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Abstract 

Background and purpose: Cyclophosphamide (CP) is a widely used antitumor and immunosuppressive drug, 
but it is highly cytotoxic and has carcinogenic and teratogenic potential. To reduce adverse effects of CP 
therapy and the frequency of its administration, the microencapsulation of CP into biodegradable polymeric 
matrices can be performed. However, according to the literature, only a few polymers were found suitable 
to encapsulate CP and achieve its’ sustained release. Experimental approach: In this research, spray-dried 
cyclophosphamide-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microparticles were 
prepared and characterized in terms of their average hydrodynamic diameter, polydispersity index, surface 
morphology, zeta potential, encapsulation efficiency, drug loading, thermal properties and cytotoxicity 
against 3T3 cells. Key results: The obtained CP-loaded microparticles had a regular spherical shape, uniform 
size distribution with an average diameter of 4.21±0.04 μm and zeta potential of -34.2±0.2 mV. The encap-
sulation of cyclophosphamide into the PHBV matrix led to a decrease in melting and degradation tempe-
ratures and an increase in diameter, glass transition and cold crystallization temperatures compared to blank 
microparticles. Moreover, microencapsulation of cyclophosphamide lowered its cytotoxicity compared to 
the pure drug: the number of dead cells in the culture decreased by 28 %, while their metabolic activity 
increased by 20 %. The cumulative in vitro drug release studies showed a gradual release of CP up to 18 days, 
so the obtained microparticle formulation can be used as a sustained-release cyclophosphamide delivery 
system. Conclusion: In this research, a novel cyclophosphamide-loaded platform based on PHBV micro-
particles was established and characterized. Overall, this study offers promising prospects for cancer therapy 
in the future. 

©2024 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Cyclophosphamide (CP) remains one of the most successful antineoplastic agents. Even today, since its 

synthesis in 1958 [1], cyclophosphamide is still widely used as a chemotherapeutic agent and as an 

immunosuppressive drug in blood and marrow transplantation. CP is used to treat various types of diseases 

like lymphoma, myeloma, sarcoma, breast cancer, ovarian cancer, leukaemia, etc [2-4]. The duration of 
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cyclophosphamide therapy depends on the type and severity of illness and can range from several days to 

several months [5,6] or even years [7,8].  

Nevertheless, CP is highly cytotoxic and like other alkylating agents, it is toxic predominantly to rapidly 

proliferating cells and tissues such as the haematopoietic system, hair follicles and so on. Well-known side 

toxic effects of conventional doses of cyclophosphamide are nausea, alopecia, infertility, pulmonary fibrosis, 

bladder injury, etc [9,10]. Furthermore, CP has carcinogenic and teratogenic potential [4,11].  

To decrease the frequency of administration and the cytotoxic effects of cyclophosphamide and to 

achieve its controlled and sustained release, the microencapsulation of CP into the polymer matrices can be 

performed. There are known liposome-encapsulated [12], polylactic and poly-ε-caprolactone [13] micro-

structural carriers, poly(D,L-lactide-co-glycolide) [14,15] and chitosan [16] microspherical carriers of cyclo-

phosphamide. Nevertheless, according to the literature, no studies have been conducted on the formation 

of polyhydroxyalkanoate microparticles containing cyclophosphamide.  

Polyhydroxyalkanoates (PHAs) are a group of thermoplastic biopolymers of natural origin that are currently 

regarded as promising alternatives to synthetic, indestructible plastics [17,18]. PHAs are biocompatible, 

completely biodegradable and environmentally friendly materials: renewable sources (for example, waste fish 

oils [19], waste cooking oils [20], lignocellulose biomass waste [21], etc.) and greenhouse gases [22] are used as 

substrates for bacterial synthesis of PHAs [23]. The family of PHAs includes approximately 150 different types 

of monomers, which are synthesized by various microorganisms and differ significantly from each other in terms 

of their physico-chemical properties [21]. 

The aim of the research is to obtain and investigate the properties of poly(3-hydroxybutyrate-co-3-hydro-

xyvalerate) microparticles containing cyclophosphamide. 

Experimental  

Materials 

Microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (Mw = 490.8 kDa, 10 mol.% of 3-hydroxyvalerate) 

was produced at the laboratory of Biotechnology of new biomaterials of Siberian Federal University, Russian 

Federation [24]. Cyclophosphamide monohydrate, dichloromethane (DCM), trichloromethane (TCM), 

dimethyl sulfoxide (DMSO), sulphamic acid and sodium nitrite were purchased from Merck (Germany).  

Dulbecco’s Modified Eagle Medium (DMEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) and ReadyProbes™ Cell Viability Imaging Kit were obtained from Thermo Scientific (USA). Fetal Bovine 

Serum (FBS) and antibiotic-antimycotic solution were purchased from Sigma-Aldrich (USA). 

All reagents and solvents were of analytical grade and used as received without further purification. The 

water used was purified by Arium® Pro Ultrapure water system (Sartorius AG, Germany). 

Preparation of PHBV microparticles 

PHBV microparticles (MPs) were prepared by spray drying of PHBV/DCM solution using Büchi Mini Spray 

Dryer B-290 (BUCHI Laboratory Equipment, Switzerland). The operating parameters were set as follows: 

argon gas flow rate 35 m3 h-1, PHBV/DCM solution 0.1 % (w/v), inlet temperature 100 °C, PHBV solution feed 

rate 7.5 mL min-1. The resulting MPs were collected, weighted and kept at -20 °C for further subsequent use 

in experiments.  

Cyclophosphamide-loaded microparticles (CP-MPs) were obtained under similar conditions, except that 

the PHBV/DCM solution contained CP (CP to PHBV ratio 1:10). 
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Yield of microparticles, particle size, size distribution and zeta potential 

The total yield (Y / %) of microparticles was determined according to Equation (1): 

o

i

 
M

Y
M

=  (1) 

where Mo is the mass of the obtained microparticles and Mi is the total mass of PHBV and CP used in the synthesis. 

To determine the average hydrodynamic particle diameter, polydispersity index (PDI) and zeta potential 

of the obtained microparticles, Zetasizer Nano ZS (Malvern, UK) was used. 0.3 mg of each sample was 

suspended in 2 mL of deionized water and sonicated at 30 W for 1 min before the measurements. 

Scanning electron microscopy 

The morphology of the obtained microparticles was studied using Scanning Electron Microscope SU3500 

(Hitachi, Japan). To obtain high-quality SEM images (by increasing conductivity and promoting heat dissipation 

from polymer matrix), microparticles were coated with 5 nm platinum layer using Leica EM ACE200 (Leica 

Microsystems, Germany). 

Determination of CP encapsulation efficiency and drug loading  

The encapsulation efficiency (EE) and drug loading (DL) of CP were determined by ultraviolet-visible spectro-

scopy using Genesys 10S UV-Vis (Thermo Scientific, USA) according to the procedure described in [25]. Briefly, 10 

mg of CP-MPs were dissolved in 1 mL of TCM, added to the solution containing 1 mL of water, 1 mL of 5 % (w/v) 

HCl, 1 mL of 20 % (w/v) NaNO2 and heated in a water bath at 60-65 °C for 20 min. The solution was cooled under 

tap water and mixed with 5 mL of 15 % sulphamic acid and 2 mL of 20 % (w/v) NaOH. The resultant solution was 

transferred into a volumetric flask and filled up to the mark with water. The absorbance was measured at 325.0 

nm against the blank solution. The amount of CP in microparticles was determined using the calibration curve.  

The encapsulation efficiency (EE, %) was calculated according to Equation (2): 

1

2

EE   100
M

M
=  (2) 

where M1 is the mass of CP in CP-MPs and M2 is the initial mass of CP. 

Drug loading was calculated by Equation (3): 

1

o

EE   100
M

M
=  (3) 

Thermal properties  

The glass transition temperature (Tg), cold crystallization point (Tcc), melting point (Tm), and thermal 

degradation temperature (Tdeg) of the microparticles were determined by differential scanning calorimetry 

(DSC) and thermogravimetric analysis (TGA). DSC analysis was carried out using a DSC-1 differential scanning 

calorimeter (Mettler Toledo, Switzerland). 3 - 5 mg of each sample was placed in an aluminium crucible and 

heated up to 200 °C at a rate of 5 °C min-1, held at 200 °C for 1 min, then cooled to -20 °C (5 °C min-1) and held 

for 4 min. Each sample was further reheated to 200 °C at a rate of 5 °C min-1. TGA was performed using TGA 1 

(Mettler Toledo, Switzerland). The samples (3 to 5 mg) were placed in a ceramic crucible and heated from 50 

to 600 °C at a rate of 10 °C min-1. DSC and TGA analyses were performed under a nitrogen atmosphere. 

Thermograms were analysed using the “StarE” software. 

FTIR spectroscopy  

Fourier transform infrared spectroscopy (FTIR) analysis of the obtained microparticles was performed 

using a FT-801 FTIR spectrometer ("SIMEKS", Russia). The samples were dissolved in TCM and left to 
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evaporate the solvent to form a thin film. The FTIR spectra of the polymer films were recorded at 400 to 

4000 cm-1 at room temperature.  

To analyze the functional groups on the surface of the obtained microparticles ATR-FTIR spectroscopy 

technique was performed using ATR-accessory for FT-801 FTIR spectrometer (ZnSe crystal). 

Data acquisition is performed at a resolution of 4 cm-1, employing 64 scans per spectrum. 

In vitro release  

The investigation of the release of CP from CP-MPs was carried out in vitro. For this purpose, 2 mg of CP-

MPs samples were suspended in 2 mL of phosphate-buffered saline (pH 7.4) in a 2.5 mL sterile centrifuge 

tubes. The tubes were thermostated at 37 °C. At predetermined time intervals, the solution was withdrawn 

from the tube, centrifuged at 11000 rpm for 5 min, and the supernatant was collected and successively 

treated with HCl, NaNO2, sulphamic acid and NaOH as mentioned above. The amount of CP released was 

determined by the measurement of the absorbance of the solution at 325.0 nm (using a calibration curve). 

All measurements were performed in triplicate. The percentage of CP released at each time point was 

calculated by dividing the data obtained at each time by the total amount of CP inside the microparticles. 

In vitro cell viability and cytotoxicity assays  

In vitro cell viability of 3T3 fibroblast cells was estimated in the presence of CP, MPs and CP-MPs. The cells 

were cultivated in DMEM with the addition of FBS and antibiotic-antimycotic solution in СО2 incubator (Sanyo, 

Japan). 3T3 cells were incubated for 24 h with the initial concentration of 2·104 cells cm-2. After incubation, the 

medium was replaced by a fresh culture medium containing CP, MPs and CP-MPs (the concentration of 

cyclophosphamide in each well containing CP and CP-MPs was in accordance with the article [26], where the 

EC50 of CP against 3T3 cells was determined to be 10.8 mmol L-1).  

For the MTT assay, cell suspension was incubated with the studied samples for 72 hours. Then, the 

medium was removed, 200 μL of MTT solution in DMEM (0.25 mg mL-1) was added to each well and the cells 

were incubated for 4 h at 37 °C in a CO2 incubator. The resulting formazan was dissolved in DMSO, and the 

absorbance was determined at 550 nm (the reference wavelength was 650 nm) using iMark Microplate 

Reader (Bio-Rad Laboratories, USA). Metabolic activity (as an indicator of cell viability) was calculated relative 

to untreated cells according to Equation (2): 

test

control

A
Metabolic activity   100

A
=  (4) 

where Atest is the absorbance of the test sample and Acontrol is the absorbance of the control sample. 

Cytotoxicity was studied using the ReadyProbes™ Cell Viability Imaging Kit (Thermo Fisher, USA) to perform 

double staining: Hoechst 33342 (nuclei of live cells, blue) and SYTOX Green (nuclei of dead cells, green). Images 

were obtained using Leica DM6000 B TL (BF) +Fluo digital microscope (Leica Microsystems, Germany). The 

number and percentage of viable cells were analysed using the open-source software ImageJ [27], and cell 

viability was determined as a percentage of untreated cells.  

Each measurement was carried out in triplicate. 

Results and discussion 

In the present research both blank and cyclophosphamide-loaded poly(3-hydroxybutyrate-co-3-hydroxyva-

lerate) microparticles were successfully prepared by spray drying method. The following characteristics of the 

obtained microparticles were determined: average hydrodynamic diameter, surface morphology, zeta poten-

tial, encapsulation efficiency, drug loading, thermal properties and cytotoxicity against 3T3 fibroblast cells.  
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Size and size distribution  

The size and size distribution determine the scope of application of microparticles as delivery systems [28-30]. 

The dimensional characteristics (average hydrodynamic diameter, PDI) of the obtained microparticles were 

determined using the dynamic light scattering (DLS) method. The average hydrodynamic diameters of MPs and 

CP-MPs were 1.35±0.02 μm (PDI = 0.12±0.01) and 4.21±0.04 μm (PDI = 0.22±0.02), respectively. The DLS results 

are consistent with the results of scanning electron microscopy (Figure 1). 

 
Figure 1. SEM images of the obtained microparticles: (a) MPs. (b) CP-MPs. 

In general, an increase in the size of loaded PHBV-based microparticles compared to blank ones is a typical 

phenomenon, which is confirmed by the research of Dorokhin et al. (an increase in the average diameter of 

microparticles after encapsulation of rifampicin from 1.01 to 2.04 μm was noted) [31], Masood et al. (from 

0.21 to 0.27 µm; ellipticine encapsulation) [32] and Vidal et al. (from 0.61 to 0.66 µm; quercetin encapsu-

lation) [33]. An increase in the size of microparticles after encapsulation is also noted for microparticles based 

on PHA of other compositions [34-36].  

The main routes of administration of CP are oral, intravenous and intramuscular [37]. It is known [38-41] that 

microparticles with a diameter of 5 to 8 μm are suitable for intramuscular administration (e.g. FDA-approved 

medication Lupron Depot® contains PLGA microparticles of approximately 8 μm in size [42]). Thereby, the 

obtained micronized form of cyclophosphamide can be suitable for this route of administration. 

Zeta potential  

The electrokinetic potential (zeta potential (ZP)) of a microparticle is the difference in the potential of the 

dispersion medium and the stationary layer of liquid surrounding the particle. The sign and value of the ZP 

allows to predict the applicability of microparticles in biological systems, as well as their tendency to 

aggregate. When microparticles are administered into the body, they are recognized as foreign material and 

are usually removed by the mononuclear phagocyte system [43]. The elimination of microparticles by the 

mononuclear phagocyte system tends to accelerate with the increase in surface charge [44]. 

It is considered that the zeta potential value exceeding 30 mV in absolute value is a marker of the 

aggregative stability of particles [45,46]. Moreover, the ZP of loaded microparticles may indicate the nature 

of encapsulation of the charged substance [47]. 

The zeta potentials of the obtained particles were determined to be -35.1±0.3 and -34.2±0.2 mV for MPs 

and CP-MPs, respectively, which indicates a good aggregative stability of the systems. Similar values of the 

zeta potentials are noted for various polymer carriers: Corrado et al. -35.1±0.3 mV (PHBHHx) [48], Murueva 

et al. -31.8±6.6 mV (P3HB) [49], Lipaikin et al. -39.6±0.4 mV (P3HB) [50], Xu et al. -31.0±1.4 mV (PLGA) [51], 

Ruan et al. -30.9±0.8 mV (PLA-PEG-PLA) [52].  
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It was noted that encapsulation of cyclophosphamide did not lead to any significant change in the zeta 

potential value, which may indicate the formation of microcapsules (the polymer matrix forms a membrane 

with a reservoir containing the encapsulated substance) or micromatrices (the encapsulated substance and 

polymer are evenly distributed throughout the volume of the microparticle). The interaction of the 

encapsulated drug with the surface of microparticles can affect ZP value. 

Similar results were obtained by Shershneva et al. [53]: the encapsulation of tebuconazole of different 

concentrations into the P3HB matrix did not change the values of zeta potentials of microparticles. The values 

of ZPs were in the range from -32.6±0.9 to -35.7±2.0 mV. 

Determination of CP encapsulation efficiency and drug loading  

The encapsulation efficiency and the drug loading are the indicators of the success of the encapsulation 

process [54]. EE and DL values were determined spectrophotometrically. 

The encapsulation efficiency and the cyclophosphamide loading into the PHBV-based matrix were 

23.3±0.3 and 4.1±0.2 %, respectively. Similar values were noted in [55-57]. The relatively low EE and DL values 

may be caused by the fairly high crystallinity of PHBV (>60 %) [58,59]. 

The characteristics of the obtained microparticles are presented in Table 1. 

Table 1. The characteristics of the obtained microparticles. 

Sample Y / % Hydrodynamic diameter, μm ZP, mV EE, % DL, % PDI 

MPs 31.4±0.4 1.35±0.02 -35.1±0.3 _ _ 0.12±0.01 

CP-MPs 35.1±0.3 4.21±0.04 -34.2±0.2 23.2±0.3 4.1±0.2  0.22±0.02 
 

EE and DL values vary significantly depending on the carrier used. For instance, the encapsulation 

of Artemisia turcomanica extract into niosomal formulations resulted in an EE of 71.21 %, as reported by 

Keshtmand et al. [60]. Similar EE values (81.43 and 84.28 %) were achieved by Li et al. [61] when encap-

sulating temozolomide and tetra(4-carboxyphenyl)porphyrin in liposomes. Nonetheless, drug encapsulation 

efficiency in polymeric carriers is generally considerably lower (Salmasi et al. [62] encapsulated doxorubicin 

in PLGA nanoparticles and achieved an EE of 26.66 %). 

Thermal properties  

The glass transition temperature, cold crystallization point, melting point and enthalpies of fusion and 

cold crystallization were determined by differential scanning calorimetry (Table 2) [63,64]. 

Table 2. The results of DSC (second heating for MPs and CP-MPs) and TGA analyses. 

Sample Tg / °C Tm1 / °C ΔH1 / J g-1 Tm2 / °C ΔH2 / J g-1 Tcc / °C ΔHcc / J g-1 Tdeg / °C 

CP _ 49.9 102.6 _ _ _ _ 132.1 

MPs -0.78 134.3 13.0 145.5 41.8 57.8 -40.7 276.2 

CP-MPs 0.91 132.3 4.1 140.8 32.7 67.3 -37.1 267.7 
Tg - midpoint temperature according to ASTM E1356 and ISO 11357; Tm and Tcc - peak temperatures according to ISO 11357,  
Tdeg - extrapolated onset temperature according to ISO 11358. 

The CP thermogram (Figure 2, curve A) shows a melting peak at 49.9 °C (which corresponds to the 

literature data [65,66]). Subsequent heating of cyclophosphamide probably leads to degradation or 

evaporation of CP, as evidenced by a wide peak in the temperature range from 120 to 200 °C. 

DSC thermograms for both types of microparticles recorded during the first heating cycle (Figure 2, curves 

B and C) are similar in shape but differ in the position of the melting peaks. Since the first heating cycle 

characterizes the initial state of the polymer samples, it is fair to assume that the Tm shift is caused by the 

different packing of the polymer chains during the micronization process.  
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As mentioned above, the thermal behaviour of the studied samples is affected by the orientation of the 

polymers during the micronization process, so it is important to perform the second heating cycle to estimate 

Tg, Tcc and Tg. DSC thermograms for both types of microparticles (Figure 2, curves D and E) are similar in shape 

and have almost the same positions of the melting peaks: 134.3 °C (Tm2 = 145.5 °C) and 132.3 °C (Tm2 = 140.8 °C) 

for MPs and CP-MPs, respectively. However, a noticeable shift in the position of the cold crystallization peak 

(57.8 °C for MPs and 67.3 °C for CP-MPs) and an increase in the glass transition temperature from -0.78 °C to 

0.91 °C were noted. The changes in Tcc and Tg are associated with the effect of CP thermal decomposition 

products on the thermal properties of the polymer: decomposition of CP (132.1 °C) occurs directly in the 

polymer melting zone (132.2 °C). 

It was noted that there is no melting peak of CP at the CP-MPs thermograms (Figure 2, curves B and C), 

which may be caused by CP amorphization during its encapsulation into microparticles. 

 
Temperature, °C 

Figure 2. Normalized DSC thermograms of CP (A: 1st heating curve), MPs (B: 1st heating curve),  
CP-MPs (C: 1st heating curve), MPs (D: 2nd heating curve), CP-MPs (E: 2nd heating curve). 

The thermal stability of CP, MPs, and CP-MPs was studied using thermogravimetric analysis. TGA curves 

and corresponding data for CP, MPs and CP-MPs are shown in Figure 3 and Table 2, respectively.  

 
Temperature, °C 

Figure 3. Normalized TGA thermograms of (A) CP-MPs, (B) MPs and (C) CP.  

The TGA thermogram of CP shows several decomposition steps. At the first step (52.5 to 99.0 °C), a loss 

of 7.9 % of the sample mass (water loss) is noted. The next step (132.1 to 174.5 °C), where the degradation 
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rate reaches its maximum, is characterized by the loss of 25.8 % of mass, consistent with the DSC data. The 

total mass loss in the remaining areas is 20.7 %. 

The thermal degradation of both types of microparticles showed two degradation steps. The first step is 

probably associated with the loss of residual DCM used in the preparation of microparticles.  

The second step is typical for total PHA degradation [33,67]. The degradation temperature of CP-MPs is 

slightly lower than Tdeg of unloaded microparticles (276.2 and 267.7 °C for MPs and CP-MPs, respectively). 

Such a decrease in Tdeg of CP-MPs could potentially be caused by the influence of cyclophosphamide 

degradation products, which, at high temperatures, contribute to the accelerated degradation of the carrier. 

A decrease in Tdeg of the polymer material was also noted in [68,69] after encapsulation of paclitaxel into the 

PLGA-PEG matrix and in [70] after encapsulation of metformin into PHBV-based microparticles. 

FTIR spectroscopy  

To confirm the fact of successful encapsulation of cyclophosphamide into the PHBV matrix, FTIR spectra 

of pure cyclophosphamide monohydrate and both types of microparticles (MPs, CP-MPs) were obtained 

(Figure 4). The absence of new absorption bands in the FTIR spectrum of CP-MPs compared to spectra of CP 

and MPs indicates no chemical interaction between cyclophosphamide and PHBV. 

 
Figure 4. FTIR spectra of (A) CP, (B) MPs and (C) CP-MPs.  

The success of encapsulation is evidenced by the appearance of the absorption bands in the FTIR spectrum 

of CP-MPs corresponding to the structural elements of cyclophosphamide: 3440 cm-1 (N-H), 1451 cm-1 (P-O-С), 

1148 cm-1 (P=O), 873 cm-1 (CH2-Cl) [71]. Due to the low intensity of the corresponding absorption bands, they 

can be seen in the spectrum obtained by subtracting the matrix spectrum (MPs) from the film spectrum  

(CP-MPs) (Figure 5). 

As a result of encapsulation, cyclophosphamide can be localized both inside microparticles, forming 

micromatrices or microcapsules, and/or on their surface. The adsorption of CP on the surface of 

microparticles would probably cause a noticeable change in the zeta potential of CP-MPs, however, the zeta 

potentials of MPs (-31.4±0.4 mV) and CP-MPs (-35.4±0.3 mV) do not differ significantly. 
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Figure 5. (A) FTIR spectrum of CP, (B) subtracted FTIR spectrum of MPs from CP-MPs and  

(C) FTIR spectrum of CP-MPs. 

In order to confirm the absence of changes in the chemical structure of the MPs surface after CP 

encapsulation, the ATR-FTIR spectra of MPs and CP-MPs were obtained. As can be seen from Figure 6, there 

are no absorption bands of cyclophosphamide in the ATR-FTIR spectrum of CP-MPs and the positions of the 

absorption bands for both MPs and CP-MPs are completely identical. Thus, we suppose that CP is predominantly 

localized inside microparticles. 

 
Figure 6. Normalized ATR-FTIR spectra of (A) MPs and (B) CP-MPs.  

In vitro release  

The release of CP from CP-MPs was investigated in vitro under physiological conditions (pH 7.4, 37 °C). In 

vitro drug release profile of cyclophosphamide from CP-MPs is presented in Figure 7.  

Since PHA-based materials are hydrophobic and are not prone to hydrolytic degradation in the absence 

of enzymes or acids/bases [72], the dominant mechanism of the release of the encapsulated drug from PHA-

MPs is diffusion [73]. The release of cyclophosphamide from CP-MPs has a two-stage pattern typical for 

systems based on polyhydroxyalkanoates [74,75]. At the initial stage of CP release, a slight burst effect caused 

by the desorption of cyclophosphamide from the surface of microparticles is observed. During the first 6 

hours of exposure, about 12 % of the encapsulated substance is released. At the second stage, a slow release 

of the drug caused by the diffusion of CP to the surface of the MPs occurs. It was noted that the maximum 
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release of cyclophosphamide (62 %) was achieved in 432 hours (18 days), which correlates with literature 

data on the duration of cyclophosphamide therapy. 

 
Figure 7. Release profile (kinetic curve) of CP-MPs.  

Mathematical models such as zero-order, first-order, Higuchi and Hixson-Crowell were fitted to the in 

vitro release profile [76]. To determine the optimal model, the model with the highest coefficient of determi-

nation (R²) was selected (Table 3) [77]. Based on this criterion, the Higuchi model was found to be best suited 

for the release kinetics of cyclophosphamide from CP-MPs (R2 = 0.96), indicating that the release of CP from 

microparticles is controlled by Fickian diffusion [78]. 

Table 3. R2 values of various drug release kinetic models. 

Kinetic model Zero-order First-order Higuchi Hixson-Crowell 

R2  0.79 0.85 0.96 0.83 

In vitro cell viability and cytotoxicity assays  

The toxic effect of the micronized form of CP in comparison with unloaded microparticles and pure CP 

was estimated against fibroblast cell line 3T3. 

According to the results of the MTT assay (Figure 8), the cultivation of fibroblasts with CP and CP-MPs 

resulted in a decrease in the number of viable cells.  

 
Figure 8. Metabolic activity of 3T3 cells in the presence of CP, MPs and CP-MPs.  
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The reduced toxic effect of CP-MPs may be associated with sustained release of the CP from the 

microparticles (according to the kinetic study, approximately 33 % of encapsulated cyclophosphamide is 

released over 3 days). The reduced cytotoxicity of microencapsulated forms of drugs is also noted in [79] in 

the case of encapsulating rifampicin into the PHBV matrix (V79 cells) and 5-fluorouracil into the PLGA matrix 

(MCF7 cells) [80]. The cultivation of cells with blank microparticles does not lead to a decrease in the 

metabolic activity of 3T3 in comparison with the untreated control culture. 

Figure 9 shows the adhered fibroblasts after staining with Hoechst 33342 and SYTOX Green. Almost none 

of the dead fibroblasts (green in colour) could be identified during the cultivation with MPs. It means that 

MPs did not affect the viability of adherent cells compared to untreated control culture. In the case of 

cultivation 3T3 with CP and CP-MPs, 52 and 24 % of dead cells were found, respectively. 

 
Figure 9. In vitro LIVE/DEAD assay: (A) control, (B) MPs. (C) CP-MPs. (D) CP (blue = live cells; green = dead cells). 

Thus, it was found that microencapsulation reduces the cytotoxicity of cyclophosphamide against healthy 

cells. 

Conclusions 

In this study, cyclophosphamide-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microparticles 

were obtained and characterized. It was found that the loading of CP into PHBV microparticles leads to 

changes in the physical characteristics of the CP-containing formulation compared to the blank 

microparticles: the decrease of melting points and degradation temperature as well as increase of 

microparticles diameter, glass transition temperature and cold crystallization temperature were noted. 

Furthermore, in vitro cell viability assay revealed that the encapsulation of cyclophosphamide into PHBV 

microparticles decreased CP-MPs cytotoxicity against 3T3 cells compared to pure CP. In the future, in order 

to improve the uptake of the carrier by tumour cells, increase the residence in systemic circulation, facilitate 

particles' penetration into the interstitial space of the tumour via the EPR effect and circumvent premature 

https://doi.org/10.5599/admet.2434


S. Lipaikin et al.  ADMET & DMPK 12(6) (2024) 925-942 

936  

drug release, the obtained system can be modified. This can be accomplished by reducing the size of the 

particles, coating the particles' surfaces with a stealth shell, and functionalizing their surface with some 

ligands to provide active targeting and prevent macrophage uptake. Overall, this study offers promising 

prospects for cancer therapy in the future. 

Supplementary material 

Additional data are available at https://pub.iapchem.org/ojs/index.php/admet/article/view/2434, or 

from the corresponding author on request.  
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