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POLYNOMIALS VANISHING ON A BASIS OF 5,,(Iy(N))

IvA KODRNJA AND HELENA KONCUL
University of Zagreb, Croatia

ABSTRACT. In this paper we compute the bases of homogeneous poly-
nomials of degree d such that they vanish on cuspidal modular forms of
even weight m > 4 that form a basis for Sy, (I'o(N)). Among them we find
the irreducible ones.

1. INTRODUCTION

Let N > 1, m > 4 be an even number and fy,..., f;_1 be elements of
the basis of the space of cuspidal modular forms S, (T'o(N)) of weight m with
dim S, (T'o(N)) = t. Let Xo(IN) be the modular curve for I'o(N). We look at
the holomorphic map Xo(N) — P!~! defined by

(1.1) az = (fo(z) oo fima(2))
and we denote the image curve of this map by
C(N,m) C P'~1.
Let us set g = fi—1. Then the map (1.1) can be written as
(1.2) 0 (fo2)/g(2) o+ for(2)/9(2))

and it is a rational map of algebraic curves. Here, we are continuing the work
in [18], where it is shown that the complete linear system attached to this
map, consisting of integral divisors of degree t + g — 1 attached to modular
forms f;, obtained from usual div(f;) by subtracting contributions at elliptic
points and cusps, satisfy the conditions for the map to be an embedding.
Namely the linear system is base point free when ¢ > g + 1 and very ample
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when t > g+ 2. We repeat the following facts about the image curve C(N, m)
from [18].

LeMMA 1.1. Assume that m > 4 is even. Let t = dim Sy, (I'o(NV)),
fo, -y fim1 be a basis of Sy (Lo(N)), g be the genus of To(N) and we de-
note by

C(Nvm) = C(va 7ft71)

the image of the map (1.1). Then

i) C(N,m) is an irreducible smooth projective curve in P*~1.
it) If m > 4, then t > g+ 2 and the degree of the curve ist+ g — 1.

PROOF. The i) part of Lemma 1.1 follows from Chow’s theorem, while
ii) and its proof can be found in [18, Corollary 3-4a). O

In our previous work we have used map (1.1) for ¢ = 3 to map the modular
curve Xo(N) to a projective plane, find its irreducible equation and check
conditions for birationality, ([12,18,19]).

Maps to higher-dimensional projective spaces generate a projective curve
in P*~!, ¢t > 3. Here curves are no longer defined by just one equation.
Our goal is to adapt the algorithms used in [12] and compute all linearly
independent homogeneous polynomials of a certain given degree that vanish
on the curve C(N,m). Geometrically, these polynomials define hypersurfaces
in P!~ lying over the curve.

In weight 2, the space of cusp forms S3(T'g(NN)) is isomorphic to holo-
morphic 1-forms, we have dim S5 (T'o(N)) = g, divisors of cusp forms defining
the map (1.1) make the canonical linear system of the map and (1.1) is a
canonical embedding ([11, Chapter IV.5]). In [9] the bases of S3(T'o(N)) are
used to obtain canonical models for modular curves.

Canonical curves and their ideals are well studied ([4, Chapter III],[8,
23]), their ideal is generated by quadrics except when the curve is trigonal or
isomorphic to a smooth plane quintic and then at least one cubic generator
appears in the minimal generating system of the ideal. In [10] one can find
the complete list of trigonal modular curves Xo(NV).

For m > 2 the space of cusp forms of weight m is bigger than the set of
differentials of degree m/2, ([15]). But the complete linear system of integral
divisors attached to cusp forms consists of special divisors ([18]), so by results
from [3] the ideal of our image curve is generated by quadrics.

In Section 2 we present the algorithm to compute homogeneous polyno-
mials vanishing on C(N, m) and in Section 3 we present the results of compu-
tations and some examples.



POLYNOMIALS VANISHING ON CUSP FORMS 315

2. COMPUTING HOMOGENEOUS POLYNOMIALS VANISHING ON CUSP FORMS

Let P = Q[Xo,...,X¢—1] be the ring of polynomials in ¢ variables and
Pa=Q[Xo,...,X¢ 1], the subring of homogeneous polynomials of degree d.
We regard P as the graded ring P = @~ Pa-

Let I(C(N,m)) C P be the homogenous ideal of the curve C(N,m)
consisting of all homogenous polynomials that vanish on C(N,m). Then
f € I(C(N,m)) defines a hypersurface C(N,m) C V(f) in P!=1. There is
a graded structure on the ideal I(C(N,m))

I(C(N,m)) = P I(C(N,m))a.

d>0

If we set
(2.1) I(C(N,m))q = P4 N I(C(N,m))

we get the vector space I(C(N,m))q of all homogenous polynomials of degree
d which vanish on C(N,m). Product of two homogeneous polynomials of
degrees d; and ds is again a homogeneous polynomial of degree d; + dy. We
can view this graded structure as vector spaces or modules,

PiI(C(N,m))q € I(C(N,m));a-

Let fo,..., fi—1 € Spn(To(N)) be a basis of the space of cuspidal modular
forms for the congruence subgroup I'g(N) of weight m > 4.
Let P € Q|[xo,...,2¢—1] be a homogeneous polynomial of degree d

i ig—1
P(zg,...,x4—1) = g Qig,oip 1 T Ty
0<io,...,3¢—1<d
iottir_1=d
For a given degree d > 0, we are interested in those polynomials which
vanish on the elements of the basis fy,..., fi—1,

(22)  P(fo(a) fia() = D i fe £ =0
0<i0yenyit—1<d
io+-+ig—1=d
for all a, € Xo(N).
Vector space Py of all homogeneous polynomials of degree d is generated
with monomials and its dimension can be viewed as the number of coefficients

Qi ...,

I:{(io,...,it_l)ZOSio,...,it_lSd,i0+"'+it_1=d}.

Determination of the cardinality of |I| is known as the weak composition
problem in combinatorics and the solution is

(2.3) d =dimPy = |I| = <d+fl_ 1).
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We will order I using the lexicographical ordering ([7]), so that we consider
a polynomial P as a finite linear array of its coeflicients

(24) P— (ao,...,adf,1)

satisfying the order of corresponding monomials, as basis representation of P.

We are interested in subspaces I(C(N,m))q C Pq containing polynomi-
als that vanish on the basis fo,..., fi—1 of Sy, (I'o(N)) for certain choices of
d, N,m and their dimensions,

(2.5) I(C(N,m))g ={P € Pg: P(fo, -+, fr—1) =0}.

Each modular form is in practical computations given by finitely many
coefficients of its integral Fourier expansion in the cusp oco.

The polynomial combination P(fo,..., fi—1) is again a modular form of
weight md, where d is the degree of the polynomial P, since cuspidal forms
on a given group also make a graded ring S(Tg(N)) = BmSm (To(N)).

The condition of vanishing of the modular form P(fo,..., fi—1) is known
as the Sturm bound saying that we only consider a finite number B of coeffi-
cients of the g-expansion of the form to distinguish forms,

(2.6) Bm _ \‘m [SL2(Zi)2 FO(N)]J )

Similar to [9,12,15,19], the algorithm for computing polynomials vanish-
ing on a basis of S, (I'0(N)) is based on the following linear algebra consid-
erations: for fixed values of d, N, m we are solving a homogeneous system of
equations, where the unknowns are coefficients ag, ..., aq 1 of a polynomial
P, as in (2.4) and the coefficients of the system are values of g-expansions of

evaluated monomials f3° ... f;*"* over the indexing set I,

P(fO,'“»ftfl) = Z Qig,.iz—1 80 Zi&l

0<ig,...,34—1<d
io+-+ig—1=d

= Z g iy (a(()iOuv---,it—l) + agio ,,,,, it—l)q + .. )

0<io,...,it—1<d
io+-t+ir—1=d

=po +p1q+Dp2q> + - .

The homogeneous system is pg = p1 = -+ = pp,,, = 0 and its solutions
are obtained as the basis of the right kernel of the transpose of d' X Byq
matrix whose rows are made of coefficients of fé” ... fi'7}, after ordering the
index set I.

Here is the algorithm, for a given N and weight m, with the use of lexi-

cographic ordering on the set of monomials of degree d:

Input: g-expansions of fo, ..., fi—1 basis of Sp,(To(NV)).
e For a degree d > 0:
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— for each monomial index (ig,...,i;—1) € I in the ordered set of
monomials of degree d:
compute fi° ... f;' 7,
— create a d’ x B,,q matrix A, whose rows are first By, coefficients
of g-expansion of f° ... f/'7",

— return elements of the right kernel of A.
Output: linearly independent homogeneous polynomials of degree d > 0 van-
ishing on all forms, i.e. such that P(fo,..., fi—1) =0.
In our computations we are using the SAGE software system [22] and the
cusp form basis we are using is generated by command

CuspForms (Gamma_0(N) ,m) .q_integral_basis(prec).

3. RESULTS

Let t = dim S,,(T'o(V)), g be the genus of I'g(N). The formula for ¢ is
derived from Riemann-Roch theorem, ([14, Proposition 6.1])
(81) t=dimSu(To(N) = (m=1)(g=1)+ (F =1) co+noz | | nos | 5|
for even m > 4 where ¢ is the number of inequivalent cusps and g ; is the
number of inequivalent elliptic points of order i of I'o(N).

[t ][] (Nm) |
210 (2,12), (2,14), (3,10), (4.8)
1] (1L4)
3101(216), (2,18), (3,12), (3,14), (4,10), (5,8), (5,10), (6,6),
(7,6), (7.8), (8,6), (9,6), (104), (12,4), (13,4), (16,4)
4707 (2,20), (2,22), (3,16), (4,12)
1] (14,4), (15,4), (17,4)%, (19,4), (11,6)
510 (2,24), (2,26), (3,18), (3,20), (4,14), (5,12), (5,14)*, (6,8),
(7,10), (8,8), (9.,8), (10,6)", (13,6), (18,4), (25.4)
2 (23.4)
610 (2,28),(2,30), (3,22), (4,16)
1 [ (11,8), (17.,6), (20,4)*, (21,4)™*, (27,4)
7107 (2,32), (2,34), (3,24), (3,26), (4,18), (5,16), (5,18) (6,10),
(7,12), (7,14)**, (8,10), (9,10), (12,6), (13,8), (16,6)*
5[ (22,), (29,4)", (31.4)
8107 (2,36), (2,38), (3,28), (4,20)
1] (11,10), (14,6)%, (15,6), (19,6), (24,4), (32,4)T

Table 1: (N, m) for 2 < dim S, (To(N)) < 8
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REMARK 3.1. For the ordered pairs denoted with asterisk (NN, m)*,
(N, m)**, (N, m)*** the number of irreducible polynomials differs from other
in the group (Table 8), and for (N,m)' no computation could be made.

Using the algorithm in Section 2 we were able to compute homogeneous
polynomials that vanish on all elements of basis of S, (To(V)), and the irre-
ducible ones among them, for small degrees d up to 10 or at times lower due
to the limitations of calculations on huge numbers. For g > 0 of the modular
curve Xo(N) we will denote possible cases for maps (1.1) defined by basis of
Sm(To(N)) by listing ordered pairs (N, m) in Table 1.

i g degree d of P
23|45 6 | 7] 8] 9 | 10
S[[offofof ool 0 0 0 0 0
1jfojoj o]0 ] 0 0 0 0 0
3lfoff1 ]3] 6 [10] 15 [ 21 | 28 | 36 45
L0310 22140 ] 65 [ 98 [ 140 | 192 | 255
1] 2]8]19]36| 60 | 92 | 133 | 184 | 246
[0 6 ]22] 53 105185 | 301 [ 462 | 678 [ 960
2| 4 [ 18|47 | 97 | 175 | 289 | 448 | 662 | 942
6| 0]/ 10]40|105226 | 431 [ 756 | 1246 | 1956 | 2952
1] 9 |38]102|222| 426 | 750 | 1239 | 1948 | 2943
- [0 1565|185 [ 431 [ 887 | 1673 [ 2954 | 4950 [ 7947
2 || 13|61 | 179 | 423 | 877 | 1661 | 2940 | 4934 | 7929
g |[0][21 ]98] 301|756 [ 1673 | 3382 [ 6378 | 11376 [ 19377
1][20]96 | 298 | 752 | 1668 | 3376 | 6371 | 11368 | 19368

Table 2: Number of polynomials for 2 <t <8 and 2 <d < 10

REMARK 3.2. The blue colored numbers present the assumed numbers
but they are not calculated due to the computational limitation.

REMARK 3.3. There are no homogeneous polynomial of degree d € {0,1}
that vanish on all elements of the basis of S, (I'0(N)), therefore they are
omitted in the table.

ProproOSITION 3.4. In Table 2 for 2 < t < 8 are given the numbers of
all linearly independent homogeneous polynomials of degree 2 < d < 10 that
vanish on the basis of Sy (To(N)), P(fo, f1, -+, ft—1) =0.

3.1. Case t = 3. Since X((N) is mapped by (1.1) to P? its image is a
planar curve, given by one irreducible equation. The degree of this equation
is the degree of the curve and for all higher degrees we can find more than
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(16,4) | d=2: py = 2z — 12,

d=3: zp2,yp2, 2p2,
d=4: z%ps, 2°py, xypa, T2p2, Y22, (12 + y*)p2
(13,4) | d=2: g2 = 72 — y* + yz — 322,

d=3: zq2,yq, (x +y + 32)q

d=4: 2%, y?q2, zyqe,
z(z+y+32)q2, y(z +y + 32)g,
(22 + (2y + 32)x — 2% + 3yz + 922)¢o

Table 3: Basis of I(C(N,m))q for Xo(N) with g =0 and t =3

one polynomial vanishing on the curve. These higher degree polynomials are
reducible, because they have the defining polynomial as a factor.

The numbers appearing in Proposition 3.4 for ¢ = 3 are the initial part
of the integer sequence called triangular numbers A000217, [20]. They also
appear in the usual genus-degree formula for curves ([2, Theorem 2.1]). This
happens because to raise the degree we multiply a polynomial with a mono-
mial.

The formula relating the degree d of the image curve C(N,m) and the
degree d(fo, f1, f2) of the map (1.1) is ([12,19])

(3.2) d-d(fo, f1, f2) = dim S (To(N)) + g(Fo(N)) =1 — €m,

where €2 = 1 and €, = 0 for m > 4 is the number of possible common zeroes
of the basis cusp forms. Given ¢ = 3, the right-hand side of (3.2) can attain
values 3+0—1—0 =2 for g =0 and even m > 4. Since we have computed
irreducible equation for C(N,m) of that exact degree we can conclude that
the map is birational.

COROLLARY 3.5. Assume that dim Sy, (I'o(N)) = 3 and let { fo, f1, f2} be
the basis of Sm(To(N)). Then the map Xo(N) — P? given by

a: = (fo(2) @ f1(2) 1 fa(2))

is birational equivalence of Xo(N) and the image curve C(fo, f1, f2) is a conic
if 9(Xo(N)) = 0.

3.2. Number of computed polynomials. The numbers for g =0,3 <t <8
in Table 2 appear to be diagonals of the number sequence A124326 from OEIS
database [20] written as a triangle of numbers. This sequence of numbers
can be obtained as a difference of Pascal triangle A0O0731 and rascal triangle
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AQ77028 omitting zeros and satisfies the formula

(3.3) T(m,n) = (m> — (1 +n(m —n)).

n
The table 2 is filled with the assumed blue numbers T'(m,n) which could not
be computed by the algorithm.

We can deduce the following result.

LEMMA 3.6. The numbers in Table 2 of all linearly independent homoge-
neous polynomials that vanish on the basis of Sy (To(N)), for 3 <t <8 and
3 <d <10 can be obtained as:

1) first siz diagonals of the number sequence A124326 written as a trian-

gle, for g =0,

it) number of polynomials of same degree as genus 0 subtracted by g(d—1),

forg=1,2.

This is in accordance with what is known for the dimensions of ideals of
projective curves. For d > 0 the Hilbert function ([13, Chapter 5]) of the
curve C(N,m) is the Hilbert function of its coordinate ring:

(34) HFC(N,m)(d) = HFP/I(C(N,m))(d) = dim Py — dim 1.

For the polynomial ring P we have
t+d—1
(3.5) HPp(d) = dim Py = ( * y )

By Hilbert-Serre theorem ([11, Theorem 7.5]) for a projective curve there
is a unique linear polynomial such that for d > 0

HPe(nm)(d) = HFe(nm)(d)-

But the condition >> here is excessive. Bounds for the regularity index of
the Hilbert function, minimal index from which it coincides with this linear
polynomial are known ([6, Proposition 4.2.12], [5,21]) and they show that
the two functions coincide for d close to zero. We have used CoCoA System
([1]) to compute the Hilbert polynomial of ideals generated by polynomials of
degree 2 and 3 we have computed and the numbers coincide for d > 2. This
linear polynomial has known form

HPe(nm)(d) = deg C(N,m) -d +1— g.

THEOREM 3.7.

(3.6)  dim(I(C(N,m))q) = (”‘fl_ 1) —(t+g—1)d—1+g.

PRrROOF. From (3.3) for n =d and m —n =t —1 and (3.5) we obtain the
formula (3.6) for the case g = 0 in which the linear polynomial H Pe(n m)(d)
appears. For g = 1,2 we use Lemma 3.6[ii] to get (3.6). O
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We give examples of computed polynomials in Tables 4, 5, 6 and 7.

d=2: p; = y2 + 40wy — zz — 20227 g2 = zw — zy + 20zw,
ro = xz — y? — 20wy + 800w?

d=3: zp2, xq2, xr2, YP2, Y42, Yra,

ps = (z — 60z)y2 + 80zwy — 22z + 400z3,

q3 = y3 + 40wy2 — 2xzy + 22w — 40022 w

rg = (xz — 40,z)y2 + 60zwy — 22z + 16000zw2,
S3 = y3 + 60wy2 — 3xzy + 2z2w — 32000w?

d=4, 2°p2, 2%q2, @%r2, zyp2, Y@2, Tyr2, ¥2p2, Yia2, Y2,
Trp3, 493, TT3, TS3, YP3, Y43, Yr3, Yss,

60y* + 2400wy> + (22 — 160x2)y? + 1202wy — 232z — 8000z,

(22 — 602)y> + 120zwy? — 3222y + 3w 4+ 8000z3w,

40y* + 1600wy® — (12022 — 22)y? + 10022wy — 232z — 3200002%w?,
3z — 80z)y3 + 180mwy2 — Srzzy + 223w 4+ 640000zw37

30y* 4+ 1000wy® — (90zz — 22)y? + 80z2wy — x>z — 12800000w™

Table 4: Basis of I(C(4,12))q4

d=2: py = 2y2 — (2 4+ 3w)y — 2zz + 422 4 2w — 4zw,

q2:y2—(z+w)y—wz+2z2+ww—w2

d=3: zp2, zq2, yp2, Y492,

ps = 12y® + (6 — 4z — 20w)y? + (1222 — 13z2 + zw)y — 6222
+4zz2 —+ 162° —+ a:Qw,

g3 = 18y> + (42 — 15z — 29w)y? + (2822 — 1822 + Taw)y — 4222
+81z2 —+ 16z2w,

rz = 16y° 4+ (2¢ — 14z — 26w)y? + (2822 — 1522 + 9zw)y — 2222
+4zz2 — 22w —+ 82w2,

s3 = 30y® — (252 + 5lw)y? + (5222 — 24zz + 19zw)y — 622w + 8w

d=4: 2°p>, 2%q2, ¥°p2, ¥’a2, zyp2, Tyq2, xp3, xqs, Tr3, Ts3,
Yyp3, Y43, Yyrs, Yss,
38y* 4 (14z — 40z — 60w)y> + (222 — 53z2 + 6622 4 3zw)y?+
36x22% — 14222 =+ 3z2w)y — 2232 + 122222 — 32247
y
142y* + (522 — 1292z — 227w)y® + (1222 — 16622 + 26022 4 172w)y>
7(5412z — 96x22 — 2:62w)y — 12232 + 242222 4+ 223w — 6425w,
68y* 4 (18z — 59z — 109w)y>® + (42% — T3zz + 12222 + 20zw)y?
— (19222 — 32222 —+ 222 w)y — 4232 + 82222 + 23w — 16z2w2,
y

258y* + (40x — 223z — 413w)y> + (1222 — 252zz + 46022 + 121zw)y?
—(4622% 2 — 72222 —+ 24x%w)y — 122°2 + 2412222 + 623w — 32zw3,

y
122y* 4 (62 — 106z — 194w)y> + (622 — 109z2 + 21822 + 8lzw)y?
—(1222%2 — 12222 —+ 1922%w)y — 62°2 + 122222 + 6z3w — 8w?

y

Table 5: Basis of I(C(15,4))q
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d=2: pg:y27wy7wz+z2,q2:(2ufz)y+$w7zw,
To = WY — TU + 2U, 82:y2—2wy—rz—w2+2ru,

to = (u — 2)y + zw + wu, ug:y27wy7wz+a:u+2u2

d=3: zp2, ®q2, xT2, TS2, Tla, Tu2, Yp2, Yq2, Yr2, Ys2, yt2, yus,

2u —x — 22)y2 + 2zwy + 2%z — 22, ¥ — 3wy? + (4zu — 2z2)y + 22w — 22w,
(2u — z)y2 + 2zwy — z2u + zzu, (x + 32z — 4u)y2 — brwy — 222 — zw? + 2m2u,
y® — 2wy? + (Baxu — 2z2)y + 22w + zwu,

(x + 2z — 2u)y2 — 3zwy — 222 + 22u + 2zu2,

2y% — bwy? + (8zu — Bzz)y + 322w + w?,

(x + 22z — 3u)y2 — dzwy — 222 + 22%u 4+ w3u,

3wy? — y® + (Bxz — Bzu)y — 222w + 2wu?,

(x + 22z — 4u)y2 — brwy — 222 + 32%u — 4u®

Table 6: Basis of I(C(25,4))q

d=2: p2 :y272uy7m2722+32w+mu+2zu,

q2 = y2 + (4z — 3w)y — zz + 422 — dzw — 9zw + 6w? + 3zu,

ry = y2 + (4z — 2w — 2u)y — zz + 322 — dzw — bzw + 3zu + dwu,
So = 5y2 + (82 — 14u)y — bxz + 522 — 8xw — zw + Tzu + 8u?

d=3: zp2, zq2, T2, TS2, Yp2, Yq2, YT2, Ys2,

(23z — 20z + 72u)y? — 36y + (3222 + 422 — 302w — 1622w — T8xu)y

—2372%22 — 11222 — 382° + 422w + 185zzw + 33:c2u,

(11z — 36z + 84u)y? — 42y + (502 4 3022 — 16zw — 1702w — T2zu)y

—11z%2 + 3z22 — 822w + 105zzw — 7622w + 299:2u,

2293 + (82 — 51z — 44u)y? + (10zz + 622 + 122w + 42zw + 92zu)y + 5lzz

—7x2? — 322%w — 169z2w — 172%u + 152221/,,

(292 — 240z 4 180u)y? — 90y> + (194zz — 6622 4 96zw — 62w — 252zu)y

29222 + T7xz? — 10422 w + 1llzzw — 4562w> —+ 111m2u,

7093 + (1362 — 31z — 140u)y? + (10222 — 134xz — 100zw — 462w + 196zu)y
+31x2z — 43222 + 64x2w — 6lzzw — 61x3u + 304zwu,

21493 + (2162 — 47z — 428u)y? + (8622 — 262x2 — 284xw + 1462w + 356zu)y
+472%2 — 227222 + 4822w + 339z2w + 35z%u + 6082u>,

(35 — 2208z + 228w — 396u)y? + (926xz — 222622 + 2388zw + 4254zw — 1908w u)y
730y3 — 35222 —+ 431222 — 89622 w — 39x2zw — 2736w> —+ 41793211,,

(15z + 2072z — 456w + 156u)y2 + (216222 — 6022z — 2516zw — 3714zw + 1788zu)y
74y3 — 15222 — 141222 —+ 5282w — 147zzw — 14722 —+ 1824w2u,

(37x + 1848z — 304w — 284u)y2 + (—=350zz + 191822 — 2396xw — 3142zw + 1492zu)y
142y — 372%2 4+ 17222 + 2082w — 241zzw + 63x%u + 1216wu?,

(517x + 43122 — 3196u)y? + (391822 — 13742z + 391822 — 5692zw — 4646zw
+2772xu)y 4+ 1294y> — 517x%2 — 23922 + 802w + 1135z2w + 831z u + 2432u>

Table 7: Basis of 1(C(23,4))4

3.3. Irreducibility. For the computed polynomials we check irreducibility
by standard argument.
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LeMmMmA 3.8. If P(Xo,...,X,) € C[Xo,- -, X,] is irreducible as an uni-
variate polynomial P(X;) € C[Xo, - X;—1, Xiy1, -, Xn] [Xi] then P is ir-
reducible.

degree d of P

S 234|567 8] 910
3[ 0 [1]0]O0O]O0JO0OJO] 0] 00
0 [3[4[5 6|78 91011
4 v 245 6| 7| 8] 9 |10 10
203|567 |89 101
0 || 6[10] 15| 21 | 28 | 36 | 45 | 55 | 66
5( 0° | 6 |12] 23 | 39|61 |9 | 127 | 173 | 229
2 || 4[10] 15|21 | 28|36 | 45 | 55 | 66
0 [[10[20] 35 | 56 | 84 [ 120 | 165 | 220 | 286
1 || 9]20| 35|56 84 |120| 165 | 220 | 286
6| 1° || 9|17 |35 | 56 | 84 | 120 | 165 | 220 | 286
1 || 9 |20 | 44 | 82 | 139|214 | 324 | 454

1*** 4| 9 | 25| 55 | 107 | 187 | 303 | 464 | 680
0 15 (35| 70 | 126 | 210 | 330 | 495 | 715 | 1001
0~ 15| 38 | 82 | 182 | 322 | 552 | 877
71 0™ |[15]39] 89 | 180 | 334
2 13 35| 70 | 126 | 210 | 330 | 495 | 715 | 1001
2" 13 139] 96 | 205 | 394 | 699
0 21 | 56 | 126 | 252 | 462 | 792 | 1287 | 2002 | 3003
8 1 20 | 56 | 126 | 252 | 462 | 792 | 1287 | 2002 | 3003
1* 1] 20 | 56 | 131

Table 8: Number of irreducible polynomials for 3 <t¢ < 8

PrROPOSITION 3.9. In Table 8 for 3 < t < 8 we give the numbers of
computed irreducible polynomials of degree 2 < d < 10 among all linearly
independent homogeneous polynomials that vanish on the basis of Sy, (To(N)),

P(fo, f1,-++, ft—1) = 0.

PROPOSITION 3.10. Let 2 <t <8.
-3)

t(t
i) There are ( — g+ 1 homogeneous polynomials of degree 2 van-

ishing on the basis of Sy (Lo(N)) and all are irreducible.

it) Ford > 3 the number of linearly independent homogeneous polynomials
of degree d vanishing on the basis of S, (To(N)) is greater than the
number of irreducible polynomials of degree d.
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If the ordered pairs denoted with asterisk (see Table 1) are omitted from
the Table 8 then we can deduce the following conjecture

CONJECTURE 3.11. Fort > 4 and d > 3 the number of irreducible poly-

nomials of degree d is (‘Zf;)

Specially for t = 5 we have triangular numbers A00217, for ¢ = 6 tetrahe-
dral numbers A000292, for ¢ = 7 binomial coefficient C'(n,4) A000332, t = 8
binomial coefficient C(n,5) A000389, [20].
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POLINOMI KOJI ISCEZAVAJU NA BAZI ZA S,,(T'o(N))

SAZETAK. U ovom radu ra¢unamo baze homogenih polinoma stupnja d koji
i¢ezavaju na kuspidalnim modularnim formama parne tezine m > 4 koje
¢ine bazu za Sm (T'o(IN)). Medu njima nalazimo i ireducibilne.



