1 is predominantly linear, with minimal variations in vessel status. 

Table 3 – Predictive performance results of different models for vessel 1 

Metric Time step TCC ConvLSTM BiLSTM SVR LSTM_RNN 
ConvLSTM_S

eq2seq 

ADE 6min 0.5158  0.6415  0.6747  0.8525  1.8289 1.7973 

 12min 0.5700  1.3662  2.1515  1.6946  2.2631 2.0774 

 18min 0.9340  1.4182  2.0066  3.5395  2.3586 2.2336 

 24min 2.0514 3.3680 3.8638 4.6798 2.4922 3.1515 

FDE 6min 0.5890  0.7381  0.8124  0.8539  2.0448 1.5177 

 12min 0.7516  1.8366  2.0471  1.7303  2.4725 2.1672 

 18min 1.8386  2.3022  2.4757  3.6407  2.3140 2.3214 

 24min 3.1106 5.6325 4.2193 4.7436 2.6054 3.8013 
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Table 4 – Predictive performance results of different models for vessel 2 

Metric Time step TCC ConvLSTM BiLSTM SVR LSTM_RNN 
ConvLSTM_S

eq2seq 

ADE 6min 0.7427  0.6535  0.7284  0.9534  1.9285 1.511 

 12min 0.6003  1.6233  2.1282  2.1743  2.2580 2.1673 

 18min 1.0312  2.2192  2.3626  3.5916  2.1566 2.4029 

 24min 1.7570  3.0040  4.2240  5.3269  2.628 3.0804 

FDE 6min 1.0415  0.7330  0.8301  0.9558  1.979 0.9531 

 12min 0.7822  2.1597  1.7526  2.2197  2.1184 1.9530 

 18min 1.9712  3.5878  2.5600  3.6738  2.405 2.3870 

 24min 2.5745  4.8363  4.4395  5.4840  2.7191 3.429 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5 – a) and b) represent the MAE performance results of different models for vessel 1 in latitude and longitude, 

respectively; c) and d) represent the MAE performance results of different models for vessel 2 in latitude and longitude, respectively 

Consequently, the TCC model failed to fully exploit its potential, aligning with the findings in Section 3.3.1 

of the performance metrics. As the prediction time step increased, in the prediction of vessel 2, the vessel’s 

acceleration and turning behaviours upon exiting the harbour posed challenges to trajectory prediction, 

resulting in varying degrees of deviation across all trajectories. As illustrated in Figures 3c–3d and Figures 4c–4d, 

with the increase in prediction time step, the deviation of trajectories predicted by the models under comparison 

increased; however, the TCC model consistently maintained its superior performance. It is particularly notable 

when vessel 2 initially departs from the harbour and executes turning manoeuvres, where the richer information 

embedded in the AIS data contributes to superior prediction results compared to other models, as evidenced in 

Figures 4c–4d. One possible explanation lies in the enrichment of navigation information within AIS data as the 

time step increases, enabling the modelling and feature extraction modules of the TCC model to capture and 

accurately identify such scenarios. Based on the analysis results shown in Figures 5a–5d, as the time step 

increases, the MAE errors of all models also increase. However, the TCC model shows a significantly lower 

increase in errors compared to the other models. Particularly for vessel 2 trajectories characterised by turning 

manoeuvres, the modelling and feature extraction modules within the TCC model effectively capture state 

information, resulting in more precise trajectory predictions compared to other models. Thus, from the testing 

results, the TCC model outperforms other models in predicting vessel trajectories especially with increasing 

time steps. 

3.4 Ablation experiment 

To verify the effectiveness of adding the feature extraction module, we set up an ablation experiment by 

removing the feature extraction module and the Trajectory Modelling Module to test their effectiveness in 

improving the accuracy of vessel trajectory prediction. We label the model with the TCN Trajectory Modelling 

Module removed from the TCC as TCC1 and the TCC model with the CNN feature extraction module removed 

from the TCC as TCC2. 
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Results 

We set the time step to 6min, 12min, 18min or 24min respectively, and used the TCC model, TCC1 and 

TCC2 to test all the data in the test set in four groups. The results of the average value of each metric in the 

overall test set are in Table 5 and Table 6. 

Table 5 – ADE and FDE results of different models 

Metric Time step TCC TCC1 TCC2 

ADE 6min 0.5856  0.4933  0.7425  

 12min 0.8920  0.9635  1.1225  

 18min 1.0319  1.4136  2.2633  

 24min 1.4950  1.6857  1.8953  

FDE 6min 0.7664  0.6255  0.8656  

 12min 1.2700  1.4911  1.4936  

 18min 1.6560  2.1775  3.1154  

 24min 2.4628  2.8677  3.1399  

Table 6 – MAE(LAT) and MAE(LON) results of different model 

Metric Time step TCC TCC1 TCC2 

MAE(LAT) 6min 0.4641  0.4103  0.6322  

 12min 0.8066  0.7716  1.1097  

 18min 0.9206  1.1167  2.7425  

 24min 1.2909  1.3975  1.5886  

MAE(LON) 6min 0.8432  0.6618  1.0239  

 12min 1.0980  1.3535  1.4052  

 18min 1.3471  1.9616  2.1392  

 24min 1.9989  2.3914  2.6305  

 

Based on the test results in Tables 5–6, the performance of the TCC model and TCC1 and TCC2 in trajectory 

prediction at different time steps can be observed. Comparing the prediction performance metrics of the three, 

the feature extraction module and the Trajectory Modelling Module significantly impact the prediction 

accuracy of the TCC model. In the TCC2 model with the feature extraction module removed, the results of the 

prediction performance metrics decreased significantly especially at longer time steps. While TCN modelling 

does not show an advantage in the case of shorter time steps, the advantage has been shown as the time step 

increases, which indicates that for longer trajectory data, more information will be contained in it. The 

modelling effect of TCN can precisely capture the effective information in it, and learn the change trend in it, 

effectively improving the model performance. From the results of each index, under the prediction step of 6 

min, the results of ADE, FDE and MAE are not as good as those of the TCC1 model. It may be because the 

amount of information carried in the AIS data is less when the time step is shorter. The TCC model does not 

fully dig out the information about the vessel’s state changes, which also indicates that in the case of shorter 

time steps. The simpler model may be better for prediction, but as the time step increases, the modelling effect 
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of the TCN can precisely capture the effective information therein and learn the changing trend, thus effectively 

enhancing the model performance. 

However, as the time step increases, the errors of each model show an increasing trend. The ADE, FDE 

and MAE (LON) index results of the TCC model are better than the other two ablation models in the test after 

12 minutes, and the MAE (LAT) index is better than the other two ablation models in the test after 18 minutes. 

Its prediction performance is stronger than the other two ablation models. Therefore, it can be concluded that 

the Trajectory Modelling Module and the feature extraction module play a vital role in the TCC model. 

Differentiating and modelling all information not only reduces the complexity of the model, but also improves 

the generalisation performance of the real trajectory. The TCC model reduces the impact of other uncertain 

factors on the model trajectory prediction and improves the stability and robustness of the model, especially 

when the time step is long and the amount of information carried by AIS data is large. 

The effect of other uncertainties on the model's trajectory prediction, the stability and robustness of the 

model are better, and for longer time predictions, the use of the TCC model is more effective than the ablated 

models TCC1 and TCC2. 

Trajectory visualisation of ablation experiments 

We use the TCC model, TCC1 and TCC2 models to select two vessel trajectories with different navigation 

states for real trajectory prediction. The vessel trajectory comparison results are shown in Figures 6a–6b. The 

vessel in Figure 6a is basically in a straight-line state, while the second vessel in Figure 6b has turning 

information. The prediction time step is 18 minutes, the trajectory coordinate points are 48, and the duration 

is 144 minutes. The MAE (LON) and MAE (LAT) results are calculated for each point in the two trajectories 

and plotted as line graphs in Figures 7a–7d. The black line segment “True” represents the real vessel trajectory, 

while the red, green and yellow lines are the predicted trajectories of TCC model, TCC1 model and TCC2 

model respectively. 

 
(a) 

 
(b) 

Figure 6 – a) and b) respectively represent the prediction results of different models for vessel 1 and vessel 2 when 

the time step is 18 minutes 

 As can be seen in Figures 6a–6b, the TCC model performs best while the TCC2 model performs worst. In 

order to highlight the comparison, we plot the scatter plots of the trajectories in Figures 6a–6b. Figures 6a shows 

the straight-line heading state, the TCC model predicts the results slightly more accurately than the TCC1 

model, the trajectory coordinate points of the TCC model almost coincide with the real trajectory, the trajectory 

points of the TCC1 model are slightly shifted, and the trajectory points of the TCC2 are shifted the most. Figure 

6b shows the heading state with a turn, and this visualisation of the trajectory scatter plot shows that the TCC 

model has a clear advantage, in the turning environment, the trajectory points predicted by the models of TCC1 

and TCC2 are both shifted significantly, but the trajectory points predicted by the TCC model are still close to 

the real trajectory. We speculate that in the case of straight-line sailing, the AIS covariate information of the 

vessel changes less, and the advantage of the CNN feature extraction module is not obvious. In the case of 

turning, the AIS covariate information of the vessel changes a lot, e.g. the vessel needs to change the course 

direction and reduce the speed greatly when turning, and at this time, the CNN feature extraction module can 

capture the change of such sailing state, and at the same time, the TCN Trajectory Modelling Module can also 

capture the change of such sailing state by modelling the trajectory features. The TCN trajectory modelling 

module can also improve the accuracy of the model in predicting the trajectory by modelling the trajectory 
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features. This further shows that the AIS covariate information of the vessel is very useful, and the effective 

use of the AIS covariate information can improve the robustness and accuracy of the model in predicting the 

future trajectory.  

Therefore, combining the above results, the feature extraction module and the trajectory modelling module 

introduced in the prediction process can significantly enhance the accuracy of the model, and both the feature 

extraction module and the modelling module play a key role in significantly improving the accuracy of 

trajectory prediction. This enhances the stability and robustness of the model. 

4. CONCLUSION AND FUTURE WORK 

This study presents a novel vessel trajectory prediction model. The proposed model based on a network of 

TCN, CNN and ConvLSTM achieves advanced accuracy in vessel trajectory prediction. TCN plays an 

important role in vessel trajectory modelling by efficiently modelling the sequence of latitude and longitude 

coordinates through effective causal convolution, residual joining and other mechanisms to capture the long-

term dependencies therein. The CNN operates by convolution on a local region to extract features and 

gradually expands the sensory field through pooling operations to obtain a more global representation. For 

vessel trajectory modelling, CNNs can understand the motion patterns and behaviours of vessels from local to 

global, and learn to adapt the feature representations to different data, which enables the CNNs to adapt to 

different types and sizes of vessel data, thus improving the generalisation ability and applicability of the model. 

ConvLSTM combines convolutional and cyclic operations and can simultaneously consider the temporal and 

spatial features of vessel trajectory data, thus better understanding temporal and spatial features of vessel 

trajectory data and spatial features at the same time, to better understand the motion behaviours of vessels at 

different times and positions and predict accurately the vessel trajectory. A series of experiments are conducted 

to verify the performance and robustness of the proposed vessel trajectory model. The experimental results 

show that the prediction accuracy of the proposed TCC model exceeds other neural network models. In 

addition, the TCC model demonstrates superiority and accuracy in predicting vessel trajectory under the 

condition of longer time steps. To improve the model performance, the following directions can be further 

extended. First, we can optimise the network layers in the TCC model by incorporating an attention mechanism 

to improve the accuracy of vessel trajectory prediction when the time step is shorter. Second, different levels 

of the prediction network layers may have an unexpected effect on the model prediction performance, thus we 

can improve the model performance by introducing additional network layers for predictions with longer time 

steps. In the future, we will explore integrating ensemble learning techniques to enhance the robustness and 

adaptability of TCC models. The weaknesses of individual models are mitigated by combining the predictions 

of multiple models to improve overall accuracy. 
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基于时序数据融合模型的船舶轨迹预测方法 

摘要： 

船舶轨迹预测在海上交通安全和应急管理中至关重要。利用船舶自动识别系统

（AIS）数据进行的船舶轨迹预测引起了广泛关注。深度学习技术因其在细粒

度特征学习和时间序列建模方面的优势，已广泛应用于船舶轨迹预测任务。然

而，大多数基于深度学习的方法对 AIS 数据采用统一建模方法，忽视了 AIS数

据的多样性及环境因素对预测性能的噪声影响。为了解决这个问题，本研究提

出了一种结合时序卷积网络（TCN）、卷积神经网络（CNN）和卷积长短期记忆

网络（ConvLSTM）的方法来预测船舶轨迹，称为 TCC。该模型利用 TCN捕捉时

间序列的复杂相关性，利用 CNN 提取细粒度协变量特征，然后通过 ConvLSTM

捕捉轨迹序列的动态性和复杂性以预测船舶轨迹。在真实公共数据集上进行的

实验结果表明，本文提出的 TCC 模型在船舶轨迹预测中表现出较高的准确性和

鲁棒性，优于现有的基线算法。 
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