POLYNOMIALS VANISHING ON A BASIS OF $S_m(\Gamma_0(N))$

Iva Kodrnja and Helena Koncul

University of Zagreb, Croatia

Abstract. In this paper we compute the bases of homogeneous polynomials of degree d such that they vanish on cuspidal modular forms of even weight $m \geq 4$ that form a basis for $S_m(\Gamma_0(N))$. Among them we find the irreducible ones.

1. INTRODUCTION

Let $N > 1$, $m \geq 4$ be an even number and f_0, \ldots, f_{t-1} be elements of the basis of the space of cuspidal modular forms $S_m(\Gamma_0(N))$ of weight m with $\dim S_m(\Gamma_0(N)) = t$. Let $X_0(N)$ be the modular curve for $\Gamma_0(N)$. We look at the holomorphic map $X_0(N) \to \mathbb{P}^{t-1}$ defined by

(1.1) $\mathfrak{a}_z \mapsto (f_0(z) : \cdots : f_{t-1}(z))$

and we denote the image curve of this map by

$$
\mathcal{C}(N,m) \subseteq \mathbb{P}^{t-1}.
$$

Let us set $g = f_{t-1}$. Then the map (1.1) can be written as

$$
(1.2) \qquad \qquad \mathfrak{a}_z \mapsto (f_0(z)/g(z): \cdots : f_{t-1}(z)/g(z))
$$

and it is a rational map of algebraic curves. Here, we are continuing the work in [18], where it is shown that the complete linear system attached to this map, consisting of integral divisors of degree $t + g - 1$ attached to modular forms f_i , obtained from usual $div(f_i)$ by subtracting contributions at elliptic points and cusps, satisfy the conditions for the map to be an embedding. Namely the linear system is base point free when $t \geq g+1$ and very ample

²⁰²⁰ Mathematics Subject Classification. 11F11, 05E40, 13F20.

Key words and phrases. Modular forms, modular curves, projective curves, Hilbert polynomial.

³¹³

when $t > q + 2$. We repeat the following facts about the image curve $\mathcal{C}(N,m)$ from [18].

LEMMA 1.1. Assume that $m \geq 4$ is even. Let $t = \dim S_m(\Gamma_0(N)),$ f_0, \ldots, f_{t-1} be a basis of $S_m(\Gamma_0(N))$, g be the genus of $\Gamma_0(N)$ and we denote by

$$
C(N,m) = C(f_0, \cdots, f_{t-1})
$$

the image of the map (1.1). Then

- i) $\mathcal{C}(N,m)$ is an irreducible smooth projective curve in \mathbb{P}^{t-1} .
- ii) If $m > 4$, then $t > q + 2$ and the degree of the curve is $t + q 1$.

PROOF. The i) part of Lemma 1.1 follows from Chow's theorem, while ii) and its proof can be found in [18, Corollary 3-4a]. \Box

In our previous work we have used map (1.1) for $t = 3$ to map the modular curve $X_0(N)$ to a projective plane, find its irreducible equation and check conditions for birationality, ([12, 18, 19]).

Maps to higher-dimensional projective spaces generate a projective curve in \mathbb{P}^{t-1} , $t \geq 3$. Here curves are no longer defined by just one equation. Our goal is to adapt the algorithms used in [12] and compute all linearly independent homogeneous polynomials of a certain given degree that vanish on the curve $\mathcal{C}(N,m)$. Geometrically, these polynomials define hypersurfaces in \mathbb{P}^{t-1} lying over the curve.

In weight 2, the space of cusp forms $S_2(\Gamma_0(N))$ is isomorphic to holomorphic 1-forms, we have dim $S_2(\Gamma_0(N)) = q$, divisors of cusp forms defining the map (1.1) make the canonical linear system of the map and (1.1) is a canonical embedding ([11, Chapter IV.5]). In [9] the bases of $S_2(\Gamma_0(N))$ are used to obtain canonical models for modular curves.

Canonical curves and their ideals are well studied ([4, Chapter III],[8, 23]), their ideal is generated by quadrics except when the curve is trigonal or isomorphic to a smooth plane quintic and then at least one cubic generator appears in the minimal generating system of the ideal. In [10] one can find the complete list of trigonal modular curves $X_0(N)$.

For $m > 2$ the space of cusp forms of weight m is bigger than the set of differentials of degree $m/2$, ([15]). But the complete linear system of integral divisors attached to cusp forms consists of special divisors ([18]), so by results from [3] the ideal of our image curve is generated by quadrics.

In Section 2 we present the algorithm to compute homogeneous polynomials vanishing on $\mathcal{C}(N,m)$ and in Section 3 we present the results of computations and some examples.

2. Computing homogeneous polynomials vanishing on cusp forms

Let $\mathcal{P} = \mathbb{Q}[X_0, \ldots, X_{t-1}]$ be the ring of polynomials in t variables and $\mathcal{P}_d = \mathbb{Q}[X_0, \ldots, X_{t-1}]_d$ the subring of homogeneous polynomials of degree d. We regard P as the graded ring $P = \bigoplus_{d \geq 0} P_d$.

Let $I(\mathcal{C}(N,m)) \subseteq \mathcal{P}$ be the homogenous ideal of the curve $\mathcal{C}(N,m)$ consisting of all homogenous polynomials that vanish on $\mathcal{C}(N,m)$. Then $f \in I(\mathcal{C}(N,m))$ defines a hypersurface $\mathcal{C}(N,m) \subset V(f)$ in \mathbb{P}^{t-1} . There is a graded structure on the ideal $I(\mathcal{C}(N,m))$

$$
I(C(N,m)) = \bigoplus_{d \geq 0} I(C(N,m))_d.
$$

If we set

(2.1)
$$
I(C(N,m))_d = \mathcal{P}_d \cap I(C(N,m))
$$

we get the vector space $I(\mathcal{C}(N,m))_d$ of all homogenous polynomials of degree d which vanish on $\mathcal{C}(N,m)$. Product of two homogeneous polynomials of degrees d_1 and d_2 is again a homogeneous polynomial of degree $d_1 + d_2$. We can view this graded structure as vector spaces or modules,

$$
\mathcal{P}_j I(\mathcal{C}(N,m))_d \subseteq I(\mathcal{C}(N,m))_{jd}.
$$

Let $f_0, \ldots, f_{t-1} \in S_m(\Gamma_0(N))$ be a basis of the space of cuspidal modular forms for the congruence subgroup $\Gamma_0(N)$ of weight $m \geq 4$.

Let $P \in \mathbb{Q}[x_0, \ldots, x_{t-1}]$ be a homogeneous polynomial of degree d

$$
P(x_0, \ldots, x_{t-1}) = \sum_{\substack{0 \leq i_0, \ldots, i_{t-1} \leq d \\ i_0 + \cdots + i_{t-1} = d}} a_{i_0, \ldots, i_{t-1}} x_0^{i_0} \cdots x_{t-1}^{i_{t-1}}.
$$

For a given degree $d \geq 0$, we are interested in those polynomials which vanish on the elements of the basis f_0, \ldots, f_{t-1} ,

$$
(2.2) \qquad P(f_0(z), \cdots, f_{t-1}(z)) = \sum_{\substack{0 \le i_0, \dots, i_{t-1} \le d \\ i_0 + \dots + i_{t-1} = d}} a_{i_0, \dots, i_{t-1}} f_0^{i_0} \cdots f_{t-1}^{i_{t-1}} = 0
$$

for all $\mathfrak{a}_z \in X_0(N)$.

Vector space P_d of all homogeneous polynomials of degree d is generated with monomials and its dimension can be viewed as the number of coefficients $a_{i_0,\dots,i_{t-1}}$ with respect to the indexing set of the set of monomials of degree d,

$$
I = \{(i_0, \ldots, i_{t-1}) : 0 \leq i_0, \ldots, i_{t-1} \leq d, i_0 + \cdots + i_{t-1} = d\}.
$$

Determination of the cardinality of $|I|$ is known as the weak composition problem in combinatorics and the solution is

(2.3)
$$
d' = \dim \mathcal{P}_d = |I| = \binom{d+t-1}{d}.
$$

We will order I using the lexicographical ordering (7) , so that we consider a polynomial P as a finite linear array of its coefficients

$$
(2.4) \t\t P \longrightarrow (a_0, \ldots, a_{d'-1})
$$

satisfying the order of corresponding monomials, as basis representation of P.

We are interested in subspaces $I(\mathcal{C}(N,m))_d \subseteq \mathcal{P}_d$ containing polynomials that vanish on the basis f_0, \ldots, f_{t-1} of $S_m(\Gamma_0(N))$ for certain choices of d, N, m and their dimensions,

(2.5)
$$
I(C(N,m))_d = \{P \in \mathcal{P}_d : P(f_0, \cdots, f_{t-1}) = 0\}.
$$

Each modular form is in practical computations given by finitely many coefficients of its integral Fourier expansion in the cusp ∞ .

The polynomial combination $P(f_0, \ldots, f_{t-1})$ is again a modular form of weight md , where d is the degree of the polynomial P , since cuspidal forms on a given group also make a graded ring $S(\Gamma_0(N)) = \bigoplus_m S_m(\Gamma_0(N)).$

The condition of vanishing of the modular form $P(f_0, \ldots, f_{t-1})$ is known as the Sturm bound saying that we only consider a finite number B of coefficients of the q-expansion of the form to distinguish forms,

.

(2.6)
$$
B_m = \left\lfloor \frac{m \left[SL_2(\mathbb{Z}) : \Gamma_0(N) \right]}{12} \right\rfloor
$$

Similar to [9, 12, 15, 19], the algorithm for computing polynomials vanishing on a basis of $S_m(\Gamma_0(N))$ is based on the following linear algebra considerations: for fixed values of d, N, m we are solving a homogeneous system of equations, where the unknowns are coefficients $a_0, \ldots, a_{d'-1}$ of a polynomial P , as in (2.4) and the coefficients of the system are values of q -expansions of evaluated monomials $f_0^{i_0} \dots f_t^{i_{t-1}}$ over the indexing set I,

$$
P(f_0, ..., f_{t-1}) = \sum_{\substack{0 \le i_0, ..., i_{t-1} \le d \\ i_0 + ... + i_{t-1} = d}} a_{i_0, ..., i_{t-1}} f_0^{i_0} \cdots f_{t-1}^{i_{t-1}}
$$

=
$$
\sum_{\substack{0 \le i_0, ..., i_{t-1} \le d \\ i_0 + ... + i_{t-1} = d}} a_{i_0, ..., i_{t-1}} \left(a_0^{(i_0, ..., i_{t-1})} + a_1^{(i_0, ..., i_{t-1})} q + ... \right)
$$

=
$$
p_0 + p_1 q + p_2 q^2 + ...
$$

The homogeneous system is $p_0 = p_1 = \cdots = p_{B_{md}} = 0$ and its solutions are obtained as the basis of the right kernel of the transpose of $d' \times B_{md}$ matrix whose rows are made of coefficients of $f_0^{i_0} \dots f_{t-1}^{i_{t-1}}$, after ordering the index set I.

Here is the algorithm, for a given N and weight m , with the use of lexicographic ordering on the set of monomials of degree d:

Input: *q*-expansions of f_0, \ldots, f_{t-1} basis of $S_m(\Gamma_0(N))$.

• For a degree $d \geq 0$:

– for each monomial index $(i_0, \ldots, i_{t-1}) \in I$ in the ordered set of monomials of degree d:

compute $f_0^{i_0} \dots f_{t-1}^{i_{t-1}},$

- create a $d' \times B_{md}$ matrix A, whose rows are first B_{md} coefficients of q-expansion of $f_0^{i_0} \dots f_{t-1}^{i_{t-1}},$
- return elements of the right kernel of A.

Output: linearly independent homogeneous polynomials of degree $d \geq 0$ vanishing on all forms, i.e. such that $P(f_0, \ldots, f_{t-1}) = 0$.

In our computations we are using the SAGE software system [22] and the cusp form basis we are using is generated by command

CuspForms(Gamma_0(N),m).q_integral_basis(prec).

3. RESULTS

Let $t = \dim S_m(\Gamma_0(N))$, g be the genus of $\Gamma_0(N)$. The formula for t is derived from Riemann-Roch theorem, ([14, Proposition 6.1])

$$
(3.1) \t t = \dim S_m(\Gamma_0(N)) = (m-1)(g-1) + \left(\frac{m}{2} - 1\right)c_0 + \mu_{0,2}\left\lfloor\frac{m}{4}\right\rfloor\mu_{0,3}\left\lfloor\frac{m}{3}\right\rfloor
$$

for even $m \geq 4$ where c_0 is the number of inequivalent cusps and $\mu_{0,i}$ is the number of inequivalent elliptic points of order i of $\Gamma_0(N)$.

$\mathbf t$	g	(N,m)
$\overline{2}$	0	(2,12), (2,14), (3,10), (4,8)
	1	(11,4)
3	θ	$(2,16)$, $(2,18)$, $(3,12)$, $(3,14)$, $(4,10)$, $(5,8)$, $(5,10)$, $(6,6)$,
		$(7,6)$, $(7,8)$, $(8,6)$, $(9,6)$, $(10,4)$, $(12,4)$, $(13,4)$, $(16,4)$
4	0	(2,20), (2,22), (3,16), (4,12)
	1	$(14,4), (15,4), (17,4)^*, (19,4)^*, (11,6)$
5	0	$(2,24), (2,26), (3,18), (3,20), (4,14), (5,12), (5,14)^*, (6,8),$
		$(7,10)$, $(8,8)$, $(9,8)$, $(10,6)^{*}$, $(13,6)$, $(18,4)$, $(25,4)$
	2	(23,4)
6	θ	(2,28), (2,30), (3,22), (4,16)
	1	$(11,8), (17,6), (20,4)$ ^{**} , $(21,4)$ ^{***} , $(27,4)$ [*]
$\overline{7}$	0	$(2,32), (2,34), (3,24), (3,26), (4,18), (5,16), (5,18)$ $(6,10),$
		$(7,12)$, $(7,14)$ ^{**} , $(8,10)$, $(9,10)$, $(12,6)$, $(13,8)$, $(16,6)$ [*]
	2	$(22,4), (29,4)^*, (31,4)$
8	θ	(2,36), (2,38), (3,28), (4,20)
	$\mathbf{1}$	$(11,10), (14,6)$ [*] , $(15,6), (19,6), (24,4), (32,4)$ [†]

Table 1: (N, m) for $2 \le \dim S_m(\Gamma_0(N)) \le 8$

REMARK 3.1. For the ordered pairs denoted with asterisk $(N, m)^*$, $(N, m)^{**}$, $(N, m)^{***}$ the number of irreducible polynomials differs from other in the group (Table 8), and for (N, m) ^{\dagger} no computation could be made.

Using the algorithm in Section 2 we were able to compute homogeneous polynomials that vanish on all elements of basis of $S_m(\Gamma_0(N))$, and the irreducible ones among them, for small degrees d up to 10 or at times lower due to the limitations of calculations on huge numbers. For $q \geq 0$ of the modular curve $X_0(N)$ we will denote possible cases for maps (1.1) defined by basis of $S_m(\Gamma_0(N))$ by listing ordered pairs (N, m) in Table 1.

t	g	degree d of P									
		2	3	4	5	6	7	8	9	10	
$\mathbf{2}$	θ	θ	θ	θ	θ	θ	θ	θ	θ	$\overline{0}$	
	1	0	θ	θ	Ω	θ	θ	θ	θ	θ	
3	Ω	1	3	6	10	15	21	28	36	45	
$\overline{4}$	θ	3	10	22	40	65	98	140	192	255	
	1	$\overline{2}$	8	19	36	60	92	133	184	246	
5	θ	6	22	53	105	185	301	462	678	960	
	$\overline{2}$	4	18	47	97	175	289	448	662	942	
6	θ	10	40	105	226	431	756	1246	1956	2952	
	1	9	38	102	222	426	750	1239	1948	2943	
7	θ	15	65	185	431	887	1673	2954	4950	7947	
	$\overline{2}$	13	61	179	423	877	1661	2940	4934	7929	
$8\,$	Ω	21	98	301	756	1673	3382	6378	11376	19377	
	1	20	96	298	752	1668	3376	6371	11368	19368	

Table 2: Number of polynomials for $2 \le t \le 8$ and $2 \le d \le 10$

REMARK 3.2. The blue colored numbers present the assumed numbers but they are not calculated due to the computational limitation.

REMARK 3.3. There are no homogeneous polynomial of degree $d \in \{0, 1\}$ that vanish on all elements of the basis of $S_m(\Gamma_0(N))$, therefore they are omitted in the table.

PROPOSITION 3.4. In Table 2 for $2 \le t \le 8$ are given the numbers of all linearly independent homogeneous polynomials of degree $2 \leq d \leq 10$ that vanish on the basis of $S_m(\Gamma_0(N))$, $P(f_0, f_1, \dots, f_{t-1}) = 0$.

3.1. Case $t = 3$. Since $X_0(N)$ is mapped by (1.1) to \mathbb{P}^2 its image is a planar curve, given by one irreducible equation. The degree of this equation is the degree of the curve and for all higher degrees we can find more than

$(16, 4)$ $\mathbf{d=2}: p_2 = xz - y^2$,
$d=3: xp_2, yp_2, zp_2,$
d =4: x^2p_2 , z^2p_2 , xyp_2 , xzp_2 , yzp_2 , $(xz + y^2)p_2$
$(13, 4)$ $\mathbf{d=2}: q_2 = xz - y^2 + yz - 3z^2,$
$d=3: xq_2, yq_2, (x+y+3z)q_2$
$d=4: x^2q_2, y^2q_2, xyq_2,$
$\begin{cases} x(x+y+3z)q_2, y(x+y+3z)q_2, \\ (x^2+(2y+3z)x-2y^2+3yz+9z^2)q_2 \end{cases}$

Table 3: Basis of $I(\mathcal{C}(N,m))_d$ for $X_0(N)$ with $g=0$ and $t=3$

one polynomial vanishing on the curve. These higher degree polynomials are reducible, because they have the defining polynomial as a factor.

The numbers appearing in Proposition 3.4 for $t = 3$ are the initial part of the integer sequence called triangular numbers A000217, [20]. They also appear in the usual genus-degree formula for curves ([2, Theorem 2.1]). This happens because to raise the degree we multiply a polynomial with a monomial.

The formula relating the degree d of the image curve $\mathcal{C}(N,m)$ and the degree $d(f_0, f_1, f_2)$ of the map (1.1) is $([12, 19])$

(3.2)
$$
d \cdot d(f_0, f_1, f_2) = \dim S_m(\Gamma_0(N)) + g(\Gamma_0(N)) - 1 - \epsilon_m,
$$

where $\epsilon_2 = 1$ and $\epsilon_m = 0$ for $m \geq 4$ is the number of possible common zeroes of the basis cusp forms. Given $t = 3$, the right-hand side of (3.2) can attain values $3 + 0 - 1 - 0 = 2$ for $g = 0$ and even $m \ge 4$. Since we have computed irreducible equation for $\mathcal{C}(N,m)$ of that exact degree we can conclude that the map is birational.

COROLLARY 3.5. Assume that $\dim S_m(\Gamma_0(N)) = 3$ and let $\{f_0, f_1, f_2\}$ be the basis of $S_m(\Gamma_0(N))$. Then the map $X_0(N) \to \mathbb{P}^2$ given by

$$
\mathfrak{a}_z \mapsto (f_0(z) : f_1(z) : f_2(z))
$$

is birational equivalence of $X_0(N)$ and the image curve $C(f_0, f_1, f_2)$ is a conic if $g(X_0(N)) = 0$.

3.2. Number of computed polynomials. The numbers for $g = 0, 3 \le t \le 8$ in Table 2 appear to be diagonals of the number sequence A124326 from OEIS database [20] written as a triangle of numbers. This sequence of numbers can be obtained as a difference of Pascal triangle A00731 and rascal triangle

A077028 omitting zeros and satisfies the formula

(3.3)
$$
T(m, n) = {m \choose n} - (1 + n(m - n)).
$$

The table 2 is filled with the assumed blue numbers $T(m, n)$ which could not be computed by the algorithm.

We can deduce the following result.

Lemma 3.6. The numbers in Table 2 of all linearly independent homogeneous polynomials that vanish on the basis of $S_m(\Gamma_0(N))$, for $3 \le t \le 8$ and $3 \leq d \leq 10$ can be obtained as:

- i) first six diagonals of the number sequence A124326 written as a triangle, for $g = 0$,
- ii) number of polynomials of same degree as genus 0 subtracted by $g(d-1)$, *for* $g = 1, 2$.

This is in accordance with what is known for the dimensions of ideals of projective curves. For $d \geq 0$ the Hilbert function ([13, Chapter 5]) of the curve $\mathcal{C}(N,m)$ is the Hilbert function of its coordinate ring:

(3.4)
$$
HF_{\mathcal{C}(N,m)}(d) = HF_{\mathcal{P}/I(\mathcal{C}(N,m))}(d) = \dim \mathcal{P}_d - \dim I_d.
$$

For the polynomial ring P we have

(3.5)
$$
HF_{\mathcal{P}}(d) = \dim \mathcal{P}_d = \begin{pmatrix} t+d-1 \\ d \end{pmatrix}
$$

By Hilbert-Serre theorem ([11, Theorem 7.5]) for a projective curve there is a unique linear polynomial such that for $d \gg 0$

.

$$
HP_{\mathcal{C}(N,m)}(d) = HF_{\mathcal{C}(N,m)}(d).
$$

But the condition \gg here is excessive. Bounds for the regularity index of the Hilbert function, minimal index from which it coincides with this linear polynomial are known $([6, Proposition 4.2.12], [5, 21])$ and they show that the two functions coincide for d close to zero. We have used $CoCoA$ System ([1]) to compute the Hilbert polynomial of ideals generated by polynomials of degree 2 and 3 we have computed and the numbers coincide for $d \geq 2$. This linear polynomial has known form

$$
HP_{\mathcal{C}(N,m)}(d) = \deg \mathcal{C}(N,m) \cdot d + 1 - g.
$$

THEOREM 3.7.

(3.6)
$$
\dim(I(C(N,m))_d) = \binom{t+d-1}{d} - (t+g-1)d - 1 + g.
$$

PROOF. From (3.3) for $n = d$ and $m - n = t - 1$ and (3.5) we obtain the formula (3.6) for the case $g = 0$ in which the linear polynomial $HP_{\mathcal{C}(N,m)}(d)$ appears. For $g = 1, 2$ we use Lemma 3.6(ii) to get (3.6). appears. For $g = 1, 2$ we use Lemma 3.6[ii] to get (3.6).

We give examples of computed polynomials in Tables 4, 5, 6 and 7.

 $d=2: p_2=y^2+40wy-xz-20z^2, q_2=xw-zy+20zw,$ $r_2 = xz - y^2 - 20wy + 800w^2$ $d=3: xp_2, xq_2, xr_2, yp_2, yq_2, yr_2,$ $p_3 = (x - 60z)y^2 + 80xwy - x^2z + 400z^3$, $q_3 = y^3 + 40wy^2 - 2xzy + x^2w - 400z^2w$ $r_3 = (x - 40z)y^2 + 60xwy - x^2z + 16000zw^2,$ $s_3 = y^3 + 60wy^2 - 3xzy + 2x^2w - 32000w^3$ d=4, x^2p_2 , x^2q_2 , x^2r_2 , xyp_2 , xyq_2 , xyr_2 , y^2p_2 , y^2q_2 , y^2r_2 , $xp_3, xq_3, xr_3, xs_3, yp_3, yq_3, yr_3, ys_3,$ $60y^{4} + 2400wy^{3} + (x^{2} - 160xz)y^{2} + 120x^{2}wy - x^{3}z - 8000z^{4},$ $(2x - 60z)y^{3} + 120xwy^{2} - 3x^{2}zy + x^{3}w + 8000z^{3}w,$ $40y^4 + 1600wy^3 - (120xz - x^2)y^2 + 100x^2wy - x^3z - 320000z^2w^2$ $(3x - 80z)y^{3} + 180xwy^{2} - 5x^{2}zy + 2x^{3}w + 640000zw^{3},$ $30y^4 + 1000wy^3 - (90xz - x^2)y^2 + 80x^2wy - x^3z - 12800000w^4$

Table 4: Basis of $I(\mathcal{C}(4, 12))_d$

```
d=2: p_2 = 2y^2 - (z + 3w)y - 2xz + 4z^2 + xw - 4zw,q_2 = y^2 - (z+w)y - xz + 2z^2 + xw - w^2d=3: xp_2, xq_2, yp_2, yq_2,p_3 = 12y^3 + (6x - 4z - 20w)y^2 + (12z^2 - 13xz + xw)y - 6x^2z+4xz^2+16z^3+x^2w,q_3 = 18y^3 + (4x - 15z - 29w)y^2 + (28z^2 - 18xz + 7xw)y - 4x^2z+8xz^2+16z^2w,r_3 = 16y^3 + (2x - 14z - 26w)y^2 + (28z^2 - 15xz + 9xw)y - 2x^2z+4xz^2 - x^2w + 8zw^2,s_3 = 30y^3 - (25z + 51w)y^2 + (52z^2 - 24xz + 19xw)y - 6x^2w + 8w^3d=4: x^2p_2, x^2q_2, y^2p_2, y^2q_2, xyp_2, xyq_2, xp_3, xq_3, xr_3, xs_3,yp3, yq3, yr3, ys3,
38y^4 + (14x - 40z - 60w)y^3 + (2x^2 - 53xz + 66z^2 + 3xw)y^2 +(36xz<sup>2</sup> - 14x<sup>2</sup>z + 3x<sup>2</sup>w)y - 2x<sup>3</sup>z + 12x<sup>2</sup>z<sup>2</sup> - 32z<sup>4</sup>,142y^{4} + (52x - 129z - 227w)y^{3} + (12x^{2} - 166xz + 260z^{2} + 17xw)y^{2}-(54x^2z - 96xz^2 - 2x^2w)y - 12x^3z + 24x^2z^2 + 2x^3w - 64z^3w,68y^4 + (18x - 59z - 109w)y^3 + (4x^2 - 73xz + 122z^2 + 20xw)y^2-(19x^2z - 32xz^2 + 2x^2w)y - 4x^3z + 8x^2z^2 + x^3w - 16z^2w^2,258y^{4} + (40x - 223z - 413w)y^{3} + (12x^{2} - 252xz + 460z^{2} + 121xw)y^{2}-(46x^2z - 72xz^2 + 24x^2w)y - 12x^3z + 24x^2z^2 + 6x^3w - 32zw^3,122y^{4} + (6x - 106z - 194w)y^{3} + (6x^{2} - 109xz + 218z^{2} + 81xw)y^{2}-(12x^2z - 12xz^2 + 19x^2w)y - 6x^3z + 12x^2z^2 + 6x^3w - 8w^4
```
Table 5: Basis of $I(\mathcal{C}(15,4))_d$

```
d=2: p_2 = y^2 - wy - xz + z^2, q_2 = (2u - z)y + xw - zw,
r_2 = wy - xu + zu, s_2 = y^2 - 2wy - xz - w^2 + 2xu,t_2 = (u - z)y + xw + wu, u_2 = y^2 - wy - xz + xu + 2u^2d=3: xp_2, xq_2, xr_2, xs_2, xt_2, xu_2, yp_2, yq_2, yr_2, ys_2, yt_2, yu_2,(2u - x - 2z)y^{2} + 2xwy + x^{2}z - z^{3}, y^{3} - 3wy^{2} + (4xu - 2xz)y + x^{2}w - z^{2}w,(2u - z)y^{2} + 2xwy - x^{2}u + z^{2}u, (x + 3z - 4u)y^{2} - 5xwy - x^{2}z - zw^{2} + 2x^{2}u,
y^3 - 2wy^2 + (3xu - 2xz)y + x^2w + zwu,(x + 2z - 2u)y^{2} - 3xwy - x^{2}z + x^{2}u + 2zu^{2},2y^3 - 5wy^2 + (8xu - 5xz)y + 3x^2w + w^3,(x+2z-3u)y^{2}-4xwy-x^{2}z+2x^{2}u+w^{2}u,3wy^{2} - y^{3} + (3xz - 5xu)y - 2x^{2}w + 2wu^{2},(x + 2z - 4u)y^{2} - 5xwy - x^{2}z + 3x^{2}u - 4u^{3}
```
Table 6: Basis of $I(\mathcal{C}(25,4))_d$

 $d=2: p_2=y^2-2uy-xz-z^2+3zw+xu+2zu,$ $q_2 = y^2 + (4z - 3w)y - xz + 4z^2 - 4xw - 9zw + 6w^2 + 3xu,$ $r_2 = y^2 + (4z - 2w - 2u)y - xz + 3z^2 - 4xw - 5zw + 3xu + 4wu,$ $s_2 = 5y^2 + (8z - 14u)y - 5xz + 5z^2 - 8xw - zw + 7xu + 8u^2$ $d=3: xp_2, xq_2, xr_2, xs_2, yp_2, yq_2, yr_2, ys_2,$ $(23x - 20z + 72u)y^{2} - 36y^{3} + (32xz + 4z^{2} - 30xw - 162zw - 78xu)y$ $-23x^2z - 11xz^2 - 38z^3 + 4x^2w + 185xzw + 33x^2u,$ $(11x - 36z + 84u)y^{2} - 42y^{3} + (50xz + 30z^{2} - 16xw - 170zw - 72xu)y$ $-11x^2z + 3xz^2 - 8x^2w + 105xzw - 76z^2w + 29x^2u,$ $22y^3 + (8z - 51x - 44u)y^2 + (10xz + 6z^2 + 12xw + 42zw + 92xu)y + 51x^2z$ $-7xz^2 - 32x^2w - 169xzw - 17x^2u + 152z^2u,$ $(29x - 240z + 180u)y^{2} - 90y^{3} + (194xz - 66z^{2} + 96xw - 6zw - 252xu)y$ $-29x^2z + 77xz^2 - 104x^2w + 111xzw - 456zw^2 + 111x^2u,$ $70y^3 + (136z - 31x - 140u)y^2 + (102z^2 - 134xz - 100xw - 46zw + 196xu)y$ $+31x^2z - 43xz^2 + 64x^2w - 61xzw - 61x^2u + 304zwu,$ $214y^3 + (216z - 47x - 428u)y^2 + (86z^2 - 262xz - 284xw + 146zw + 356xu)y$ $+47x^2z - 227xz^2 + 48x^2w + 339xzw + 35x^2u + 608zu^2,$ $(35x - 2208z + 228w - 396u)y^{2} + (926xz - 2226z^{2} + 2388xw + 4254zw - 1908xu)y$ $-30y^3 - 35x^2z + 431xz^2 - 896x^2w - 39xzw - 2736w^3 + 417x^2u,$ $(15x + 2072z - 456w + 156u)y^{2} + (2162z^{2} - 602xz - 2516xw - 3714zw + 1788xu)y$ $74y^3 - 15x^2z - 141xz^2 + 528x^2w - 147xzw - 147x^2u + 1824w^2u,$ $(37x + 1848z - 304w - 284u)y^{2} + (-350xz + 1918z^{2} - 2396xw - 3142zw + 1492xu)y$ $142y^3 - 37x^2z + 17xz^2 + 208x^2w - 241xzw + 63x^2u + 1216wu^2$, $(517x + 4312z - 3196u)y^{2} + (3918z^{2} - 1374xz + 3918z^{2} - 5692xw - 4646zw)$ $+2772xu)y + 1294y^3 - 517x^2z - 239xz^2 + 80x^2w + 1135xzw + 831x^2u + 2432u^3$

Table 7: Basis of $I(\mathcal{C}(23,4))_d$

3.3. Irreducibility. For the computed polynomials we check irreducibility by standard argument.

t	g	degree d of P								
		$\overline{2}$	3	4	5	6	7	8	9	10
3	θ	$\mathbf{1}$	$\overline{0}$	$\overline{0}$	$\boldsymbol{0}$	$\overline{0}$	$\overline{0}$	θ	$\overline{0}$	$\overline{0}$
$\overline{4}$	$\boldsymbol{0}$	3	4	5	6	7	8	9	10	11
	$\mathbf{1}$	$\overline{2}$	4	5	6	7	8	9	10	11
	1^*	$\overline{2}$	3	5	6	7	8	9	10	11
	θ	$\boldsymbol{6}$	10	15	21	28	36	45	55	66
$\overline{5}$	0^*	6	12	23	39	61	90	127	173	229
	$\overline{2}$	4	10	15	21	28	36	$45\,$	$55\,$	66
	$\boldsymbol{0}$	10	20	35	56	84	120	165	220	286
	$\mathbf{1}$	9	20	35	56	84	120	165	220	286
$\,6$	1^*	9	17	35	56	84	120	165	220	286
	$1***$	9	20	44	82	139	214	324	454	
	$1***$	9	25	55	107	187	303	464	680	
	$\boldsymbol{0}$	15	35	70	126	210	330	495	715	1001
	0^*	15	38	82	182	322	552	877		
$\overline{7}$	0^{**}	15	39	89	180	334				
	$\overline{2}$	13	35	70	126	210	330	495	715	1001
	2^*	13	39	96	205	394	699			
8	$\boldsymbol{0}$	21	56	126	252	462	792	1287	2002	3003
	$\mathbf{1}$	20	56	126	252	462	792	1287	2002	3003
	1^*	20	56	131						

Table 8: Number of irreducible polynomials for $3 \leq t \leq 8$

PROPOSITION 3.9. In Table 8 for $3 \le t \le 8$ we give the numbers of computed irreducible polynomials of degree $2 \leq d \leq 10$ among all linearly independent homogeneous polynomials that vanish on the basis of $S_m(\Gamma_0(N)),$ $P(f_0, f_1, \dots, f_{t-1}) = 0.$

PROPOSITION 3.10. Let $2 \le t \le 8$.

- i) There are $\frac{t(t-3)}{2} g + 1$ homogeneous polynomials of degree 2 vanishing on the basis of $S_m(\Gamma_0(N))$ and all are irreducible.
- ii) For $d \geq 3$ the number of linearly independent homogeneous polynomials of degree d vanishing on the basis of $S_m(\Gamma_0(N))$ is greater than the number of irreducible polynomials of degree d.

If the ordered pairs denoted with asterisk (see Table 1) are omitted from the Table 8 then we can deduce the following conjecture

CONJECTURE 3.11. For $t \geq 4$ and $d \geq 3$ the number of irreducible polynomials of degree d is $\binom{d+1}{t-3}$.

Specially for $t = 5$ we have triangular numbers A00217, for $t = 6$ tetrahedral numbers A000292, for $t = 7$ binomial coefficient $C(n, 4)$ A000332, $t = 8$ binomial coefficient $C(n, 5)$ A000389, [20].

Acknowledgements.

This work is supported (in part) by the Croatian Science Foundation under the project number HRZZ-IP-2022-10-4615.

REFERENCES

- [1] J. Abbott, A. M. Bigatti and L. Robbiano, CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it.
- [2] S. Anni, E. Assaf and E. Lorenzo Garcia, On smooth plane models for modular curves of Shimura type, Res. Number Theory 9 (2023), paper 21.
- [3] E. Arbarello and E. Sernesi, Petri's Approach to the Study of the Ideal Associated to a Special Divisor, Invent. Math. 49 (1978), 99–119.
- [4] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. 1, Springer-Verlag, New York, 1985.
- [5] E. Ballico and F. Orecchia, Computing minimal generators of the ideal of a general projective curve, J. Symbolic Comput. 37 (2004), 295–304.
- [6] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
- [7] D. A. Cox, J. Little and D. O'Shea, Ideals, varieties, and algorithms, 4th Ed., Springer, Cham, 2015.
- [8] F. Diamond and J. Shurman, A first course in modular forms, Springer-Verlag, New York, 2005.
- [9] D. Eisenbud and J. Harris, A simpler proof of the Gieseker Petri theorem on special divisors, Invent. Math. 74 (1983), 269–280.
- [10] S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.
- [11] Y. Hasegawa and M. Shimura, Trigonal modular curves, Acta Arith. 88 (1999), 129– 140.
- [12] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977.
- [13] I. Kodrnja and G. Muić, On primitive elements of algebraic function fields and models of $X_0(N)$, Ramanujan J. 55 (2021), 393-420.
- [14] M. Kreuzer and L. Robbiano, Computational commutative algebra 2, Springer-Verlag, Berlin, 2005.
- [15] D. Mikoč and G. Muić, On higher order Weierstrass points on $X_0(N)$, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 28 (2024), 57–70.
- [16] R. Miranda, Algebraic curves and Riemann surfaces, American Mathematical Society, Providence, RI, 1995.
- [17] T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
- [18] G. Muić, On embeddings of modular curves in projective spaces, Monatsh. Math. 173 (2014), 239–256.
- [19] G. Muić, On degrees and birationality of the maps $X_0(N) \to \mathbb{P}^2$ constructed via modular forms, Monatsh. Math. 180 (2016), 607–629.
- [20] OEIS ("The online encyclopedia of integer sequences"), https://oeis.org.
- [21] F. Orecchia, The ideal generation conjecture for general rational projective curves, J. Pure Appl. Algebra 155 (2001), 77–89.
- [22] SAGE ("Software of algebra and geometry experimentation") reference manual, https://doc.sagemath.org/html/en/reference.
- [23] B. Saint-Donat, On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157–175.
- [24] I. R. Shafarevich, Basic algebraic geometry. 1, Springer, Heidelberg, 2013.

I. Kodrnja Faculty of Geodesy University of Zagreb 10 000 Zagreb Croatia E-mail : iva.kodrnja@geof.unizg.hr H. Koncul Faculty of Civil Engineering University of Zagreb 10 000 Zagreb Croatia E-mail : helena.koncul@grad.unizg.hr Received: 9.4.2024. Revised: 14.7.2024.

POLINOMI KOJI IŠČEZAVAJU NA BAZI ZA $S_m(\Gamma_0(N))$

SAŽETAK. U ovom radu računamo baze homogenih polinoma stupnja d koji iščezavaju na kuspidalnim modularnim formama parne težine $m \geq 4$ koje čine bazu za $S_m(\Gamma_0(N))$. Među njima nalazimo i ireducibilne.