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GENERIC TRREDUCIBILITY OF PARABOLIC INDUCTION
FOR REAL REDUCTIVE GROUPS
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ABSTRACT. Let G be a real reductive linear group in the Harish-
Chandra class. Suppose that P is a parabolic subgroup of G with Lang-
lands decomposition P = M AN. Let 7w be an irreducible representation of
the Levi factor L = M A. We give sufficient conditions on the infinitesimal
character of 7 for the induced representation ig(ﬂ') to be irreducible. In
particular, we prove that if 75 is an irreducible representation of M, then,
for a generic character x, of A, the induced representation iIGD(ﬂM X xv)
is irreducible. Here the parameter v is in a* = (Lie(A) ®g C)* and generic
means outside a countable, locally finite union of hyperplanes which de-
pends only on the infinitesimal character of w. Notice that there is no other
assumption on 7 or wys than being irreducible, so the result is not limited
to generalised principal series or standard representations, for which the
result is already well known.

1. INTRODUCTION

Let G be a real reductive group. We assume that there is a connected
algebraic reductive group G defined over R and that G has finite index in
G(R). Let P be a parabolic subgroup of G, with Langlands decomposition
P = MAN, let mp; be an irreducible representation of M, and x a character
of A. Consider the induced representation 7 = i% (7 ® x) where i is the

functor of (normalized) parabolic induction.
THEOREM 1.1. For generic X, the representation T = i%(ma ® X) s

irreducible.
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More precisely, since A = expag where qg is a real abelian Lie algebra,
characters of A are of the form

(1.1) Xy : exp(X) = exp(r(X)), X €ag

for some v € a*. “Generic” in the theorem means “for y = x, with v outside
a countable, locally finite union of hyperplanes in a*”. See Hypotheses 4.2 for
the precise conditions when the infinitesimal character of 7, is non singular
and Hypotheses 5.1 when infinitesimal character of my; is singular. For a
different perspective on potential applications, notice that Hypotheses 4.2
and 5.1 give in fact sufficient conditions on the infinitesimal character of an
irreducible representation 7 of L = M A for the induced representation i ()
to be irreducible (Theorems 4.4 and 5.4).

The result may seem obvious to experts, and I was surprised not being
able to find a reference in the literature. For p-adic groups, a proof of the
analog result is given by F. Sauvageot in [10], and a totally different one by
J-F. Dat in [2]. Both proofs seem difficult to adapt to the real case, however.
I propose here a very simple argument, based on a very sophisticated theory,
namely the Kazhdan-Lusztig-Vogan theory of character multiplicities that I
will try to describe (partly) below. The motivation for writing this note came
from a question of Nadir Matringe, who asked for a reference for the result in
Theorem 1.1, since it is used in his work with O. Offen and C. Yang [6].

After the first version of the paper was written, David Vogan informed
me that he knew the argument given here. This was not a surprise since
the proof consists mainly in giving references to his work. He also sketched
a more elementary one (in the sense that it uses less sophisticated results,
on Lie algebra cohomology), but probably not shorter to expose from the
published results. I also became aware that the idea of using the Kazhdan-
Lusztig-Vogan (KLV for short from now on) algorithm to prove irreducibility
of parabolically induced representations has been used before in published
works, notably Matumoto [7] and Gan-Ichino [3]. T had also thought about
using this argument in our work with Colette Moeglin on Arthur packets for
real classical groups [8]. Indeed, the last step is the construction of arbitrary
packets from packets of “good parity” on a maximal Levi subgroup, by par-
abolic induction. In ibid, Thm 4.4, it is stated that this induction preserves
irreducibility, and I had the vague impression that it could be a consequence
of the ideas explained in the paper. Eventually, we didn’t use that strategy
and another quite difficult and circumvoluted argument is given [9, Theorem
5.4], These works prompt me to phrase the main result of the present paper
in Corollary 3.7, following the idea of [3,7]. In the final section, I go back to
[9, Theorem 5.4], and explain how the results here provide some shortcuts in
the proof (and even a complete argument in most cases, but not more than
that, some difficulties remain in some degenerate cases).
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Let me now describe more precisely the content of the paper. Let £ be
a real reductive group, with Lie algebra [y and let K be maximal compact
subgroup. Let [ be the complexified Lie algebra of [y. By “representations of
L7, we mean finite length Harish-Chandra modules for the pair ([,K). Fix
an infinitesimal character x for £ and denote by HC([,K),, or simply HC,,
the category of representations of £ with infinitesimal character x, and by
KzHC(I, K)y, or simply KzHC,, its Grothendieck group with coefficients in
Z. If m is a representation in HC,,, denote by [r] its image in KzHC,.

A result of Harish-Chandra asserts that the number of equivalence classes
of irreducible representations with fixed infinitesimal character is finite and
Langlands classification for irreducible representations, as reformulated by Vo-
gan (see [11,13]), gives us a set 735? = P, which parametrizes the equivalence
classes of irreducible representations in HC, (in fact, it is the set P, Joxc Of
K-conjugacy classes in P, which is in one-to-one correspondence with equiv-
alence classes of irreducible representations). I will be more precise later,
but for the moment, I will just say that a parameter v in P, is roughly a
character of a Cartan subgroup of £ with some additional data, from which
one can construct a “standard” representation std(vy) in HC, (parabolically
induced from a limit of discrete series modulo the center of the corresponding
Levi subgroup). The standard representation std(+) has a Langlands quotient
irr(y) which is irreducible, and appears with multiplicity one in std(y). Thus,
([irr('Y)])“/E”PX/N,C is a basis of the Grothendieck group Kz#C, . Therefore, in
the Grothendieck group, one can write for all 6 € Py,

(1.2) std(@)] = Y m(y,9) fire(y)]

YE€Px )i

for some non negative integers m(vy, d) (the multiplicity of irr(y) in std(d)).

It is known from properties of the Langlands classification relative to
“exponents” that one can invert the linear system (1.2). Since we will not use
exponents in this paper, we explain this using the length function i; on P,
introduced by Vogan ([11, 8.1.4]). Indeed, if m(vy,d) # 0, then I;(vy) < I;(9),
or v =4, and furthermore m(v,v) = 1. Therefore we can write

(1.3) irr(®)) = D M(7,6)[std(v)]

RS

for some integers M(v,d). The Kazhdan-Lusztig-Vogan theory gives an al-
gorithm to compute these integers M(v,9) (or equivalently the m(y,d)). We
give details about the KLV algorithm in Section 3.

Let us apply this to the problem of determining when a representation
7 = i§(m) is irreducible, for 7 an irreducible representation of L = MA,
the Levi factor of P, as in the beginning of this introduction. Applying

the statements in the previous paragraph to £ = L and to the infinitesimal
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character x of 7, we can write 7 = irr(d) for some parameter ¢ € 77{5 and

write
7] = lier(8)] = D M"(v,6)[std()]-

L
YEPL s

By the exactness of the functor ig, we get,

[r] = [iE(m)] = [g(rr@)) = Y M"(3,6) [iE(std(7))].

ePL
TEIN oKy

Now, the infinitesimal character x for L determines an infinitesimal character
for G that we can still denote by x. Let us assume first that the infinitesimal
character y of 7 is non singular. Then, a parameter v € Pf can be extended
to a parameter ¢ € Pf , giving a correspondence

(1.4) v G, 73£ —>”P§,

so that

(1.5) i%(std(7)) = std(y%).

Thus we get

(1.6) [[l= >, M"(7,6)[std(r9)].
vEPQ/NKL

We can compare this to

(1.7) irr(69)] = Y M%(5,89) [std(n)]

G
nePY JnK

to conclude that 7 = irr(6%) if the following conditions are satisfied:

a) the correspondence (1.4) is injective,

b) ML (v,8) = MY (%, 6%) for any ~,6 € 77)%,

c) M%(n,5%) =0 if 1 is not in the image of (1.4).

We will give sufficient conditions for this to hold (Hypotheses 4.2). When the
infinitesimal character x of 7 is singular, we give conditions in Hypotheses
5.1 so that the correspondence (1.4) is still well-defined and a), b), ¢) still
hold. The corresponding irreducibility results are Theorems 4.4 and 5.4, and
Theorem 1.1 is obtained as a corollary.

The multiplicities M (v, ) are computed by the KLV algorithm, and this
algorithm is determined by a set of data attached to the parameters. Under
the conditions we give on the infinitesimal character, this set of data is pre-
served under the one-to-one correspondence vy — v“. To see this, and explain
how the KLV algorithm works, we need to introduce a lot of structure theory
and results taken from Vogan’s papers (about integral root systems, Cayley
transforms, cross-actions, ete, in [11-13]), which makes the paper a little bit
heavy, but the proofs consist mostly in careful bookkeeping.
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In Section 2 and 3 of the paper, we introduce the material to be able
to describe the KLV algorithm (in case of non singular infinitesimal charac-
ter). The algorithm itself (what the KLV polynomials are, how they give the
multiplicities M (+y,d) and how to compute them) is explained at the end of
Section 3, and the main result for us here is that this algorithm is completely
determined by the structural data introduced in Section 2.6. In section 4,
we show that these data are “the same” for L and G, if the Hypotheses 4.2
on the infinitesimal character are satisfied. Indeed, we see first that the cor-

respondence (1.4) between the Langlands-Vogan parameters sets 735 o
K

and Pf oK is injective and its image is a union of blocks (this term will be
explained in §3.1), among which is the block containing 6. Then we see that
the integral root systems attached to x are the same in L and G, and likewise
for all the data in Section 2.6. In the last section, we show how to extend the
irreducibility result to the case of singular infinitesimal character, using the

“translation data” in [1, Chapter 16].

2. NOTATION, PRELIMINARIES AND STRUCTURAL DATA

For any real Lie algebra by, we denote by b its complexification. Let G be a
real reductive group as in the introduction. Let gg be the Lie algebra of G. We
also fix a Cartan involution 6 of G with associated maximal compact subgroup
K, and associated Cartan decomposition go = ¢y ® s9. We denote by o the
complex conjugation in g relative to the real form gg. We fix a G-invariant
non-degenerate symmetric bilinear form (.,.) on g (and g*), preserved by 6
and which is positive definite on sy and definite negative on &.

If a group G acts on a set X and if Y is a subset of X, we denote by
Centrg(Y') or simply GY the centraliser of Y in G and by Normg(Y') its nor-
maliser and we use analogous notation for a linear action of a Lie algebra.

2.1. Cartan subalgebras, Cartan subgroups, roots. We recall the follow-
ing well-known facts about Cartan subgroups. A Cartan subgroup H is the
centraliser in G of a Cartan subalgebra by of go. If the Cartan subalgebra
ho is O-stable and decomposes as hg = to @ ag, then the Cartan subgroup H
decomposes as H = T'A (direct product) with 7= H N K and A = exp ag.
Let ho be a Cartan subalgebra of go. Let us denote by R(g,h) the root sys-
tem of h in g, by W(g,h) the corresponding complex Weyl group, and by
W (G, H) = Normg(H)/H the real Weyl group. Depending on their values
on b, roots are classified as real, complex or imaginary. One can furthermore
distinguish between compact imaginary and non-compact imaginary roots (see
[13, p. 150]). Let us denote by

R]R(ga h)7 RiR(ga b)a RiR,C(g) h)7 RiR,nc(ga h)? Rc(ga h)

the subsets of R(g,h) consisting of the real, imaginary, imaginary compact,
imaginary non compact, and complex roots respectively. Denote by & =
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Qﬁ € b* the coroot associated to aroot « € R(g, b) and by s, the reflection
in W(g, h) associated to a.

Via Harish-Chandra isomorphisms, any element A in the dual h* of any
Cartan subalgebra h determines a character x, of 3(g), the center of the
enveloping algebra of g (i.e. an infinitesimal character). Both A and x) are
said to be non singular when (a,A) # 0 for all « € R(g,h). If a positive
root system R (g,h) is given, \ is said to be dominant if —(&, \) ¢ N for all
a € R(g,h).

For A € h*, set R(A) = {a € R(g,h) | (&, A\) € Z}, the set of integral roots
(for M) and let W(X) = W(R())) be the Weyl group of the root system R(\).

If A is non singular, then put
R*(\) ={a€ RN [(a,X) > 0}

and let TI(\) and S(\) be respectively the set of simple roots in RT(\) and
the set of simple reflections in W ().

In order to be able to compare roots and Weyl groups on different Cartan
subalgebras, we will use the abstract Cartan subalgebra b, of g (see [13,
Section 2]). We fix a positive root system R*(g,bh,) in R(g,h,) and a non
singular dominant weight A, € . This defines an infinitesimal character y, .
We also define R® = R()\,), R»T, W9 TI%, S® to be respectively the abstract
integral root system, the abstract integral positive root system, the abstract
integral Weyl group, the abstract set of simple roots, and the abstract set of
simple reflections.

If h is any Cartan subalgebra of g and A € b* is such that x» = x,, there
is an isomorphism ¢y : b2 — h* sending A\, to A which induces isomorphisms
R* — R(\), W* — W(A), and so forth.

2.2. Parabolic subgroups. Let P be a parabolic subgroup of G with Lang-
lands decomposition P = M AN and Levi factor L = M A (direct product).
Denote by pg, mg, ag, ng and [y the respective Lie algebras of P, M, A, N
and L. We also introduce the opposite parabolic P~ and its Lie algebra p .
Conjugating with an element of G, we may assume that [y is f-stable and
Mg :=LNK=MnNK is a maximal compact subgroup of L and M. Both
L and M are in the class of groups defined in the introduction.

Let ho be a f-stable Cartan subalgebra of [y. It decomposes as

ho =bharo ® ag = to ® anr,o D ap.
Let R(n,h) be the set of roots in R(g,h) such that the corresponding root
space is in n. Then

R(g,h) = R(1,b) [ R(n,b) [[(—R(n,D)).

The roots @ € R(n,h) are either real, or complex with o(a) = —6(«)
also in R(n,h). Let us choose a positive root system RT([,h) and set
R*(g,h) = RT(L,h)[[R(n,h). By [5, Lemma 11.13 and (11.12)] there is
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an element hsny € ag such that Iy = gg‘s('”
we have [p = g¢°.

Since L = MA it is clear that L € G% = GA4. If g € G% = G4,
it preserves [y, ng and n; which are stable under the adjoint action of ag.
Therefore, since L = Normeg(p) N Normg(p~), we get

(2.1) L=G"=@G™,

. Therefore, as ag is central in [y,

Similar consideration apply to the complex connected group G(C), and there
we have

(2.2) L(C) := Normgc)(p) N Normgc)(p~) = G(C)* = G(C)A.

Some parabolic subgroups called cuspidal are attached to Cartan sub-
groups: let H = TA be a 6-stable Cartan subgroup. Set L = G“ Then
L is a Levi factor of parabolic subgroups P = LN of G, with Langlands
decomposition L = M A, and T is a compact Cartan subgroup of M.

2.3. Cayley transforms. For the results in this section, we refer to [11,
§8.3.], Suppose that H = TA is a f-stable Cartan subgroup of G, and let
«a € R(g,h) be a real root. Then the root vectors for o generate a subalgebra
of go isomorphic to s[(2,R) and we get a Lie algebra morphism

Do 5[(27R) — 9o
satisfying ¢o(—tX) = 0(X). We choose ¢, so that

1 0 0 1 .
Zy = Qg <O _1>€aocbo and ¢, <O 0)690.

. 0 1
T = b (1 0) € k.

Since G is linear, this map exponentiate to a group morphism:

(2.3) 3, :SL(2,R) — G.

Put
_ 0 1 o
0o = P, (1 0) , Mg =0,.

Then m, € T and o, € K. If a is real, then o, normalizes H and represents
sa € W(G, H).

Define h§ = t§ @ af by setting af = {X € ag|a(X) = 0} and t§
to & RZQ. The corresponding Cartan subgroup will be denoted ¢, (H)
H® = T“A%. Notice that o, € T* and my, € T*NT.

Let & = co(«) be the non compact imaginary root of h* in g supported

Set

on Z, (the Cayley transform of ).
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If Hy = T1A; is a f-stable Cartan subgroup of G, and 8 € R(g,b) is a
non-compact imaginary root, one can also define a Lie algebra morphism

¢p ¢ sl(2,R) — go,
which exponentiates to a group morphism
(2.4) ®3:SL(2,R) — G,

another Cartan subgroup ¢ (Hy) = HY = TP A? and a real root 3 = ¢?(3) €
R(g, blﬁ ). The two constructions are inverse of each other: if H = T'A is a
f-stable Cartan subgroup of G, and a € R(g, h) is a real root then &, = P4,
c®(co(H)) = H and ¢*(a) = a. If Hy = T1A; is a f-stable Cartan subgroup
of G, and 8 € R(g,bh1) is a non compact imaginary root then ®g = @z,
CB(C'@(Hl)) = Hy and c3(B) = B.

The following equivalent conditions define type I roots (for a real root «
or the corresponding non compact imaginary root &):

a) the reflection sz does not belong to W(G, H%),

b) T*NT =T,

¢) a: T — {1} is not onto.

The following equivalent conditions define type II roots:

a) the reflection sz belongs to W (G, H?),

b) TN T has index 2 in T and s has a representative in T\ T,

¢) a: T — {+1} is onto.

2.4. Parameters for Langlands classification. We start by fixing an infin-
itesimal character x = x¢, by picking an element &, € a};. We assume that &,
is non singular. Abstract integral roots, etc, defined in §2.1 with respect to
an element A\, € b} are now defined with respect to this element &,.

We recall the set of parameters PX K for the Langlands classification of

irreducible representations of G with infinitesimal character &, (see [11,13]).
DEFINITION 2.1. A parameter 7y is a multiplet
7= (H=TAT?),

where H = T A is a 0-stable Cartan subgroup of G, I is a character of H,
and v € b*, satisfying the following conditions a), b), c):

a) ¢ € ity, and (o, 5) # 0, (Vo € Rir(g,h)).
Set

Rf = Rrﬂg(g b) = {a € Rig(g,h)| (a,7) >0}, RE, =RjN Rmc(g h),
R;% Z @, p ’L]R c - Z Q.
ozeR+ O‘ERjEe,c

b) dU =5+ p(Ri) — 20(RF, .)-
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¢) The infinitesimal character x~ equals x.

Attached to a parameter v = (H = T'A,T', ) as above, there is a standard
representation std(y) (see [11,13]); it may be defined by parabolic induction
from a discrete series representation on a cuspidal parabolic subgroup P =
MAN attached to the Cartan subgroup H = T A. The group N is chosen
so that the Langlands subquotients appear as quotients of std(y). For non
singular infinitesimal character, this quotient is irreducible and is denoted by
irr(y).

Let us denote by Pf the set of parameters v as above, and by Pf/NK
the set of K-conjugacy classes in Pf . The Langlands classification for non
singular infinitesimal character x is the following theorem (see [13, Theorem
2.13] and the references given there).

THEOREM 2.2. Suppose that w is an irreducible representation of G with
non singular infinitesimal character x. Then there is a parameter y € 775 such
that 7 = irr(y). If two parameters v1 and v2 satisfy m = irr(y;) = irr(qys),
then v, and o are K-conjugate.

We will constantly abuse notation by denoting the K-conjugacy class of an

element v € 775 also by ~, and conversely, for a conjugacy class v € Pf e

we denote again by - the choice of a representative in Pf . Usually, this should
not lead to any confusion.

2.5. Cayley transforms and cross-action on parameters. For any v =
(H = TAT,7) € 73)? and for any w € W(%), a new element w X v in
PZ, with first component H = T'A is defined in [11, §8.3]. When oo € RT(9)
is a simple root, the other components of s, X = are given explicitly in ibib.
Lemma 8.3.2. One can use the isomorphisms i~ of §2.1 to transport this to
an action of W on P¢ and PS/NK (see [13, Section 2]).

In Section 2.3, the Cayley transform of a 6-stable Cartan subgroup H =
T A with respect to a real root « has been recalled. In ibib. §8.3 this definition
is extended to Langlands parameters.

We recall first the parity conditions on real integral roots. If v = (H =
TAT,5) € Pf and if & € R(¥) is a real root, we say that « satisfies the
parity condition with respect to v if

(2.5) [(mg) = €§(—1)(@7,

Here €5 € {4} is defined in [11, Definition 8.3.11].

If « is a real integral root satisfying the parity condition, then the Cayley
transform ¢, () is defined as a subset of ’PS . It is a singleton if « is type
IT, and we set co () = {7}, and if a is type I, then co(v) = {vF,75 }, with
sq X vE = ~T. The first component of 7, or v& is H* = c,(H).
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In the other direction, one can define also Cayley transform of a parameter
v=(H=TAT,5) € Pf with respect to a non compact imaginary integral

root . The Cayley transform c?(v) is a singleton if « is type I, and we set
A(y) = {#%}, and if B is type I, then c?(y) = {'yff_,vf}, with s5 x 'yi = vi.
The first component of v* or 'yi is H? = cP(H).

2.6. Data associated to a Langlands parameter. We associate to any v =
(H =TA,T,5) € PC the following set of data:

(1)

(3)

R(%), the integral root system defined by 4 and RT (), the set of
integral positive roots,

R (%) = RY(3)NRE(g,b), the set of integral imaginary positive roots,
R () = RT(3) N Rir c(g,h), the set of integral imaginary compact
positive roots and R:ﬁ{,nc(:y) = RT () N Rirne(g, ), the set of integral
imaginary non compact positive roots,

R' () the set of integral imaginary non compact positive roots of

iR,nc
type I and RIR’InIC

roots of type II,

Rr(¥) = R(¥) N Rr(g,h), the set of integral real roots and R () =
R*(¥) N Rr(g, b), the set of integral real positive roots,

R o(7), the set of integral real roots not satisfying the parity condition
for v and R 1(%) is the set of integral real roots satisfying the parity
condition for ~,

RDIM('?), the set of integral real roots satisfying the parity condition

(%) the set of integral imaginary non compact positive

for v of type I and Rfél (%) the set of integral real roots satisfying the
parity condition for ~y of type II,
Ré’l(ﬁ), the set of integral complex positive roots such that 6(a) €

RE (%) and Rao (%), the set of integral positive roots such that 0(a) ¢
RE®).

REMARK 2.3. a) The integral root system R(¥) is 6-stable ([11,

b)

Lemma 8.2.5]).

A parameter v € P{ is said to be minimal if Rg 1 () and R ((7) are
empty. It is equivalent to the fact that for any non real simple root
in RT (%), 8(a) € R () and no real simple root in Rt (¥) satisfies the
parity condition (see [11, Definition 8.6.5]). The standard represen-
tation std(v) is irreducible if and only if v is minimal ([11, Theorem
8.6.6]).

As we will see in the next section, the data above for all v € 775 K (a

finite set) is sufficient to determine the multiplicities M (v, d) or m(~, d)

for any 7,6 € Pf/NK via the KLV algorithm.
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3. THE KLV-ALGORITHM
We follow here [13, Section 12].

3.1. Blocks. To describe (part of) the KLV-algorithm, we first introduce
the notion of block in 73)? oK Blocks are equivalence classes on 735 K for
the equivalence relation generated by

Y1~ 72 if m(y,72) # 0,

ie. irr(y;) occurs as a subquotient in std(y2). This is also the equivalence
relation generated by the weaker condition that v ~ 79 if irr(y1) and irr(ys)
both occur as some subquotient of the same standard representation std(J).
Another characterisation is given in [11, Theorem 9.2.11]. Block equivalence is
generated by the following relations: if v € 7)3 and [ is a simple non-compact
imaginary root in Rt (%), then v ~ ' for any 7' € ¢?(v), and if a is a simple
complex root in RT(¥), then vy ~ s, X 7.

Via the Langlands-Vogan parametrisation (Thm. 2.2), block equivalence
gives an equivalence relation on equivalence classes of irreducible represen-
tations which can be characterized in terms of Ext groups, namely, it is the
equivalence relation generated by m; ~ 7y if Ext! (71, 72) # {0} (see [11, Defi-
nition 9.2.1 and Proposition 9.2.10]). A result of Casselman (see [11, Corollary
9.2.24]) states that if two irreducible representations 71 and my of G are in
different blocks, then Ext*(my,m2) = 0. Therefore the set of parameters P
admits a partition in blocks

G _
(3.1) PO =11

If two parameters v, € PS are in different blocks, then M (v,d) = 0.
Let us fix a block B in the partition above.

DEFINITION 3.1. The integral length of a parametery = (H = TA,T',¥) €
Pf is
1 B N 1.
(7)) =5 {e e RT()|6() ¢ BT (1)} + 5 dim A - o

REMARK 3.2. The constant c¢§ may be chosen so that I;(y) € N, for
all v € B, but the choice of c§ is irrelevant for the KLV algorithm since
it is always the difference I;(v1) — I7(2) between the integral length of two
parameters 1, 2 € ’Pf which matters.

The Hecke algebra H = H(W*) = H(W (&,)) of the abstract Weyl group
W is defined in [13, Definition 12.4]. This is an algebra over Z[uZz,u 2]
generated by elements T.,, w € W* with the relations given in ibid.

The Hecke module of ‘B is the free module over Z[u%,u’%] with basis
{v € B}. Let us denote this module by MM(B). The action of X on M(B)
is given also in ibid. More precisely, what is given are formulas for Ty when
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v € B and s € S is a simple reflection. This simple reflection corresponds
to a simple root & € R* (%) via the isomorphisms 5 and the formula depends
on «. For instance, if « is type II real satisfying the parity condition, then

Toy = (u—1)y = sa X v+ (u—1eca(y).
Let s be a simple reflection in S®. For any v;, 72 € B, write y; — v if
aq, the corresponding simple root in R*(7) is
e cither complex with fa; ¢ RT(%1) and 72 = s x 7
e or real, satisfying the parity condition with respect to 71 and v €

Cay (71)'

Equivalently, if as is the corresponding simple root in RT(72), then ay is
complex and fay ¢ RT(72) or oz is non compact imaginary with respect to
72 and v € ¢*2(72).

If y1 > 79, then I;(72) = I;(71) — 1, and we have also

SX M S X e, VS XY, 85XV
In [13, Definition 12.12] an order relation is defined on B and denoted
Y1 <, ¥2. Let us recall some properties of this partial order relation.

a) If y1 <, 72, then I7(v1) < l7(y2) and if 4 <, 72, and 1 (1) = l1(72),
then v1 = 2.
b) If m(y1,72) # 0, or M(v1,72) # 0, then 1 <, 7.

The next lemma is [13, Lemma 12.18]. It is used to set up the induction
step for computing KLV polynomials.

LEMMA 3.3. Suppose that 7,5 € B and m(vy,0) # 0. Then we can find

8" € B and a simple reflection s € W® such that § > &', and for any such s,
one of the following conditions is satisfied

(1) m(v,0") #0.

(i) There exists ' € B such that v >~ and m(y',8") # 0.

(iii) Let o be the simple root in R (8) corresponding to s. Then o is real,
satisfying the parity condition with respect to 6 and (i) or (i) holds
with s x &' replacing §'.

The next ingredient in the KLV algorithm is the duality map D on 9(B)
([13, Lemma 12.14]).

LEMMA 3.4. There is a unique Z linear map D : M(B) — M(B) with
the following properties. For any v € B, write

Dy =y 1 Z —lr(¢) R¢> é
$EDB

|. Then

B)).

m), (Vm € M(B), Vs € S9).

for some polynomials Re, € Z[u% -3
a) D(um) =u"tD(m), (Ym € M(
b) D((Ts + 1)m) = u=Y(Ts + 1) D(
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¢) Ry, =1, (Vy € B).
d) Ryy £0 = <, 7, (V7 € B).

The map D has the following extra properties

e) Ry is a polynomial in u of degree < 1;(v) —l1(9).

f) D* = Idgy () -
g) The specialisation of D at u =1 is the identity.

We can finally define the KLV polynomials. This is [13, Lemma 12.15].

LEMMA 3.5. For any v € B, there is a unique element Cy = Z¢€% Py 0
€ M(B) (with coefficients Py, in Zlu?,u~2]) such that D(C,) =u M,
P, =1, Py, #0 only if ¢ <, v and if ¢ # v, then Py, is a polynomial in u
of degree < 5 (l1(7) — l1(¢) — 1).

The next result proves the Kazhdan-Lusztig-Vogan conjecture on multi-
plicities.

THEOREM 3.6. The integers M(v,9), 7,9 € B are given by
M(y,8) = (=1)!*~ 1 P s(1).

It is proved by Vogan, Lusztig-Vogan if the infinitesimal character is inte-
gral, and an argument by Bernstein settle the non integral case. See [13] and
[1] for a discussion of this fundamental result and references to the original
papers.

Finally, there is an algorithm which computes the KLV polynomials P, 5.
It is described in [12, Proposition 6.14]. It starts with the fact that Pss =1
for any § € PEG/NK and that P,y =0if v £, é in PEG/NK‘ If P, s is known
whenever [;(0") < 1;(0) or I;(8") = 1;(§) and I;(v") > I;(7), then there are
formulae for computing P,;.

To summarise, the KLV polynomials (and therefore the multiplicities
M(v,9)) are completely determined by the H (W (,))-module structure of
M(B), and this structure is in turn completely determined by the data asso-
ciated to all v € B in Section 2.6.

The following corollary was stated and used in [7] and [3].

COROLLARY 3.7. Suppose we have two reductive groups G and G’ in
the class of groups we consider, two blocks B and B’ of Langlands-Vogan
parameters with non singular infinitesimal characters, respectively for G and
G’, and a bijection

1: B — B

which respects the data associated to any v € B (resp. v € B') in Section
2.6. Then

M%(7,8) = MY (u(7),0(9)), (7,0 € B).
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4. DATA IN G VERSUS DATA IN LP

Let us fix now a parabolic subgroup P’ = M’ A°N” of G with 6-stable
Levi factor L’ = M”A°. We also fix a fundamental #-stable Catan subgroup
H’ of L. Such a Cartan subgroup has a decomposition H> = T° A, A°. Of
course there are similar decompositions for the Cartan subalgebras.

All the notation and results in Section 2 apply to the group L’ instead of
G. When needed, we will add a superscript G or L’ to distinguish between
objects defined with respect to G or L.

Cartan subalgebras of [} are Cartan subalgebras of gy and Cartan sub-
groups of L” are Cartan subgroups of G. This is the case in particular for I)'é
and H® = TbAgwA".

In general, a Cartan subgroup H in L’ decomposes as H = H,;» A with
H,;» a Cartan subgroup of M”. If H is f-stable, one can further decompose
Hyp» as Hypy = TAyp and H as H = TA,;» A°. For such a Cartan subgroup,
we have as in Section 2.2

(41) R(gah) = R([b7b)HR(nbah) H(iR(nbah))

The roots a € R(n”, h) are either real, or complex with o(a) = —6(a) also in
R(n,h). Therefore

RzR(g7b) = RiR([bah)a RiR,C(Q)h) = RiR,C([b7h)

We can therefore simply write R;g and R;g . for these systems of imaginary
roots.
For the definition of the Hirai order used in the next proposition, see [4].

PROPOSITION 4.1. The following conjugacy classes of Cartan subgroups
are in natural one-to-one correspondences.

a) G-conjugacy classes of Cartan subgroups of G containing a G-conjugate
of A”.

b) K-conjugacy classes of 0-stable Cartan subgroups of G containing a
G-conjugate of A.

The following conjugacy classes of Cartan subgroups are in natural one-
to-one correspondences.

¢) L°-conjugacy classes of Cartan subgroups of L°.

d) Mﬂ—conjugacy classes of 0-stable Cartan subgroups of L”.

e) M’-conjugacy classes of Cartan subgroups of M”.

f) Mi}{—conjugacy classes of 0-stable Cartan subgroups of M°.
Furthermore, the natural map from the set of conjugacy classes in c) to the
set of conjugacy classes in a) is surjective. The G-conjugacy classes in a)
are exactly the ones which are greater than H’ in the Hirai order for G.
In particular, it contains the mazimally split G-conjugacy class of Cartan
subgroups of G.
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PRrROOF. The equivalence of a) and b) is in [11, Lemma 0.1.6]. Of course,
it gives also the equivalence between e) and f) and ¢) and d). The equivalence
of ¢) and e) is clear since A° is central in L. A Cartan subgroup containing
A° is contained in GA* = L since Cartan subgroups are abelian for linear
groups, proving that the natural map from the set of conjugacy classes in
¢) to the set of conjugacy classes in a) is surjective. This map respects the
Hirai order (for L’ and G respectively), and from this we get that the set of
conjugacy classes in a) are greater than the one of H® in the Hirai order for
G. Conversely, a Cartan subgroup of G with G-conjugacy class greater than
the one of H” in the Hirai order for G has a G-conjugate containing A°. If two
Cartan subgroups of L” are L’-conjugate, they are G-conjugate. In general,
two G-conjugate Cartan subgroups of L’ are not L’-conjugate, unless they
are maximally compact or split in L°. ]

We now fix an infinitesimal character x = x¢, both for G and L, by
choosing ¢ € (h°)*. We decompose ¢ as & = &, + v, according to the
decomposition (h*)* = (b’ ,)* @ (a°)*.

HYPOTHESES 4.2. Consider the following conditions on & = & + v €
(h°)",
A. € is non-singular for L°, or equivalently, &, is non-singular for M°
ie.
(Eaps, @) # 0 for all a € R(P,h°).
B. For all a € R(n”, ),

<d’§> = <6"£Mb + V> §é L.
REMARK 4.3. If £ satisfies Hypothesis 4.2, B., then
(4.2) RE(§) = (& +v) = RY (60 +v) = BV ().
Furthermore if £ also satisfies Hypothesis 4.2, A.,; then £ is non singular also
for G.

Our main result is

THEOREM 4.4. Suppose & = &y +v € (8°)* satisfies Hypotheses 4.2, A.
and B. Let 7 be an irreducible representation of L® of the form m =y Ky,
with infinitesimal character x¢ . Then the induced representation igb (m) =
iGy (map W xy) is irreducible.

REMARK 4.5. We see that under hypothesis A., Theorem 1.1 is a corollary
of the result above, since condition B. is generic in v, i.e it holds for v € (a”)*
outside a locally finite, countable number of affine hyperplanes.

We will prove this theorem following the ideas given in the introduction
(see Corollary 3.7). We start by comparing the parameters for irreducible
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representations with infinitesimal character x = x¢, for G and L’. To be
coherent with our preceding notation, we also fix a dominant £, in the dual
of the abstract Cartan subalgebra b, such that xe, = x¢ = x.

Consider a parameter ’yLb =(H=TAT,5) ¢ 775 as in Section 2.4 (but
for L?). Since imaginary roots are the same for [> and g, it is clear that it is
also a parameter in 735 (see (2) and (3) below) and conversely if H is greater
than H” in the Hirai order. So the identity map

PU le L G
x o VT
induces a map

b
(4.3) 77£ Jmh, —>79$/NK, e o

with image the set of parameters n = (H = TA,T,7) € Pf with H greater
than H” in the Hirai order.

PROPOSITION 4.6. Under Hypotheses 4.2, A. and B. the map (4.3) is
imjective.

PROOF. We have to show that if two parameters vy = (H; = T1 A1, T, 91)
and vo = (Hy = ThA5,T9,%2) € be are G-conjugate, then they are L’-
conjugate. Since 4; and 7 define the same infinitesimal character as &, there
are elements [; and [5 in the complex group Lb((C) such that [1-7; =€ =15-9»
and Iy - h; = h” =I5 - hy. Since v; and 7, are G-conjugate, there is an el-
ement ¢ € G such that g-h; = hs and g - 741 = 7. Therefore, setting
n = lgglfl € G(C), we get n- & = ¢ withn € Normg(c)(hb). Since £ is non-
singular, we must have n € Centrgc)(h’) = H> C L’(C) and so g € L’(C).
Thus g € GN L°(C) = L°. 0

We now check that the data (1) to (8) in Section 2.6 associated to pa-
rameters are preserved by the correspondence va 7% in (4.3). So, let us
fix fyLb =(H=TAT,5) € Pg. We add superscript G or L” to the various
objects defined in Section 2.4 to distinguished the ones defined with respect
to G from the ones defined with respect to L.

(1) Because of hypothesis 4.2.B on v € (h°)*, we have R% (&) + v) =
RLb(be + v) and therefore RV () = R%(¥). Thus the integral root
systems for 7 are the same for L* and G.

(2) and (3) We have seen that roots in R(n’,h) are either real, or complex
with o(a) = —60(«). Therefore, the imaginary roots for h are the same
in I’ and g, and such an imaginary root is compact in G if and only if
it is compact in L”, and so we have

RG =R, RG.=Rh. RG.. =Rk

iR,nc iR,nc
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R e
p(RGH) = p(RE™),  p(RET) = p(RET)

(4) The fact that a non compact imaginary root & is type I or type Il in G
depends only on the map @, : SL(2,R) — G in (2.3) as it is clear
from the equivalent conditions defining type I or type II. Since in our
context we can choose the same map ®, : SL(2,R) — L’ C G for G
and L”, we see that a non compact imaginary root is type I in L° if
and only if it is type I in G.

(5) Since R%(y) = RE (%), we have also R$(y) = Rﬁb(”y) and likewise

b
Rg™(7) = Ry (7).

(6) Let a € RE(5) = R’ (5) be an integral real root. We want to compare
the parity condition for L” and G. Since my is defined via the same
map ®, for L’ and G, we have only to check that eg = es. We do

that in the lemma below. Therefore the parity condition is the same
in L’ and G:

b b b, b
R o(7) = Rio(7) and R, (7) = Ri 1 (7).
(7) As for non compact imaginary roots, real roots are of the same type (I or
IT) with respect to L° and G.

(8) Since R%(¥) = RE (%), we have also RE(y) = Rg("y) and likewise
b b b
RE™(7) = Re " (3), REY (9) = Reg™ () and REY(3) = R (7).

G

LEMMA 4.7. For any integral real root o € Rr(7), eg =€5.

PROOF. The sign €§ is defined as (—1)%t! where d is an integer given
by one of the definitions in [11, Lemma 8.3.9]. For us, the most convenient
is the first one, i.e. we take d = d; in ibid. We fix ®, : SL(2,R) — L’
as in Section 2.3. Thus we get m, and H* = T*A%. Consider a cuspidal
parabolic subgroup P, = M, AN, attached to H*, i.e. L® = MyA, = GA=.
Up to conjugacy in L°, we may assume that A” C A® since H® is a Cartan
subgroup of L°, and therefore greater than H” in the Hirai order. Thus
M, C M". Therefore the integer d; defined in [11, Lemma 8.3.9], which is
dy = 3dim ((—1) — eigenspace of m, in m, N€) equals

%dim ((—=1) — eigenspace of m, in my, NEp),

since my N € =m, MM’ NE=m, NE. Therefore e£” = (—1)4+1 =& [

Let us now consider the decomposition of the parameter sets 775 o

K
and Pf IK into blocks as in (3.1). From the characterization of blocks in
terms of Cayley transforms and cross-action, we see that the injective corre-

spondence ’yLb — v respects blocks.
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LEMMA 4.8. Let us consider a block B in PE/NK. Then all elements in

BE are in the image of (4.3), or none of them are. Therefore, (4.3) induces
a bijection between corresponding blocks.

PRrOOF. This is clear from the characterisation of blocks given in §3.1.
Indeed, suppose that in B¢, there is a parameter n = (H = T4, ...) which is
in the image of (4.3) and one ' = (H' = T'A’,...) which is not. Then H is
greater or equal to H® in the Hirai order, and H’ is not. Furthermore, there
would be a sequence of parameters 19 = 1, 71, ..., 7, = 1’ in BY such that
N;i+1 is obtained from n; either by the cross-action with respect to a Cayley
transform associated to a real or non compact imaginary simple integral root
or by the cross-action of a complex simple integral root. Since cross-action
doesn’t change the conjugacy class of the associated Cartan subgroup, there
is an index 7 such that 7); is in the image of (4.3), 7,41 is not, and furthermore
n; and ;41 are related by a Cayley transform associated to a real or non
compact imaginary simple integral root. Our problem is reduced to the case
n=mn; and ' = n;41. But then 7" would also be in the image of (4.3). O

Given a block BL in Pg/NM';{’ we see that the integral length (Def.
3.1) is the same for B and the corresponding block B¢, if we choose the

b
constants c§ and ¢ to be equal.

5. THE CASE OF SINGULAR INFINITESIMAL CHARACTER

We turn now to the case of possibly singular infinitesimal character x = x¢
with £ € f)b*. The relevant discussion may be found in [1, Chapter 11], and
[14]. First, the parameters have to be enriched by an extra piece of data, so
a parameter is now a multiplet

v=(H=TAT,%RS),

where (H = TA,T', %) is as before and R:ﬁ is a system of positive imaginary
roots of h in g. The conditions imposed on « are the following a), b), ¢), d)
and e):
a) {a,7) >0, (Va € R).
With Rf, ., p(Rf) and p(R7 ) as above, conditions b) and c) are the same
as in Definition 2.1.
d) Suppose « is a simple root in R;% such that («,%) = 0. Then « is non
compact.
e) Suppose « is a real root in R(g, ) such that («,%) = 0. Then « does
not satisfy the parity condition, i.e. I'(my) = —€&

HyPOTHESES 5.1. Consider the following conditions on & = & + v €

(h),
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B. For all a € R(nb, f)b),
(&,8) = (&, & +v) ¢ L.

C1. For any w € W(g,b") such that &y —w - &y is mon-zero, v is not in
the strict affine subspace in (a°)* of solutions of w-v—v = &y —w-Epp .

C2. For all a € R(n’,b), (&,v) # 0.

D. For any w € W(g,h"), w- & = & implies w € W(I°, ).

REMARK 5.2. Condition B. is the same as in Hypotheses 4.2, and we re-
place condition A. there, which is the assumption of non singular infinitesimal
character, by either condition C. (meaning C1. and C2.) or condition D.

We start with the analog of Prop 4.6.

PRrROPOSITION 5.3. Under Hypotheses 5.1, C1. and C2., or Hypothesis
5.1, D. the map (4.8) is well-defined and injective.

PRrROOF. We first have to check that the extra conditions d) and e) in the
definition of the parameters are preserved, but this is straightforward. (See
Lemma 4.7 for condition e)). Starting the proof for injectivity as in the proof
of Proposition 4.6, with I -h1 = b°, Iy -1 =&, la-ba = h°, Iy - 52 = &, and
g-h1 =02, 991 =2, weget n-& =& withn € Normc(c)(bb) and we conclude
under Hypothesis 5.1, D. as in the proof of Prop 4.6. If we assume instead
Hypothesis 5.1, C. we rewrite n- £ =& as Eypp —n - Eyp = n - v —v. So if the
linear map

b (@) — "), ven-v—v

is non zero, its kernel is a strict subspace of (a”)* and the set of solutions in
(a®)* of n-v—v = &ypp —n-&y» is strict affine subspace. Since &, —n-£,» takes
only a finite number of non-zero values for n € Normgc) (h”), we see that for v
outside a finite number of strict affine subspaces in (¢°)*, &0 —n-Eppp = n-v—v
implies n - v = v. Since Hypothesis 5.1, C2. implies that g¥ = [ and since
L*(C) is connected G(C)” = L’(C). We can then conclude as in the proof of
Prop 4.6 that g € L. O

We now use the results of [1, Chapter 16], using what is called there a
translation datum to reduce the problem to the case of non singular infinites-
imal character. The translation datum consists of our singular infinitesimal
character &, a weight u for H> N M” = T" A, satisfying ¢’ = ¢ + p such that

a) ¢ is non-singular for [’

b) If (&, &) is a positive integer for o € R(g, %), then (&, £') is a positive

integer.
Set x = x¢, X' = x¢o. Then by ibid, (16.5)(a) and (16.5)(d), there is a
injection Léz/ : 775 — ’Pg respecting K s-conjugacy classes such that for
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Lb Lb Lb Lb lb Lb lb Lb
M (’7 ué ) =M (L§,§’(’7 )71’5,5’(6 ))

We can use the same translation datum, but this time for G, and we
get a injection ng, : PEG — Pg respecting K-conjugacy classes such that for
7, 6% € Pg :

GG sG G/, G G G
M= (y7,0%) = M7 (tg e (V7), teer (67)).

By the result for non singular infinitesimal character proved in the previ-

ous section, we have that

b b b b b
M5 (e (V" ), e 60 (6%)) = MO (e (79), 1, (69)).
Since
Lb

b €€ Lb
pL - P
X /~K X' [~K

llg lzg/
G

fPG &e fPG

X /~K X' /~K

L

is a commutative diagram, where the vertical maps are the injective maps
previously defined in (4.3) and denoted here Z; and Z,/, we get:

(5.1) ME (4 68") = MG (7€, 69).

We also need to prove that M%(n,6%) = 0 if n is not in the image of Ze.
Since we don’t have the results on blocks we need readily available when
the infinitesimal character is singular, we cannot apply Lemma 4.8 directly.
Assume M%(n,6%) # 0 and write n/ = ng, (n), 8¢ = ng,(éG). Therefore
MC(n/,6'“)) #0, and 1/, &' are in the same block. The map T, is surjective
on the block which contains both ' and §’ ¢ by Lemma 4.8, thus there exists
w0 e Pf,b/NK i with, Zeg (W) =1/, Ze/ (07) = §'¢, and MLb(w',J’) # 0 by
the results of thﬂed previous section. In [1, Chapter 16], the maps t¢ ¢ (called
¢7 there) are defined as the inverse of partially defined bijective maps ¥,
the domain of this map being given by the condition that s (std(o)) # 0
where 17 is here the Zuckerman translation functor from &’ to £&. From
[1, Propositions 11.16 and 11.18], we see that this condition can be checked
on the data associated to the parameter ¢ in Section 2.6. Therefore, the
domain of w7L-b is the inverse image of the domain of 1/1?— by Z¢ since the map

T preserves these data. We deduce that ', and ¢’ @ are in the image of ng,,
let’s say from w and 6 respectively. Now, by the commutativity of the diagram
and the injectivity of the maps, we must have § = 6L and Z¢(w) =n. Thus
7 is in the image of Zk.

From this we deduce as before the following
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THEOREM 5.4. Suppose &€ = &y + v € (b°)* satisfies either Hypotheses
5.1, B. and C., or Hypotheses 5.1, B. and D. Let m be an irreducible repre-
sentation of L’ of the form m = my» B x,, with infinitesimal character Xe -

Then the induced representation i$, (7) = i, (7yp W x,) is irreducible.

REMARK 5.5. We see that Theorem 1.1 is a corollary of the result above,

since conditions C1. and C2. are generic in v, i.e it holds for v € (a”)* outside
a locally finite, countable number of strict affine subspaces.

6. AN APPLICATION

We explain how the results above lead to simplifications in the proof of
[9, Theorems 5.3 and 5.4]. For background on Arthur packets, we refer to [§],
specially in the context of classical real groups.

Suppose that G is a classical group (symplectic or special orthogonal,
the case of unitary groups is similar but requires some adaptation in the
formulation of some definitions and statements below) over R, of rank N.
Let us denote by Stdg the standard representation of the L-group of G in
GLx(C) (see [8, §3.1]), for instance if G = Sp,,, (R), LG = SO2,41(C) x Wg
and Stdg is given by the inclusion of SOs;,11(C) in GLg;,41(C).

Let vg : Wg x SLo(C) — LG be an Arthur parameter for G, and set
1 = Stdg o Y, that we see 1 as a completely reducible representation of
Wgr x SL2(C). In [8, §4.1], we give an explicit decomposition of 3 into a
direct sum of irreducible representations and we define good (and bad) parity
for these. The parameter ¢ is then written as ¥ = g, @ 1, where 1y,
(resp. 1pp) is the part of good (resp. bad) parity of 1.! The bad parity
part 1y, can be further decomposed as 1, = p ® p* for some representation
p of Wr x SLy(C) in GLy,(C), and p* is the contragredient of p. By the
Arthur-Langlands correspondence for GLy,, p is the Arthur parameter of a
representation, denoted again by p, of GLx,(R). The good parity part 9,
is an Arthur parameter for a group G’ of the same type as G, but of rank
N —N,. Furthermore G’ x GLy, (R) is the Levi factor of a maximal parabolic
subgroup P of G.

Representations in the Arthur packet for G with parameter 1 are obtained
from irreducible representations 7w in the Arthur packet for G’ with param-
eter 1, as induced representations i%(mg & p). Theorems ([9, Theorems 5.3
and 5.4]) state that these representations are indeed irreducible. In fact, as
the main results of this paper show, we get irreducibility of i%(we X p) for
any representation mgs of G’ and for any representation p of GLy, (R), if their
infinitesimal characters are the ones determined by ¢, under some assumption
on the infinitesimal character of p.

Mn [8] and [9], written in french, pp is the “bonne parité” part and tmp is the
“mauvaise parité” .
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Let us explain this for G = Spyy, the other cases being similar. In the
usual coordinates, the infinitesimal character for a parameter of good parity
for G = sz(Npr) consists in N — N, integers (up to the Weyl group action
by permutation and sign changes), while the infinitesimal character corre-
sponding to p, which comes from the bad parity part, consists in N, complex
numbers which are not integers. It is then obvious that the Hypotheses 5.1
B. is satisfied, and for D., unfortunately, our hypothesis only implies that the
element w is in the product of the Weyl groups for Spo(v— N,) and Sp, N,
rather than in the Weyl group of sz(N—N,,) x GLay,. If the coordinates of
the infinitesimal character of p don’t contain pairs of the form (a, —a) (which
is a condition easy to check starting from ), then Hypothesis D is satisfied
and we get the irreducibility of i%(re X p).

In general, we can do the following (see [7] and [3] for similar strategy):
we apply Corollary 3.7 for the relevant blocks in the groups Spy(y_ N,,)(R) X
Sp,y, (R) and Sp,y (R) rather than Spy(y_y ) (R) X GLy, (R) and Sp,yy (R),
so that this time Hypothesis D is satisfied. Then, the problem is to show that
the representation parabolically induced from p to Sp,y, (R) (using the Siegel
parabolic subgroup of Spy, (R)) is irreducible. This is a particular case of our
original problem, but the arguments in the proof in [9] are then technically
easier. Other approaches to this problem may work, for instance p being
unitary, one may start by using Tadic’s classification of the unitary dual of
general linear groups to write it in terms of Speh representations (which can be
done directly from 1)y,) and then try to use the independence of “polarization
results” of [5, Chapter XI], to reduce further the problem.
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GENERICKA IREDUCIBILNOST PARABOLICKE
INDUKCIJE ZA REALNE REDUKTIVNE GRUPE

SAZETAK. Neka je G realna reduktivna linearna grupa u Harish-Chandrinoj
klasi. Pretpostavimo da je P parabolicka podgrupa od G s Langlandsovom
dekompozicijom P = M AN. Neka je 7 ireducibilna reprezentacija Levi-
jevog faktora L = M A. Dajemo dovoljne uvjete za infinitezimalni karak-
ter m da bi inducirana reprezentacija ig () bila ireducibilna. Konkretno,
dokazujemo da, ako je mys ireducibilna reprezentacija od M, tada je, za
genericki karakter x, od A, inducirana reprezentacija i§(my K xu) ire-
ducibilna. Ovdje je parametar v u a* = (Lie(A) ®r C)*, a genericki znaci
izvan prebrojive, lokalno kona¢ne unije hiperravnina koji ovisi samo o in-
finitezimalnom karakteru 7. Primijetimo da nema drugih pretpostavki o 7
ili ps osim da su ireducibilne, tako da rezultat nije ograni¢en na general-
izirane osnovne serije ili standardne reprezentacije, za koje je rezultat vec
dobro poznat.



