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ABSTRACT

The significance of crop mapping using remote sensing data is increasingly recognized as a cornerstone for tackling 
global challenges such as food security and climate change, due to its role in providing accurate and timely information on 
crop distribution, essential for informed agricultural decision-making. The main objective of this study was to investigate 
the effectiveness of multispectral UAV imagery for discriminating between sugar beet cultivars and predicting yield. 
The specific objectives were: i Evaluation of the separability of spectral bands and vegetation indices for 25 sugar beet 
cultivars using histogram correlation analysis, and ii. Investigating potential correlations between vegetation indices and 
yield. The results showed the NIR spectral region is prominent followed by Green on both acquisition dates in the S2 
control zone in contrast to control zone S1, where Green is the primary spectral region on both acquisition dates. Among 
vegetation indices, GNDVI demonstrated better separability capability than the other indices (NDVI and RENDVI) in the 
S2 control zone and on both acquisition dates whereas NDVI performed better results in the S1 control zone and both 
acquisition dates. Finally, the regression analysis revealed a second-order polynomial equation relating root weight to 
vegetation pixels (GNDVI) with R2 = 0.34 whereas the average prediction is about 17.62% of the actual value (MAPE). 
The study shows that the multispectral data have limitations in discriminating between sugar beet cultivars and yield 
prediction. Further research should be conducted, considering the different phenological stages of the cultivars and 
multi-annual monitoring.
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INTRODUCTION

Crop monitoring and mapping are pivotal for 
addressing global challenges such as food security and 
climate change. Accurate and timely information on crop 
distribution is essential for making informed agricultural 
decisions, thereby ensuring global food security 
(Mahathi et al., 2023) With the global population rising 
and the adverse effects of climate change becoming 
more pronounced, effective crop monitoring and yield 
estimation are paramount. Remote Sensing plays a 
crucial role in monitoring crop health, growth stages, 

and overall agricultural productivity, which is critical 
for implementing strategies to mitigate the impacts of 
climate change on agriculture (Abuova et al., 2023). 
Remote sensing technology in agriculture presents an 
opportunity to address these challenges by providing 
extensive information on crop conditions throughout 
the entire season, thereby enabling well-informed 
management decisions (Darji et al., 2023). A vast amount 
of research exists in the literature regarding the use of 
remote sensing data in crop mapping and monitoring. 
Liu et al. (2020) conducted large-scale crop mapping in 
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the Qinghai region in China using multisource remote 
sensing satellite data from Landsat-8, Sentinel-2, and 
Sentinel-1 to map wheat, rapeseed, and corn crops with 
an ≈85% overall accuracy. Wu et al. (2017) combined 
very high spatial resolution aerial data (0.5 m) and 
hyperspectral data (EO1-Hyperion) to classify crops in 
Jiangsu province, China, achieving 95% overall accuracy. 
Gerhards et al. (2016) used thermal cameras and a VNIR/
SWIR spectrometer to detect water stress in potato 
plants through various indices. They demonstrated that 
water stress detection in potato plants is feasible using 
indices calculated with remote sensing methods. Veysi 
et al. (2017) used Landsat-8 satellite data to calculate 
the crop water stress index (CWSI) for detecting plants 
under water stress and scheduling irrigation in sugarcane 
fields in Iran. They achieved R² values between 0.49 and 
0.78 when comparing satellite data-derived CWSI with 
in-situ measurements. Furthermore, they measured the 
vegetation water content (VWC) and observed a negative 
relationship between the CWSI and VWC, which is 
directly related to the plants’ age. Sakamoto (2020) 
introduced a new approach to crop yield estimation using 
a random forest regression (RF) algorithm integrated with 
environmental variables like temperature, precipitation, 
and soil moisture. This method, applied to corn and 
soybean yields in the U.S. with MODIS WDRVI (Wide 
Dynamic Range Vegetation Index) data, was compared 
to conventional linear (LM) and polynomial regression 
(PM) methods. The Random Forest (RF) approach 
outperformed LM and PM by better addressing biases 
and improving yield predictions in both irrigated and 
rainfed conditions, showcasing the potential of machine 
learning to enhance agricultural productivity forecasts. 
Tugrul (2021) used Landsat-8 's Operational Land Imager 
(OLI) data to calculate NDVI and combined it with soil 
properties to estimate sugar beet yield in Konya, Turkey. 
The study found a positive correlation between NDVI and 
sugar beet yield in late summer, with an R² value of 0.55

Given that crops are dynamic systems and their 
biophysical and biochemical factors change throughout 
the growing season, becomes apparent that time is an 
important variable in crop monitoring. Consequently, a 

factor of great importance is the period that the data will 
be captured. Nowadays, some problems in this direction 
(financial cost for airborne sensors, schedule for satellite 
imagery) can be resolved with the employment of UAVs 
(Zhang and Kovacs, 2012). Unmanned Aerial Vehicles 
(UAVs) are highly effective for crop monitoring due to 
the advanced embedded sensors they carry, such as 
multispectral, hyperspectral, thermal, and LIDAR sensors 
(Wang et al., 2022). UAVs are extensively used in the 
agriculture sector for various applications, including the 
detection of water stress in plants using thermal sensors 
(Sankaran et al., 2015). The insufficient irrigation system, 
and the uneven water distribution according to plants’ 
needs, can cause water stress, where in this case leaf 
pores are closing, resulting in decreased photosynthesis 
and an increase in their temperature that leads to limited 
growth. Consequently, plants’ temperature can be used 
as an indicator for water stress detection. Besides thermal 
infrared, spectral data (RGB, NIR), can be used for water 
stress detection in crops, given that it causes decreased 
growth and thus decreases biomass. It has been found 
a high correlation between the Normalized Difference 
Vegetation Index (NDVI) and yield production in control 
parcels with different irrigation levels (Walsh et al., 2023).

Detection of nutrient deficiencies, often resulting 
from poor fertilization or uneven distribution, is a crucial 
aspect of crop monitoring. Research on low nitrogen levels 
in maize using multispectral data from UAV-mounted 
sensors has shown a significant correlation between 
the Nitrogen Stress Index–NSI [NSI (NDVI) = 1 – NDVIi/
NDVIm] and grain yield (Zaman-Allah et al., 2015). Agüera 
et al. (2011) found a high correlation (r = 0.8) between 
applied nitrogen (N) and NDVI in sunflowers using a UAV-
mounted multispectral sensor. Despite various techniques 
used for detecting and monitoring crop diseases, the 
potential of UAV-obtained multispectral data remains 
underexplored. Jansen et al. (2014) correlated NDVI, 
Leaf Water Index (LWI), and Cercospora Leaf Spot Index 
(CLSI) with the severity of Cercospora in sugar beets. UAV 
imagery can also estimate growth factors like emergence 
vigor, Leaf Area Index (LAI), and biomass. Sankaran et 
al. (2014) found GNDVI highly correlated (r = 0.86) with 
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field measurements of wheat crop emergence. Hunt et 
al. (2010) found a linear correlation between GNDVI 
and LAI (R² = 0.85 for LAI values up to 2.5 m²/m²). UAV 
multispectral data are also used for crop yield estimation, 
with several studies correlating vegetation indices with 
yield production across various crops and growth stages. 
Khot et al. (2014) found correlations between yield 
production and GNDVI in wheat (r = 0.60-0.71). Stephen 
and Kumar (2023) used UAV multispectral images to 
distinguish weeds from sugar beet plants and evaluate 
sugar beet crop health in Rheinbach, Germany. They 
employed machine learning algorithms (Random Forest 
and Support Vector Machine) and object-based image 
analysis (OBIA) for crop and weed distinction, achieving 
95-96% accuracy. They also used vegetation indices 
to create crop health maps. Jay et al. (2019) explored 
the benefits of centimetre-scale multispectral data for 
estimating biochemical and structural variables of sugar 
beet crops in France, concluding that green fraction (GF) 
and leaf chlorophyll content (Cab) provide better results 
than lower spatial resolution data (satellite imagery). 
Walsh et al. (2023) analyzed the impact of different 
water and nitrogen treatments and attempted yield and 
recoverable sugar estimation (ERS) on sugar beets in 
Germany, finding strong correlations between NDVI and 
root yield (R² = 0.91) and ERS (R² = 0.9).

The main objective of this paper was to investigate 
the utility of multispectral UAV imagery for discriminating 
between sugar beet cultivars and predicting yield. The 
Specific objectives were: i Evaluation of the separability 
of spectral bands and vegetation indices for 25 sugar 
beet cultivars using histogram correlation analysis, and ii. 
Investigating potential correlations between vegetation 
indices and yield.

MATERIALS AND METHODS

Region of interest – controlled field

The experimental field is located in Serres (Skotoussa 
village), Greece approximately 100 Km North East of 
Thessaloniki city (Figure 1). It was an experimental field 
owned by the Hellenic Sugar Industry (HSI), consisting of 

25 different sugar beet cultivars. Each strip consisted of 
three sowing rows, spaced 50 cm apart. The total width 
of each strip was 2 meters, including a 0.5 m margin 
on each side. Each strip contained a single cultivar. 

Figure 1. Region of interest 

Figure 2. Experimental field and control zones

The experimental field was divided horizontally in the 
middle, so for every cultivar to be in different controlled 
zones, zone S2 (red) and zone S1 (yellow) (Figure 2). 
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Figure 4. False Color composite image (RGB: NIR, R, G) - August

Two distinct operational protocols were implemented: 
S2, which includes comprehensive plant protection 
against Cercospora and nitrogen (Ν) fertilization, and 
S1, which entails minimal protection measures against 
Cercospora along with nitrogen (Ν) fertilization. Detailed 
specifications of these protocols, as followed by HSI, are 
classified and unavailable for disclosure by the authors. 
The study focuses exclusively on these two control zones 
(S1 and S2).

Fieldwork

UAVs’ flights

The Multispectral data were obtained on two flight 
dates: August 25, 2017, and September 8, 2017, using 
a Parrot Sequoia multispectral sensor (Green: 550 nm, 
Red: 660 nm, Red Edge: 735 nm, NIR: 790 nm) mounted 
on an eBee fixed-wing UAV. The flight altitude was 120 
m above ground level, resulting in a pixel size of ≈13 cm 
with 75% front and 65% side image acquisition overlap. 
Radiometric calibration target images were captured 
before the flight for white balance image calibration.

Field operations 

Targets were placed in the field, to separate each strip 
of the different cultivars, their position was captured 
using a GPS receiver (Spectra Precision SP60) with RTK 
connected to the national HEPOS network (Delikaroglou, 
2008). In addition, the precise delineation of the planting 
strips on the ground was performed using a GPS receiver. 
Furthermore, the Mobile Data Collection application 
(MDC) (GIS Cloud Ltd, Zagreb, Croatia), was used to 
capture the geotagged photos (Figure 3) of the 25 sugar 
beet cultivars on the experimental field. 

Pre-processing

The raw multispectral image tiles were pre-processed 
with the use of Pix4DMapper software (Pix4D S.A., 
Prilly, Switzerland) and the utilization of the processing 
templates that are provided by the software. More 
specifically, the Ag Multispectral template was selected 
(Pix4D Documentation) along with white reference 
images. As a result, reflectance images were produced. 
After calculating the VIs using the QGIS software (QGIS 
project, 2000), a mask was applied on the reflectance 
images to remove the ground pixels using the threshold 
method
(Threshold value: GNDVIAugust = 0.4; GNDVISeptember = 0.38).

Figure 3. Geotagged image (field data collection) Figure 5. False Color composite image (RGB: NIR, R, G) - September
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Data processing

Cultivars spectral discrimination using reflectance images

Spectral discrimination was implemented through 
the histogram comparison of respective spectral bands 
of the reflectance images in pairs for the 25 cultivars 
for both S1 and S2 controlled zones. For the histogram 
comparison, the open-source library OpenCV in a python 
environment (OpenCV development team, 2019). For the 
comparison, the histogram correlation algorithm (CV_
COMP_CORREL) was used (Equation 1), 

(1)
where: 

and N is the total items that depict the range of the 
histogram.

Cultivars spectral discrimination using vegetation indices

The process followed for the cultivar’s discrimination 
with the use of VIs, is the same one that was used for the 
discrimination with the use of reflectance images. The 
indices used for the discrimination of the cultivars are: 

	– NDVI (Normalized Difference Vegetation Index): 
NDVI = (NIR−RED)/(NIR+RED) (Rouse et al., 1973)

	– GNDVI (Green Normalized Difference Vegetation 
Index): GNDVI = (NIR − GREEN) / (NIR + GREEN) 
(Gitelson et al., 1996)

	– RENDVI (Red Edge Normalized Difference 
Vegetation Index):

RENDVI = (NIR − Red Edge) / (NIR + Red Edge) 
(Sims and Gamon, 2002)

Crop yield estimation

The crop yield estimation was performed with the 
use of regression analysis between the number of 
“vegetation” pixels derived from VI’s (GNDVI, NDVI, 
RENDVI) images of each cultivar (strips) and the actual 
roots weight derived from each strip (Diago et al., 2012). 
The method was applied in both control zones (S1 and 
S2) and acquisition dates (August and September).

RESULTS AND DISCUSSION

Cultivars discrimination based on reflectance data 

August

After comparing histograms of the cultivars from 
data acquired in August, correlation matrices were 
produced for each spectral band, as shown in Figure 6 
(an indicative correlation matrix for the NIR band). In this 
study, the thresholds for Pearson's correlation coefficient 
used for cultivar discrimination are defined as follows: r 
≥ 0.7 indicates high correlation, 0.7 > r > 0.3 indicates 
moderate correlation, and r ≤ 0.3 indicates no correlation. 
Table 1 summarizes the range of Pearson’s correlation 
coefficients for the discriminated cultivars across each 
spectral band.

Table 1. Range of Pearson’s correlation coefficients for dis-
criminated cultivars

Spectral 
band

S1 S2

min max min max

August

Green -0.18 0.29 0.04 0.29

Red -0.28 0.3 -0.02 0.24

Red edge -0.28 0.31 -0.29 0.3

NIR -0.16 0.27 -0.18 0.3

September

Green -0.26 0.29 -0.01 0.3

Red 0.29 0.29 -0.3 0.3

Red edge 0.11 0.3 -0.16 0.3

NIR 0.08 0.28 -0.12 0.3

The results showed that the majority of the cultivars 
are highly correlated with each other. Table 2 summarizes 
the cultivars that can be discriminated from all or some 
of the cultivars in each band. The Green band is the most 
effective for cultivar discrimination in control zone S1, as 
it discriminates four cultivars. In control zone S2, the NIR 
band is the most effective, even though it discriminates 
the same number of cultivars (four) as the Green and Red 
Edge bands.
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This is due to the NIR band’s ability to distinguish these four 
cultivars from a larger number of other cultivars. Cultivar 
21 can be discriminated from most of the other cultivars 
using the Green, Red Edge, and NIR bands in both control 
zones. Cultivars 13, 14, and 15 can be discriminated from 
other cultivars using the Red Edge and NIR bands in S2. 

Figure 6. Correlation matrix (Image acquisition: August, S2 control zone, NIR Band)

Table 2. Discriminated cultivars in every band, first flight date (25 August 2017)

Spectral band
Discriminated cultivars S1 Discriminated cultivars S2

Cultivar Discriminated from cultivars Cultivar Discriminated from cultivars

Green

4 All 6 11,12,20

5 4,6,12,14,15,16,18,19,20,24 12 6,8,21

7 4,12,14,15,16,18,19,20,24,25 20 6,8,21

9 4,12,14,15,16,18,19,20,24 21 11,12,20

Red 13 All except 20th
15 1,6,7,8,9,17

18 1,6,7,8,9,17

Red Edge 21 All except 1st and 3rd

1 5,10,11,13,18,19,21,23

4 10,13,21,24

9 2,5,10,12,13,14,18,19,22,23

11 10,13,18,19,21,23

NIR 21 All except 1st and 3rd

1 2,5,10,13,14,15,18,21,23,24

9 2,5,10,12,13,14,15,16,18,21,22,23,24

11 2,5,10,13,14,15,18,21,23,24

17 2,5,10,13,14,15,18,21,24

Additionally, cultivar 14 can be discriminated from some 
other cultivars in S1 using the Green band. Cultivar 13 can 
also be discriminated from the rest of the cultivars in S1 
using the Red band. Cultivar four (4) can be discriminated 
from the rest using the Green band in S1. Finally, cultivar 
five (5) can be discriminated from some others using the 
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Green band in S1 and the Red Edge and NIR bands in S2. 
A pattern emerges showing that certain cultivars in both 
S1 and S2 control zones are discriminated from common 
cultivars (discrimination overlap) using certain bands, as 
summarized in Table 4.

September

In the image captured in September, there is a notable 
increase in the number of cultivars that are highly 
correlated. As a result, discrimination between them 
becomes more challenging at the later growth stage. The 
cultivars that can still be discriminated against are listed 
in Table 3. The results indicate that a greater number 
of cultivars can be discriminated in the second control 
zone (S2), where full plant protection was implemented, 
compared to the first control zone (S1), where only partial 
plant protection was applied.

Table 3. Discriminated cultivars in every band, second flight date (08 September 2017)

Spectral band
Discriminated cultivars S1 Discriminated cultivars S2

Cultivar Discriminated from cultivars Cultivar Discriminated from cultivars

Green

9 3,4,7,8,11,12,14,21,23,25 6 2,11,12,13,14

20 2,3,6,7,8,12,14,15,16,17,18,21,23,25
8 2,11,12,13,14

10 2,12,13,14

24 2,3,6,7,8,12,15,16,17,18,21,23,25
13 3,4,5,6,8,9,10,17,19,21,22,23,24

14 4,5,6,8,10,17,19,21,22,23,24

Red 7 10

12 7,8,17,22,23,25

13 6,7,8,17,22,23,24,25

18 7,8,17,22,23,24

24 2,4,13,14,15,18,20,21

Red Edge

1 5,24
5 7,16,17,22,23

7 4,5,9,14,25

24 25
17 3,4,5,6,9,14,15,20,21,24,25

23 3,4,5,6,9,14,25

NIR
24 11,15

5 7,9,11,12,22,24

11 2,3,4,5,13,14,18,20,25

25 5,11 12 2,3,4,5,13,14,18,20,25

In the S1 control zone, the Green band is particularly 
effective, allowing for the discrimination of three cultivars 
from others. In the S2 control zone, the Green band 
remains the most effective, enabling the discrimination 
of five cultivars. This is followed by the Red and Red Edge 
bands, which also contribute to cultivar discrimination 
but are less prominent compared to the Green band. 
Also, cultivar five (5) appears to be discriminated against 
by others using the Red edge and NIR bands, while 
cultivar 13 can be discriminated against by others using 
the Green and Red bands. Lastly, some overlap in cultivar 
discrimination is observed in the September dataset, 
affecting both the S1 and S2 control zones (Table 4).
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Table 4. Reflectance data, common cultivar discrimination (discrimination overlap)

Spectral band
S1 S2

Discriminated cultivars Overlap (%) Discriminated cultivars Overlap (%)

August

Green 5, 7, 9 36%
6, 21 12%

12, 20 12%

Red - - 15, 18 24%

Red edge - - 1, 9, 11 28%

NIR - - 1, 9, 11, 17 36%

September

Green 9, 20, 24 32%
6, 8, 10 12%

13, 14 44%

Red 12, 13, 18 24%

Red edge 7, 17, 23 20%

NIR 11, 12 36%

Cultivars discrimination based on vegetation indices

NDVI histogram comparison 

The NDVI comparison results from August reveal 
that most cultivars are highly correlated with one 
another. The Pearson’s correlation coefficient range for 
the discriminated cultivars for each Vegetation Index is 
summarized in the following table (Table 5).

Table 5. Range of Pearson’s correlation coefficients for dis-
criminated cultivars based on vegetation indices

Vegetation 
indices

S1 S2

min max min max

August

NDVI -0.28 0.29 -0.27 0.3

RENDVI 0.21 0.28 -0.05 0.3

GNDVI -0.18 0.29 -0.3 0.3

September

NDVI -0.27 0.3 -0.3 0.29

RENDVI 0.1 0.22 -0.23  0.29

GNDVI -0.19 0.3 -0.26 0.3

Despite the high correlations that existed among 
the cultivars, as shown in Table 6, Cultivar 10 stands 
out as it can be discriminated from the majority of the 
other cultivars across both acquisition dates and control 
zones. Similarly, Cultivars one (1) and four (4) can be 
discriminated from some other cultivars in both control 
zones and dates. In contrast, Cultivar six (6) can be 
discriminated from others during the mid-season growth 
stage in August but not in the late growth stages of 
September.

GNDVI histogram comparison

The GNDVI comparison revealed predominantly high 
and medium correlations among the cultivars across both 
acquisition dates and control zones. The cultivars that 
can be discriminated against are summarized in Table 7. 
Cultivars one (1) and 10 can be discriminated against by 
others in both control zones and dates. Cultivar four (4) 
can be discriminated from the majority of other cultivars 
in the S2 control zone across both acquisition dates. 
Additionally, in the S1 control zone, Cultivar Four (4) is 
discriminated from Cultivars One (1), Seven (7), and Nine 
(9) in August, and from Cultivar One (1) in September. 
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Table 6. NDVI comparison discriminated cultivars

Vegetation 
index

Discriminated cultivars S1 Discriminated cultivars S2

Cultivar Discriminated from cultivars Cultivar Discriminated from cultivars

NDVI 
(August)

1 5,6,12,21,22 1 5,6

4 2,7,8,9,13,14,15,16,17,18,23,24,25 4 3,6,8,12,13,20,21,22

6 1,2,7,9,15,17,18,19,20,24 6 4,7,8,24

10 2,8,9,11,12,13,14,15,16,17,23,25 10 2,8,9,11,13,14,15,16,17,18,19,20,22,23,25

19 6,21,22 24 5,6,12,13,20

NDVI 
(September)

1 3,5,6,11,12,13,14,16,21,22,23,25 1 6,12,13

4 2,7,15,17,18,19,20,24
4 3,6,8,11,12,13,16,17,20,21,22,23,25

10 All except 6th and 22nd 

24 4,5,10 10 All except 5th and 12th

Table 7. GNDVI comparison discriminated cultivars

Vegetation 
index

Discriminated cultivars S1 Discriminated cultivars S2

Cultivar Discriminated from cultivars Cultivar Discriminated from cultivars

GNDVI 
(August)

1 4,5,6,11,12,13
1 5,10,12,13,20

4 2,3,6,11,14,15,16,17,18,19,21,22,23,25

7 4,6,10,12,13
7 5,6,10,12,13,20,21

8 2,5,6,10,12,16,17,18,19,21,22,25

9 4,6,10,12,13 10 1,7,8,9,11,14,15,23,24

10 2,7,8,9,18,19,20,21,24
12 1,7,8,9,24

13 1,7,9,14,15,23,24

GNDVI 
(September)

1 4,5,6,11,12,14,15,16,17,22,25
4 2,3,6,8,9,11,14,15,16,17,18,19,20,21,22,25

8 4,5,6,10,12,13,16,20

10 2,3,7,8,9,18,19,20,21,24 10 1,2,3,7,8,9,14,15,18,19,21,22,24,25

13 2,3,7,8,9,18,19,20,21,24 13 1,2,7,8,9,15,17,18,24

Finally, Cultivar 13 can be discriminated from some other 
cultivars in both zones and dates, with the best results 
observed during the late growth stages.

RENDVI histogram comparison

The RENDVI histogram comparison revealed high 
correlations among the cultivars, making it the least 

effective for cultivar discrimination compared to NDVI 
and GNDVI across both acquisition dates and control 
zones. The results, presented in Table 8, indicate that 
Cultivar 18 is the only cultivar that can be discriminated 
in both dates within the S2 control zone.
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Table 8. RENDVI comparison discriminated cultivars

Vegetation index
Discriminated cultivars S1 Discriminated cultivars S2

Cultivar Discriminated from cultivars Cultivar Discriminated from cultivars

RENDVI (August) 9 2,3,5,6,13
18 11,14,15,16,24

20 9,11,14,15,16,23,24,25

RENDVI (September) 8 21,22,23,24

17 9,24,25

18 2,3,9,11,24,25

19 2,3,9,11,25

The following Table 9 summarizes the cultivars that 
showed discrimination overlap, through VIs histogram 
comparison, for both acquisition dates and control zones.

In summary, the histogram comparison of the 
cultivars' reflectance data reveals that spectral bands can 
effectively discriminate some cultivars, depending on the 
acquisition dates and treatment conditions. NDVI and 
GNDVI have proven to be particularly useful for cultivar 
discrimination across various conditions. Notably, the S2 
control zone consistently shows superior results, with 
clearer cultivar separation. This improvement is likely due 

Table 9. VIs common cultivar discrimination (discrimination overlap)

Vegetation Index
S1 S2

Discriminated cultivars Overlap (%) Discriminated cultivars Overlap (%)

August

NDVI 4, 10 40% 4, 10 16%

GNDVI 1, 7, 9 20%

1, 7 20%

4, 8 36%

10, 13 28%

RENDVI - - 18, 20 20%

September

NDVI 1, 10 48% 1, 4, 10 12%

GNDVI 10, 13 40%
4, 10 44%

4,10, 13 24%

RENDVI - -
17, 18 12%

18, 19 20%

to differences in treatments, irrigation practices, plant 
density, or other factors between the S1 and S2 zones 
(Hoffmann and Blomberg, 2004). Further investigation is 
needed to pinpoint the specific factors influencing these 
results.

The findings of this research regarding cultivar 
discrimination are consistent with those of Galidaki et 
al. (2021), who utilized UAVs and vegetation indices (VIs) 
to discriminate and map vine varieties in Greece. They 
concluded that multispectral data do not effectively 
discriminate cultivars of the same species.
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In contrast, hyperspectral data have demonstrated 
a higher capacity for discrimination. For instance, 
Galvão et al. (2006) showed that hyperspectral data 
(Hyperion/EO-1) achieved a discrimination accuracy of 
87% for sugarcane varieties in Brazil, whereas the best 
results with multispectral data, such as those from the 
Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 
and the Moderate Resolution Imaging Spectroradiometer 
(MODIS/Terra), reached only 74% accuracy. This indicates 
that hyperspectral data provide superior discrimination 
of cultivars compared to multispectral approaches.

Crop yield estimation

Crop yield estimation based on vegetation indices 

According to regression analysis, performed between 
vegetation indices and actual yield metrics (root weight), 
GNDVI showed better results in comparison with NDVI 
and RENDVI, in the S2 control zone (August). Must be 
noted that the cultivars four (4), five (5), eight (8) and 15, 
were not used for the estimation (outliers). The regression 
analysis yielded the following second-order polynomial 
equation relating root weight to vegetation pixels. 

y = −0.0003x2 + 2.929x + 1209.5

R2 = 0.3384

(3)

(2)

While there is a relationship between vegetation pixels 
and root weight, a significant portion of the variability in 
root weight remains unexplained by the model. Despite 
the model explaining only a portion of the variability in 
root weight, it still provides good predictions, with the 
average prediction being within about 17.62% of the 
actual value.

The MAPE was used in the present study, as it is 
commonly used when the quantity to predict, is known 
to be above zero (De Myttenaere et al., 2016). In addition, 
MAPE constitutes a well-fitted method, in order to check 
the prediction results (Khair et al., 2017). For the validity 
check of the equation, the Mean Absolute Percentage 
Error (MAPE) was calculated as shown in the following 
equation (Equation 3).

Figure 7. Regression analysis plot

where yi is the actual value, ŷi is the estimated value and n 
is the total number of samples used.

The estimated root weight, derived from the regression 
analysis, resulted to MAPE = 17.62% (MAPE <10%: 
Highly accurate forecasting, 10–20%: Good forecasting, 
20–50%: Reasonable forecasting, >50%: Inaccurate 
forecasting). According to (Ostertagová, 2012) the MAPE 
is the most useful index for estimation validity check, as it 
is used for the relative performance.

The results of this study align with the findings of 
Kyratzis et al. (2017) in Cyprus, who demonstrated that 
GNDVI is effective for yield prediction in wheat. Similarly, 
the results are consistent with those of Kayad et al. 
(2019), who identified a correlation between GNDVI and 
yield variability in corn. 

Moreover, the literature indicates that for accurate 
crop yield prediction, spectral data should be collected 
before the plants reach their final growth stage. Early 
crop stages are preferred because, at later stages, factors 
such as canopy development, weed infestation, and plant 
diseases can vary significantly and impact the accuracy of 
predictions (Hoffmann and Blomberg, 2004).
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CONCLUSIONS 

This research evaluated the effectiveness of 
multispectral UAV imagery for discriminating between 
25 sugar beet cultivars and predicting yield. The findings 
revealed that multispectral data have limitations in both 
discriminating cultivars and predicting yield. Specifically, 
the NIR band emerged as the most significant spectral 
region for these tasks, followed by the Green band, 
particularly in the S2 control zone. In contrast, the Green 
band was more dominant in the S1 control zone across 
both acquisition dates.

Among the vegetation indices assessed, GNDVI 
demonstrated superior discriminative power compared to 
NDVI and RENDVI in the S2 control zone and across both 
acquisition dates. Conversely, NDVI performed better 
in the S1 control zone during both acquisition periods. 
Additionally, regression analysis identified a second-
order polynomial relationship between root weight and 
vegetation pixels (GNDVI), with an R² value of 0.34. While 
this model accounts for only a portion of the variability 
in root weight, it provides reliable predictions with an 
average accuracy of approximately 17.62% relative to the 
actual values.

Further research is needed to explore different 
phenological stages of the cultivars and to conduct 
multi-annual monitoring to enhance the accuracy and 
applicability of these predictive models.
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