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Abstract. In this paper, we study the reducibility of degenerate prin-

cipal series of the split, simple, simply-connected exceptional group of type
E8. Furthermore, we calculate the maximal semi-simple subrepresentation

and quotient of these representations for almost all cases.

1. Introduction

This paper is the final part in our project of studying the degenerate
principal series of exceptional groups of type En. This paper is about E8,
which, as often noted by David Kazhdan, is the smallest, split, simple, simply-
connected, adjoint and simply laced group. In fact, this essentially completes
the study of degenerate principal series of simple p-adic groups up to isogeny.

More precisely, let F be a non-Archimedean local field and let G denote
the split simple group of type E8. For a maximal parabolic subgroup P of
G with a Levi subgroup M and a 1-dimensional representation Ω of M , we
consider the following two questions:

• Is the normalized parabolic induction IndGP (Ω) irreducible?
• If IndGP (Ω) is reducible, what is the length of its maximal semi-simple

subrepresentation and quotient?

We completely answer the first one in Theorem 4.1, and almost completely
answer the second. In fact, there are only two pairs (P,Ω) (out of hundreds
of cases) in which we were only able to show that the maximal semi-simple
subrepresentation is of length at most 2. In both of these cases, we show that
the irreducible spherical subquotient is a subrepresentation and describe the
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other possible irreducible subrepresentation in terms of its Langlands data.
Further, we describe a decisive test to determine the length of the maximal
semi-simple subrepresentation for each of these cases, which would hopefully
could be realized when stronger computing machines would be more com-
monly available. These two cases are detailed in Subsection 5.2.

In order to answer the above questions, we use the algorithm described
in [HS20, Section 3] and [HS21, Section 3]. This provides an answer to both
questions for almost all pairs (P,Ω) For the remaining cases, not determined
by the algorithm, further study is performed in Section 5. This project uses
a script implemented in the Sagemath environment [The22].

The study of local degenerate principles series is useful for various reasons.
One of which is the study of the degenerate residual spectrum of the adelic
group of the same type. Data regarding the degenerate residual spectrum,
and the analytic behavior of degenerate Eisenstein series, can then be used to
study other automorphic representations and functorial lifts.

Some examples are:

• The study of the degenerate residual spectrum of the simple group of
type F4 is the topic of the first author’s PhD dissertation and relies on
the study of the local degenerate principal series of F4, performed in
[CJ10].

• The study of degenerate residual representations of Spin8, with P be-
ing the Heisenberg parabolic subgroup, was performed by the second
author in [Seg18,Seg19]. The results of these paper was later used to

study the exceptional θ-lift between G2 and S̃L2 (also known as the
Rallis-Schiffmann lift) in [GS]. This, in turn, followed the work Kudla,
Rallis and Piatetski-Shapiro which, along similar lines, studied the lo-
cal degenerate principal series and global degenerate Eisenstein series
of groups of type Sp2n and using that to study the Howe correspon-
dence.

• The study of the degenerate residual spectrum of the adelic groups of
type En is a work in progress as a joint project, [HS], of both authors.
This work relies on the results of this paper as well as [HS20] and
[HS21].

This paper is structured as follows:

• In Section 2, we recall basic notations and properties from represen-
tation theory of p-adic groups. We further recall basic data on the
exceptional group of type E8.

• In Section 3 we describe the tools and algorithm used by us in the
proof of Theorem 4.1.

• In Section 4 we state our main theorem, Theorem 4.1, and list all cases
which can be resolved using our algorithm. This algorithm constitutes
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of reducibility and irreducibility tests as well as some tests to check if
the representation admits a unique irreducible subrepresentation.

• In Section 5 we go over the exceptional cases which could not have
been fully resolved by our algorithm. We resolve most of these cases
completely and make some progress towards the resolution of the re-
maining two cases.

Finally, we wish to address a question which was broached to us following
[HS20] and [HS21]. The reducibility of a non-unitary degenerate principal se-
ries representation can be determined by the local Shahidi coefficients which
would seem to make our algorithm obsolete. However, the algorithm, pre-
sented in Section 3, is useful for various other reasons such as:

• It allows us to determine the reducibility for unitary cases too.
• While local Shahidi coefficients can inform us regarding the reducibility

of non-unitary degenerate principal series, the output of the reducibil-
ity test is also useful when studying global phenomena such as the
Siegel-Weil identity (and indeed this data is used in [HS]).

• Data from the reducibility and irreducibility tests is useful for studying
the structure of reducible degenerate principal series and in particular
for studying its socle and cosocle.

We also wish to point out that comparing the lists of non-unitary reducible
degenerate principal series determined by our method with that given by
Shahidi’s method, was useful for debugging purposes. Indeed, as in the E6

and E7 case, our algorithm was decisive for all non-unitary cases and agreed
with the results of Shahidi’s method. The only cases where the algorithm was
unable to determine the reducibility of the degenerate principal series were a
few unitary ones.

2. Preliminaries

This section has three parts. In the first part, we fix notations for this
paper. This part is organized as an enumerated list in order to make the look
up of notations easier. Also, at the end of this section we introduce the split
group of type E8.

2.1. Groups, characters and representations. In this subsection, we fix
notations and recall basic facts about the groups, characters and represen-
tations involved in this paper. For a more detailed discussion, the reader is
encouraged to consider [HS20, Section 2] and [HS21, Section 2].

2.1.1. Groups.

1. Let F be a non-Archimedean local field with norm |·|. Let q denote
the cardinality of its residue field and let ϖ denote a uniformizer of F .

2. Let G denote the F -points of a split simply-connected reductive group.
3. Let T be a maximal split torus of G.
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4. Let B be a Borel subgroup of G such that T ⊂ B.
5. Let ΦG denote the roots of G with respect to T and let Φ+

G ⊂ ΦG

denote the positive roots of G with respect to B.
6. Let ∆G = {α1, . . . , αn} be the set of simple roots of ΦG with respect

to B.
7. Let n = |∆G| = dimF (T ) denote the rank of G.
8. Let Φ∨

G = {α∨ | α ∈ ΦG} denote the set of coroots of G with respect
to T .

9. We use ⟨·, ·⟩ to denote the usual pairing between characters and co-
characters of T .

10. Let ω̄α1
, . . . , ω̄αn

denote the fundamental weights of T which satisfy

〈
ω̄αi , α

∨
j

〉
= δi,j .

11. Let W = ⟨si | 1 ≤ i ≤ n⟩ denote the Weyl group of G with respect to
T , generated by the simple reflections si associated with the simple
roots αi.

12. For Θ ⊂ ∆G, let PΘ = ⟨B, si | αi ∈ Θ⟩ = MΘ · UΘ be the standard
parabolic subgroup of G associated to Θ. We denote its Levi subgroup
by MΘ and its unipotent radical by UΘ.

13. Let ΦMΘ
, Φ+

MΘ
and ∆MΘ

denote the roots, positive roots and simple
roots of MΘ with respect to T and B ∩MΘ respectively.

14. Let WMΘ = ⟨si | αi ∈ Θ⟩ denote the Weyl group of MΘ with respect
to T .

15. Let Pi = P∆G\{αi} and Mi = M∆G\{αi} denote a maximal (proper)
standard parabolic subgroup of G and its Levi subgroup.

16. For maximal standard Levi subgroups Mi and Mj of G, we write
Mi,j =Mi ∩Mj .

17. We denote the rank 1 Levi subgroups by Li =M{αi}.

2.1.2. Characters.

1. LetX (G) = {Ω : G→ C×} denote the complex manifold of continuous
characters of G, we use additive notations for this group, that is

(Ω1 +Ω2) (g) = Ω1 (g) · Ω2 (g) .

We usually use the letter Ω to denote elements in X (M), for a non-
minimal Levi subgroup M of G, while using λ to denote an element of
X (T ). Also, note that W acts on X (T ) via its action on T .

2. We denote the set of unramified elements Ω ∈ X (T ) by Xun (T ).
3. Let 1G ∈ X (G) denote the trivial character of G.
4. We say that χ ∈ X (T ) has finite order if there exists k ∈ N such that
χk = 1T . The order of χ, denoted by ord (χ), is the minimal k ∈ N
such that χk = 1T .
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In particular, every element Ω ∈ X (F×) can be written as
Ω = s+ χ, where s ∈ C and χ is of finite order. Namely,

Ω (x) = χ (x) |x|s ∀x ∈ F×.

It holds that Xun (F×) can be described by all characters of the forms
|x|s for some s ∈ C.

5. We write Re (Ω) for the character

Re (Ω) (x) = |x|Re(s)

and Im (Ω) for the character satisfying

Ω = Re (Ω) + Im (Ω) .

6. We say that λ ∈ X (T ) is anti-dominant if

Re (⟨λ, α∨
i ⟩) ≤ 0 ∀1 ≤ i ≤ n.

Note that everyWG-orbit in X (T ) contains at least one anti-dominant
element and all anti-dominant elements in the same WG-orbit have an
equal real part. As a convention, we denote an anti-dominant element
by λa.d..

7. Let Ωi,s,χ denote the character of a maximal Levi subgroup Mi of G
associated with (s+ χ) ◦ ω̄αi , where s ∈ C and χ ∈ X (F×) is of finite
order. Note that if G is simple, then any element in X (Mi) can be
written this way.

2.1.3. Representations.

1. Let Rep (G) denote the category of admissible representations of G.
2. As above, 1G denotes the trivial representation of G.
3. Let iGM : Rep (M) → Rep (G) and rGM : Rep (G) → Rep (M) denote

the functors of normalized parabolic induction and Jacquet functor,
adjunct by the Frobenius reciprocity:

(2.1) HomG

(
π, iGMσ

) ∼= HomM

(
rGMπ, σ

)
.

4. For π, σ ∈ Rep (G), such that σ is irreducible, let mult (σ, π) denote
the multiplicity of σ in the Jordan-Hölder series of π.

5. Let R (G) denote the Grothendieck ring of Rep (G) and let [π] denote
the image of π ∈ Rep (G) in R (G). Recall that R (G) admits a par-
tial order such that π1 ≤ π2 if mult (σ, π1) ≤ mult (σ, π2) for every
irreducible σ ∈ Rep (G).

6. We remind the reader that, for Levi subgroups L and M of G and
σ ∈ Rep (M), the composition

[
rGL i

G
Mσ
]
is given by the geometric

lemma ([BZ77, Lemma 2.12], [Cas74, Theorem 6.3.6]):

(2.2)
[
rGL i

G
Mσ
]
=

∑

w∈WM,L

[
iLL′ ◦ w ◦ rMM ′σ

]
,

where:
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• WM,L =
{
w ∈W

∣∣ w
(
Φ+

M

)
⊆ Φ+

G, w
−1
(
Φ+

L

)
⊆ Φ+

G

}
is the set

of shortest representatives in W of the double coset space
WL\WG/WM .

• For w ∈WM,L we writeM ′ =M∩w−1Lw and L′ = wMw−1∩L.
7. For π ∈ Rep (G), we write

[
rGT π

]
=

l∑
i=1

ni × [λi] for certain λi ∈ X (T )

such that mult
(
λi, r

G
T π
)
= ni > 0. Since dimC

(
rGT π

)
is finite, there

are only finitely many such λi. We call such λi the exponents of π.
8. The representations π = iGMi

(ΩMi,s,χ) are called degenerate prin-

cipal series. The exponent λ0 = rMi

T (ΩMi,s,χ) is called the initial
exponent of π.

9. We say that π = iGMi
(ΩMi,s,χ) is regular if StabW (λ0) = {1}, where

λ0 = rMi

T (ΩMi,s,χ).
10. Let w0,i denote the longest element in WMi,T . It holds that

w0,i ·
(
iGMi

(ΩMi,s,χ)
)
= iGMj

(
ΩMj ,−s,χ

)
,

where χ is the complex conjugate of χ and Mj = w0,iMiw
−1
0,i . We

recall that Mj =Mi, except when G is of type An, D2n+1 or E6.
We call iGMj

(
ΩMj ,−s,χ

)
the invert representation of iGMi

(ΩMi,s,χ)

and note that the invert representation has the same irreducible con-
stituents but in an ”inverted order”. That is, iGMj

(
ΩMj ,−s,χ

)
admits

a Jordan-Hölder series whose irreducible quotients appear an inverted
order than that of iGMi

(ΩMi,s,χ). When χ = 1, the invert was defined
in [Jan95, Remark 2.2.5] as a variation of the Iwahori-Matsumoto in-
volution.

11. The following is a well known fact, commonly referenced as a “cen-
tral character argument”, see [HS20, Lemma. 3.12] for a proof. Let
σ ∈ Rep (G) be irreducible and let λ ∈ X (T ), then

(2.3) λ ≤ rGT σ =⇒ σ ↪→ iGT λ.

2.2. The exceptional group of type E8. Let G be the split, semi-simple,
simply-connected group of type E8. In this subsection we describe the struc-
ture of G. We fix a Borel subgroup B and a maximal split torus T ⊂ B with
notations as in Subsection 2.1. The set of roots, ΦG, contains 240 roots. The
group G is generated by symbols

{xα(r) : α ∈ ΦG, r ∈ F}

subject to the Chevalley relations as in [Ste68, Section 6].
We label the simple roots ∆G and the Dynkin diagram of G using the

Bourbaki labelling:
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Recall that for Θ ⊂ ∆G we denote by MΘ the standard Levi subgroup of
G such that ∆M = Θ. We let Mi denote the Levi subgroup of the maximal
parabolic subgroup Pi = P∆G\{αi}.

Lemma 2.1. Under these notations, it holds that:

1. M1
∼=
{
g ∈ GSpin14 (F )

∣∣∣ det (g) ∈ (F×)
2
}
,

2. M2
∼=
{
g ∈ GL8 (F )

∣∣∣ det (g) ∈ (F×)
2
}
,

3. M3
∼= {(g1, g2) ∈ GL2 (F )×GL7 (F ) | det (g1) = det (g2)},

4. M4
∼= {(g1, g2, g3) ∈ GL3 (F )×GL2 (F )×GL5 (F ) |

det (g1) = det (g2) = det (g3)},
5. M5

∼= {(g1, g2) ∈ GL5 (F )×GL4 (F ) | det (g1) = det (g2)},
6. M6

∼=
{
(g1, g2) ∈ GSpin10 (F )×GL3 (F )

∣∣∣det (g1) = det (g2) ∈ (F×)
2
}
,

7. M7
∼= {(g1, g2) ∈ GE6 (F )×GL2 (F ) | det (g1) = det (g2)},

8. M8
∼= GE7 (F ).

Here det denotes the similitude factors on the relevant groups (in particular,
the similitude factor on GLn is the usual determinant).

We record here, for 1 ≤ i ≤ 8, the cardinality ofWMi,T , the set of shortest
representatives of WG/WMi

i 1 2 3 4 5 6 7 8

|WMi,T | 2,160 17,280 69,120 483,840 241,920 60,480 6,720 240

We also mention that |WG| = 696, 729, 600. Every λ ∈ X(T ) is of the form

λ =

8∑

i=1

Ωi ◦ ω̄αi .

As a shorthand, we will write
(

Ω2

Ω1 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

)
=

8∑

i=1

Ωi ◦ ω̄αi
.

3. The algorithm

In this section, we recall the algorithm used by us to study the degenerate
principal series π = iGMi

(ΩMi,s,χ). This account follows similar lines to those
in [HS20, Section 3] and [HS21, Section 3]. This algorithm was implemented
by the authors using the Sagemath environment [The22] and was used to prove



358 H. HALAWI AND A. SEGAL

our main theorem Theorem 4.1. In fact, most cases were determined using
this algorithm with a few exceptional cases listed and treated in Section 5.

We identify the data defining π by a triple of numbers [i, s, ord (χ)]. In
particular, the reducibility and lengths of the maximal semi-simple subrepre-
sentation and quotient depend only on this triple (and are uniform among χs
with the same order). As explained in [HS20, Remark 3.1], we may assume,
without loss of generality, that s ∈ R.

The algorithm has the following parts:

1. Determine all non-regular such π - as explained below, there is a finite
number of such cases!

2. Determine all reducible regular π - there are only finitely many such
cases!

3. Apply reducibility tests to non-regular π (these may be inconclusive).
4. Apply an irreducibility test to non-regular π (this too may be incon-

clusive). This test uses the so called branching rule calculation
introduced in Subsection 3.4.

5. Determine if π admits a unique irreducible subrepresentation. As will
be explained in Section 3.5, for s < 0, π admits a unique irreducible
quotient and for s > 0, π admits a unique irreducible subrepresenta-
tion.

Here, regular is as in item (9) of Section 2.1.3.
We point out that, by contragredience, it is enough to consider only the

cases where s ≤ 0 since the invert representation of π admits a Jordan-Hölder
series with same irreducible quotients appearing but in inverted order.

3.1. Regularity and the regular case. Recall that we say that π =
iGMi

(ΩMi,s,χ) is regular if StabW (λ0) = {1}, where λ0 = rMi

T (ΩMi,s,χ). We
say that π is non-regular otherwise. Recall, from [HS20, Remark 3.1], that
there are only finitely many non-regular degenerate principal series represen-
tations and only finitely many reducible regular degenerate principal series
representations.

Our first order of business is to describe an algorithm for locating all
non-regular degenerate principal series and determine all reducible regular
degenerate principal series.

We recall, from [HS20, §3.1], the following algorithm to finding all non-
regular degenerate principal series. Recall that

rMi

T (ΩMi,s,1) = s ◦ ω̄αi
− ρB + ρPi

and that

StabW (λ) = StabW (Re (λ)) ∩ StabW (Im (λ))

for λ ∈ X (T ).
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1. First, for a fixed Levi subgroup Mi, we find the set Xi of all values

s ∈ R such that StabW

(
rMi

T (ΩMi,s,1)
)
is non-trivial, namely,

Xi =
{
⟨s ◦ ω̄αi

− ρB + ρPi
, β∨⟩ = 0

∣∣ β ∈ Φ+, s ∈ R
}
.

2. We then find the set Yi of possible orders of characters χ such that

StabW

(
Im
(
rMi

T (ΩMi,s,1)
))

is non-trivial (and note that this is inde-

pendent of s). We take

Yi =




m

∣∣∣∣∣∣∣

w ∈WG,Mi

ω̄αi − w · ω̄αi =
∑

β∈∆ nβω̄β

m| gcd ({nβ | β ∈ ∆})




.

3. The set Zi = Xi × Yi is a set of candidates of pairs (s,m) such that
iGMi

(ΩMi,s,χ) is non-regular if χ is of orderm. We now determine which
pairs (s,m) ∈ Zi indeed yield non-regular representations.

In order to do this, fix a pair (s,m) ∈ Zi, a character χ of order

m and λa.d. an anti-dominant element in the orbit of rMi

T (ΩMi,s,χ).
We recall that StabW (Re (λa.d.)) is generated by the simple reflec-

tions wj such that 〈
λa.d., α

∨
j

〉
= 0.

Thus, StabW (λa.d.) is non-trivial if and only if there exists
w ∈ StabW (Re (λa.d.)) such that w · λa.d. = λa.d..

We now turn to determine which regular representations are reducible.
Assume that π = iGMi

(ΩMi,s,χ) is a regular degenerate principal series repre-
sentation and let λ0 denote its initial exponent. As explained in [HS20, §3.1],
π is irreducible if and only if

⟨λ0, α∨⟩ ≠ 1

for all α ∈ ΦG \ ΦMi
. Evidently, if π is reducible, then ord (χ) ∈ Yi.

Thus, in order to find all regular reducible degenerate principal series
representations, we go through all m ∈ Yi, and for any χ of order m, we find
the set

{s ∈ R | ∃β ∈ ΦG \ ΦMi
: ⟨λ0, β∨⟩ = 1} .

Finally, we check for which such s, iGMi
(ΩMi,s,χ) is regular. It turns out that

for each i and m ∈ Yi, there is exactly one s ≤ 0 such that iGMi
(ΩMi,s,χ)

regular and reducible.
We point out that the process described above is fairly efficient. Dif-

ficulties arise in the latter parts of the algorithm which will be introduced
below.

For the rest of this section, we assume that π = iGMi
(ΩMi,s,χ) is non-

regular.
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3.2. Reducibility tests. We now turn to describe a test for the reducibility
of a non-regular π = iGMi

(ΩMi,s,χ). As mentioned in the introduction, for non-
unitary π there are simpler methods for determining reducibility. The tests
described below are mainly useful to determine the reducibility of a unitary
π. Also, the data provided by the calculation described below is useful for
other purposes such as establishing Siegel-Weil like identities.

Recall, from [Tad98, Lemma 3.1], Tadić’s criterion for reducibility.

Lemma 3.1. Let π = iGM (Ω). Assume there exist smooth representations
Π and π′ of G of finite length and a Levi subgroup L of G such that

1. π ≤ Π, π′ ≤ Π,
2. rGLπ + rGLπ

′ ≰ rGLΠ,
3. rGLπ ≰ rGLπ

′.

Then, π is reducible and admits a common irreducible subquotient with π′.

Thus, in order to prove that a representation π = iGMi
(ΩMi,s,χ) is re-

ducible, we provide another π′ ∈ Rep (G) such that π and π′ share a common
irreducible constituent, while π ̸= π′. We always take Π = iGT λa.d., where
λa.d. is an anti-dominant exponent of π.

In most cases, it is enough to consider π′ = iGMj

(
ΩMj ,t,χl

)
, where l is

a totative1 of ord (χ). In other cases, one takes π′ = iGMj1,j2
(Ωs1,s2,χ,k1,k2),

where Ωs1,s2,χ,k1,k2 ∈ X (Mj1,2) is associated with

(3.1)
(
s1 + χk1

)
◦ ω̄αj1

+
(
s2 + χk2

)
◦ ω̄αj2

,

such that at least one of k1 and k2 is a totative of ord (χ).
Considering Lemma 3.1, the conditions π ≤ Π and π′ ≤ Π hold by con-

struction. As for the other conditions in the lemma:

• If π and π′ share a common anti-dominant exponent then

rGLπ + rGLπ
′ ≰ rGLΠ

since for an anti-dominant exponent of π,

mult
(
λa.d., r

G
T π
)
= mult

(
λa.d., r

G
T π

′) = mult
(
λa.d., r

G
T Π
)
.

• In order to verify that rGT π ≰ rGT π
′, it is enough to find an exponent λ

of π such that mult
(
λ, rGT π

)
> mult

(
λ, rGT π

′).
If π and π′ satisfy these conditions, then π is reducible and contains an

irreducible subquotient in common with π′ (which contains an anti-dominant
exponent).

It remains to explain how to find candidates for π′ for a given

π = iGMi
(ΩMi,s,χ) .

We start by looking for π′ of the form iGMj

(
ΩMj ,t,χl

)
. This is done as follows:

1That is, an integer 0 < l ≤ ord (χ) which is coprime with ord (χ)
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• We first consider the set Ξ of all non-regular degenerate principal se-
ries iGMi

(ΩMi,s,χ) of G. For each π ∈ Ξ, we calculate its set of anti-
dominant exponents.

• We say that π and π′ are in the same orbit if they have a common anti-
dominant exponent. In fact, if they have an anti-dominant exponent
in common then all of their anti-dominant exponents are in common.
Thus, being in the same orbit is an equivalence relation. We partition
Ξ = ∪λa.d.

Ξλa.d.
with respect to this equivalence relation.

• For each Ξλa.d.
and π, π′ ∈ Ξλa.d.

, we go over the exponents λ of π
and check, using (2.2), if the condition mult

(
λ, rGT π

)
> mult

(
λ, rGT π

′)

holds. If this condition holds, then the conditions of Lemma 3.1 are
satisfied.

The process described above would demonstrate the reducibility of most
reducible degenerate principal series. In most cases where the process fails
to produce a representation π′ which demonstrates that π is reducible (in
particular, if Ξλa.d.

= {π} is a singelton), the representation π is irreducible,
but not always. We shall detail an irreducibility test in Subsection 3.4, but
before that we wish to explain how to find π′ in the few cases where π is
reducible but the above process does not yield π′. Such a representation π′

arise from an induction from a 1-dimensional representation of a non-maximal
Levi subgroup. In particular, in every case in the proof of Theorem 4.1,
we were able to find π′ in the form of an induction from a 1-dimensional
representation on Levi subgroup of co-rank 1 (maximal Levi) or 2.

In order to find such π′, we go through all exponents of π. We write the
exponent λ as

λ =
n∑

i=1

riω̄αi
,

where ri ∈ X (F×), and write Θλ = {αi | ri = −1}. If 1 ≤ |Θλ| ≤ n, then
λ can be identified with the initial exponent of π′ = iGMΘλ

Ωλ, where Ωλ is a

character of MΘλ
which satisfies r

MΘλ

T Ωλ = λ.
As above, for such π′, the conditions π ≤ Π, π′ ≤ Π and

rGLπ + rGLπ
′ ≰ rGLΠ

are satisfied by construction. If there exists an exponent λ′ of π such that
mult

(
λ, rGT π

)
> mult

(
λ, rGT π

′), then the condition rGLπ ≰ rGLπ
′ is also satis-

fied. This condition may be tested using (2.2) by going over all exponents λ′

of π.
We note that searching for π′ becomes more difficult (in terms of longer

calculation run-time) with the following factors:

• The list of possible λ roughly increases with the size of the support of
rGT π.
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• The list of possible λ′ roughly increases with the size of the support of
rGT π

′ which, in turn, roughly increases as Θλ decreases.

Luckily, it turns out that for every reducible π, one can find λ and π′ with
|Θλ| equals n− 1 or n− 2. The case of n− 1 is the case π′ = iGMj

(
ΩMj ,t,χl

)

discussed above. And so this discussion is relevant for searching examples
with |Θλ| = n− 2, namely π′ = iGMj1,j2

(Ωs1,s2,χ,k1,k2
).

3.3. Branching rule calculations. In this subsection we describe a process,
named branching rule calculation, which is useful tool for both testing
irreducibility and determining the length of the maximal semi-simple subrep-
resentation of π. In fact, this process is further used in [HS, Appendix A]
for a more detailed study of the Jordan-Hölder series of certain degenerate
principal series representations.

For an irreducible subquotient σ of a degenerate principal series repre-
sentation π, we would wish to determine

[
rGT σ

]
. While this is in many cases

very difficult, we are, however, able to give effective lower bounds to
[
rGT σ

]
.

More precisely, let

S = {f : X (T )→ N | f has a finite support} .
We note that S is endowed with a natural partial order. For any σ ∈ Rep (G),
let fσ ∈ S be defined by

fσ (λ) = mult
(
λ, rGT σ

)
.

In particular, for σ = π, fπ can be calculated using (2.2).

A sequence of functions {fj}kj=1 is called a σ-dominated sequence if it

satisfies the condition f1 ≤ · · · ≤ fk ≤ fσ. A branching rule calculation is
a process by which we construct such a sequence from a known initial function
f1 ≤ fσ.

In fact, in our implementation, we usually construct a unital σ-

dominated sequence {fj}kj=1. That is, a σ-dominated sequence which fur-

ther satisfies f1 = δλ for some λ ≤ rGT σ, where δλ stands for the Kronecker
delta function given by

δλ (λ
′) =

{
1, λ′ = λ

0, λ′ ̸= λ
.

We now explain the algorithm by which we construct such a sequence
and later we will detail how this algorithm can be implemented in a computer
script.

We start with a known initial function f1 ≤ fσ and proceed with the
following recursive process:

1. Assume that we have already constructed a σ-dominated sequence
f1 < · · · < fl.
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2. We choose λ′ ∈ supp (fl) and a Levi subgroup L of G such that L
admits a unique irreducible representation τ such that λ′ ≤ rLT τ .

3. For a choice of (λ′, L, τ) as above, for any µ ∈ X (T ), let

gλ′,L,τ (µ) = max

{
fl (µ) ,

⌈
fl (λ

′)

mult
(
λ′, rLT τ

)
⌉
·mult

(
µ, rLT τ

)
}

= max

{
fl (µ) ,

⌈
fl (λ

′)
fτ (λ′)

⌉
· fτ (µ)

}
.

(3.2)

4. If fl < gλ′,L,τ for some choice of (λ′, L, τ) as in step (2), set
fl+1 = gλ′,L,τ and go back to step (1). Otherwise, we take k = l
and the process terminates.

The terminal function fk in this sequence provides a lower bound to the
multiplicities of exponents appearing in rGT σ.

Remark. The uniqueness condition on τ in item (2) can be slightly
relaxed. In fact, one actually only needs that

[
rLT τ

]
be unique.

A few natural questions arise from the description of this algorithm which
we will now answer:

• How does one choose such an initial function f1? We usually start with
f1 = δλ for a known exponent λ ≤ rGT σ. In fact, for most applications
later in this paper, we consider an irreducible representation σ which
admits an anti-dominant exponent λa.d. and use f1 = δλa.d.

.
• How could one go through all possible triples (λ′, L, τ)? In our imple-

mentation we used a database of Levi subgroups and irreducible rep-
resentation of these Levi subgroups which contain a unique exponent.
This database, listed in Appendix A, is not exhaustive but contains all
the examples which were required for the calculations performed for
this paper.

• Does the order of choices of triples (λ′, L, τ) matter? If one starts
with the same initial function f0 and uses the same database of triples
(λ′, L, τ), then the final element in the sequence will be the same re-
gardless of the order of choices of triples (λ′, L, τ).

• Why is the sequence generated this way indeed σ-dominated? We
assume that f1 < · · · < fl is σ-dominated and consider the triple
(λ′, L, τ) chosen as above and let fl+1 be constructed as in step (3).
We need to show that fl ≤ fl+1 ≤ fσ.

– If µ is not an exponent of τ , then fl+1 (µ) = fl (µ) ≤ fσ (µ).
– If µ is an exponent of σ, then, by construction, fl (µ) ≤ fl+1 (µ).

In order to show that fl+1 (µ) ≤ fσ (µ) we write

[
rGLσ

]
=
∑

k

rk [τk] ,
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where τk are the irreducible representations of L appearing in
the Jordan-Hölder series of rGLσ. Since the Jacquet functor is a
functor, it follows that

[
rGT σ

]
=
∑

k

rk
[
rLT τk

]
.

By assumption, λ′ appears only in one of the τk, say τ1 = τ .
Thus, r1fτ (µ) ≤ fσ (µ). On the other hand,

fl (λ
′) ≤ r1fτ (λ′) .

Hence, fl+1 (µ) ≤ fσ (µ).
Other accounts of this process can be found in [HS20, Subsection 3.3]

and [HS21, Subsection 3.3]. Furthermore, in Appendix B we give an ex-
ample of a branching rule calculation performed in the group E8. A pair
of examples of such calculations, in the case of SL4 (F ), can be found in
[HS21, Appendix C] and an example performed in the group E6 can be found
in [HS20, Appendix B].

We now wish to shortly explain how the branching rule calculation can
be implemented in the computer. In fact, whenever we say “using a branch-
ing rule calculation” later in the text, we mean that such a calculation was
performed using a computer script in [The22].

We start by considering the following equivalence relation on X (T ).
We say that λ, λ′ ∈ X (T ) are A1-equivalent if there exist sequences
λ1, . . . , λk ∈ X (T ) and j1, . . . , jk−1 ∈ {1, . . . , n} such that

1. λ1 = λ and λk = λ′,
2. λt+1 = wit · λt,
3.
〈
λt, α

∨
it

〉
̸= ±1.

By (A.2), fσ (λ) = fσ (λ
′). Thus, it is more convenient (and efficient) to apply

branching rules on equivalence classes of this relation.
The branching rule calculation starts with an irreducible representation

σ and an exponent λ1 ≤ rGT σ on which we perform the calculation.
During a branching rule calculation, we keep track of the following lists:

• A list of A1-equivalence classes κ1, . . . , κt such that the exponents in
each κj are exponents of σ.

• A list of known lower bounds n1, . . . , nt to the multiplicities of the
exponents in each of these equivalence classes.

• A list of “flagged” exponents consisting of either of the following cases:
– Exponents that were added to the support but no branching

rules were applied to them yet.
– Exponents to which we have applied branching rules before but

the lower bound we have for their multiplicities was increased
due to the application of branching rules to other exponents, for
such exponents we would wish to apply the relevant branching
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rules again, in case this will lead to an update in the lower
bounds of multiplicities of other exponents.

The first two lists encode the functions f1, . . . , fl, . . . in the σ-dominated se-
quence we construct. It should be noted that a list in Sagemath (as in Python)
is a dynamic object and elements can be added or removed from a list.

At each step of the calculation, we keep only the data in the most recent
function fl as there is no use for fl−1 in subsequent calculations. The support
of fl is given by the union κ1∪· · ·∪κt of A1-equivalence classes and its values
are given by

(3.3) fl (λ) =

{
nj , λ ∈ κj
0, λ /∈ κ1 ∪ · · · ∪ κt

.

The idea is that at each step of the process, when building fl+1 from fl, we
update the list of equivalency classes κj or the list of multiplicities and update
the list of flags accordingly.

We initiate the calculation by determining the A1-equivalency class κ1 of
λ1 and setting f1 ∈ S by

f1 (λ) =

{
1, λ ∈ κ1
0, λ /∈ κ1

.

The calculation then proceeds by the following recursive process which con-
structs fl+1 from fl:

1. Assume that we have a list of A1-equivalency classes κ1, . . . , κt and a
list of multiplicities n1, . . . , nt such that fl is given by (3.3). We also
assume that the list of flags is non-empty.

2. We go to the first exponent λ in the flag list and go over the list of
branching rules listed in Appendix A (except for the rule given by
(A.2) which was already used when constructing the κjs). For each
branching rule that can be applied to λ (that is, λ fits the relevant
pattern in Appendix A) we proceed as follows:
• Let L be the Levi subgroup of G and let τ be the irreducible

representation of L associated to λ by the branching rule so that
(λ, L.τ) will be a triple as in the algorithm above.

• Calculate gλ′,L,τ . If fl < gλ′,L,τ and then for any exponent
λ′ ∈ supp (gλ′,L,τ ):

– If λ′ ∈ supp (gλ′,L,τ ) while λ′ /∈ supp (fl), then calculate
the A1-equivalency class of λ′ and add it to the list of
equivalency classes. Also add the exponents in this class
to the flag list. This step needs to be done only for the
first such representative of this class (it is natural for more
than one representative to appear together when applying
a branching rule to a certain exponent).
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– If λ ∈ supp (fl) but fl (λ′) < gλ′,L,τ (λ
′), then update the

multiplicity of the class of λ′ and add its exponents to the
flag list (if not there).

3. Finally erase λ from the flag list and if it is not empty, return to step
1. Otherwise, the calculation is terminated.

From the resulting list of equivalency classes and multiplicities, one constructs
fk according to (3.3).

3.4. Irreducibility test. In this subsection we explain how to test for the
irreducibility of π = iGMi

(ΩMi,s,χ) using branching rule calculations.
Let λa.d. denote an anti-dominant exponent of π and let π0 denote an irre-

ducible subquotient of π such that λa.d. ≤ rGT π0. Then, construct a sequence
f0 ≤ f1 ≤ · · · ≤ fk ≤ fπ0

following the process described in Subsection 3.3.

• If fk = fπ, then fπ0 = fπ and it follows that π = π0 is irreducible
since all subquotients of π have their cuspidal support along B. In
particular, π is irreducible.

• In fact, in order to prove that π is irreducible, it is enough to show
that

mult
(
λ0, r

G
T π0

)
= mult

(
λ0, r

G
T π
)
,

mult
(
λ1, r

G
T π0

)
= mult

(
λ1, r

G
T π
)
,

where λ0 is the initial exponent of π and λ1 is its terminal exponent,
namely the initial exponent of the invert of π (see (8) and (10) in
Section 2.1.3). This would imply that π0 is both the unique irreducible
subrepresentation and quotient of π and hence π = π0 is irreducible.

In other words, in order to show that π is irreducible, it is enough
to show that

fk (λ0) = fπ (λ0) , fk (λ1) = fπ (λ1) .

Remark. Most branching rules which appear in Appendix A arose
from examples where we were able to prove that fk (λ0) = fπ (λ0) and
fk (λ1) = fπ (λ1) but were unable to prove that fk = fπ directly. The lat-
ter equality follows from irreducibility.

3.5. Irreducible subrepresentations. Below, we describe a few methods to
determine the length of the maximal semi-simple subrepresentation of the
degenerate principal series representation π = iGMi

(ΩMi,s,χ).

1. If mult
(
λ0, r

G
T π
)
= 1, where λ0 is the initial exponent of π, then π

admits a unique irreducible subrepresentation.
2. Let λa.d. denote an anti-dominant exponent of π and let π0 denote an

irreducible subquotient of π such that λa.d. ≤ rGT π0. If
(3.4) mult

(
λ0, r

G
T π0

)
= mult

(
λ0, r

G
T π
)
,

then π0 is the unique irreducible subrepresentation of π.
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This can, theoretically, be done with exponents other than λa.d.
but in practice, this is enough.

The condition in (3.4) can, in many cases, be verified using branch-
ing rule calculations. Also, this argument is relevant only when s ≤ 0,
since otherwise π would be irreducible (and thus would not be the
subject of investigation for this part of the algorithm).

3. Given a unitary degenerate principal series π = iGMi
(ΩMi,0,χ), then π is

semi-simple of length at most 2 by [Ban02, Lemma 5.2]. In particular,
if it is reducible, it is of length 2.

We note that, in a number of cases, the length of the semi-simple sub-
representation cannot be determined by these methods. This can happen for
cases where the length of the semi-simple subrepresentation can be either 1 or
more. These cases are listed in Theorem 4.1 and are dealt with in Section 5
using various other methods.

Remark. We point out that for s < 0, π admits a unique irreducible
subrepresentation and for s < 0, π admits a unique irreducible quotient. This
is shown in [BJ08, Theorem 6.3] but also follows simply from the fact that for
s > 0, the initial exponent always appears in rGT π with multiplicity 1.

3.6. Remark on calculating multiplicities of exponents using the geometric
lemma. We now wish to describe a relatively efficient algorithm to calculate
mπ,λ = mult

(
λ, rGT π

)
, where λ is an exponent of π = iGMi

(ΩMi,s,χ) using
(2.2).

From (2.2) we have
[
rGT i

G
Mσ
]
=

∑

w∈WM,L

[
w ◦ rMT σ

]

and hence

mπ,λ =
∣∣{w ∈WMi,T

∣∣ w · λ0 = λ
}∣∣ ,

where λ0 = rMi

T (ΩMi,s,χ). However, instead of going through all w ∈ WMi,T

and count for which of them the equality w · λ0 = λ holds, one could proceed
as follows:

• We fix an anti-dominant element λa.d. in the orbit of λ0 and the short-
est element w0 ∈ WMi,T such that w0 · λ0 = λa.d.. This can be
done efficiently using the method described in [LCL92, §5.3.2] and
[HS20, Lemma 3.4].

• Similarly, we fix the shortest word w1 ∈W such that w1 · λ = λa.d..
• We also point out that it is simple to determine StabW (λa.d.).
• We note that every w ∈WMi,T such that w · λ0 = λ can be written in

the form w = w−1
1 uw0 where u ∈ StabW (λa.d.).

• Thus,

mπ,λ =
∣∣{u ∈ StabW (λa.d.)

∣∣ w−1
1 uw0 ∈WMi,T

}∣∣ .
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This is significantly more efficient than calculating
∣∣{w ∈WMi,T

∣∣w · λ0 = λ
}∣∣

especially since, given a reduced expression for w ∈W , it is easy to determine
whether w ∈WMi,T since

w ∈WMi,T ⇐⇒ l (wsi) < l (w) .

3.7. Reducibility and irreducibility via Shahidi’s local coefficients. We fin-
ish this section by recalling a method to determine the reducibility or irre-
ducibility of degenerate principal series using Shahidi’s local coefficients. Fol-
lowing [MS98, Theorem 2.1, Proposition 3.3, Remark 3.4, §4] and [Sha90, §7],
we have:

• π = iGMi
(ΩMi,s,χ) is reducible if and only if

DG (π) = iGMi
(ΩMi,s,χ ⊗ StMi

),

where StMi is the Steinberg representation of Mi, is reducible.
• For s > 0, the generalized principal series iGMi

(ΩMi,s,χ ⊗ StMi) is re-
ducible if and only if

L (1− s, StMi,χ, r)
−1

= 0,

where StMi,χ is the Steinberg representation of Mi twisted by χ and
r is the action of the dual group LMi on the Lie algebra of the dual
unipotent radical LNi.

• The expression L (1− s, StMi,χ, r)
−1

is, in fact, a polynomial in q−s

that is, up to a unit of C [q−s, qs], equal to the numerator of the sim-
plified form of

(3.5)
∏

γ∈Φ
+
G

w·γ /∈Φ+
G

L
(
⟨sω̄αi − ρB + ρPi , γ

∨⟩ − 1, χ⟨ω̄αi
,γ∨⟩

)

L
(
⟨sω̄αi

− ρB + ρPi
, γ∨⟩, χ⟨ω̄αi

,γ∨⟩) ,

where

L (s, χ) = 1

1− q−sχ (ϖ)
.

• Alternatively, one can use Gindikin-Karpelevich factors to determine
the reducibility points of iGMi

(ΩMi,s,χ). Namely, let Jw0,i
(s, χ) be the

Gindikin-Karpelevich factor associated with the interwining-operator

Mw0,i
(s) : iGT λi,s,χ → iGTw0,i · λi,s,χ,

where λi,s,χ = rMi

T (Ωi,s,χ). This factor can be calculated by

(3.6) Jw (s, χ) =
∏

γ∈Φ
+
G

w·γ /∈Φ+
G

L
(
⟨sω̄αi

− ρB + ρPi
, γ∨⟩, χ⟨ω̄αi

,γ∨⟩
)

L
(
⟨sω̄αi

− ρB + ρPi
, γ∨⟩+ 1, χ⟨ω̄αi

,γ∨⟩) .



DEGENERATE PRINCIPAL SERIES OF E8 369

• Thus, in order to find all reducible values of s < 0 such that π =
iGMi

(ΩMi,s,χ) is reducible, one should calculate the zeros of the denom-
inator of the simplified expressions of Jw (s, χ) as a rational function
in q−s.

The above is proven in [MS98] for unramified χ but is well known for
general characters too though we are unable to locate a reference for this
statement. However, our results are independent from this result and it was
only used by us for double-checking our results.

As an example, we consider the case of π = iGMi
(ΩM8,s,χ). The set{

α ∈ Φ+
G

∣∣ w · α /∈ Φ+
G

}
is of cardinality 57. Hence, to begin with, Jw (s, χ) is

given by a quotient of 57 L-functions in the numerator and 57 L-functions in
the denominator. However, once the simplified form of Jw (s, χ) is computed,
one finds that

Jw (s, χ) =
L
(
s− 9

2 , χ
)
L
(
s− 17

2 , χ
)
L
(
s− 27

2 , χ
)
L
(
2s, χ2

)

L
(
s+ 29

2 , χ
)
L
(
s+ 19

2 , χ
)
L
(
s+ 11

2 , χ
)
L (2s+ 1, χ2)

and indeed, the reducibility points s < 0 of iGMi
(ΩM8,s,χ) are shown in Theo-

rem 4.1 to be s ∈
{
− 29

2 ,− 19
2 ,− 11

2 ,− 1
2

}
for χ = 1 and s = − 1

2 for χ of order
2.

As explained in the introduction, while this method solves the question
of reducibility for s ̸= 0, it does not solve this question for unitary degenerate
principal series and it does not address the question of the maximal semi-
simple subrepresentation of a reducible iGMi

(ΩMi,s,χ). This is why all the
tools described above in this section are truly required and supply us with
innovative data. Furthermore, the algorithm above supply useful data for
other applications (such as studying the Jordan-Hölder series of π and various
Siegel-Weil like identities).

4. The main theorem

In this section, we state our main theorem which lists all non-regular
and all reducible degenerate principal series of G. We further determine the
length of the maximal semi-simple subrepresentation and quotient of almost
all cases.

We point out that the theorem is stated for π = iGMi
(ΩMi,s,χ) with s ≤ 0

only. This is enough since:

• By contragredience, iGMi
(ΩMi,s,χ) is regular (or reducible) if and only

if iGMi
(ΩMi,−s,χ) is.

• The maximal semi-simple subrepresentation of π is the invert of the
maximal semi-simple quotient of the invert of π (see (10) in Sec-
tion 2.1.3).

• By Section 3.5, the π = iGMi
(ΩMi,s,χ) admits a unique irreducible quo-

tient when s < 0.
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For most cases of non-regular degenerate principal series π = iGMi
(ΩMi,s,χ),

the questions of reducibility and length of the maximal semi-simple subrepre-
sentation can be resolved using the algorithm from Section 3. The rest of this
section will be devoted to the output of our implementation of the algorithm
in Sagemath. The remaining cases are dealt with in Section 5.

Theorem 4.1. Let π = iGMi
(ΩMi,s,χ) with s ≤ 0 and let k = ord(χ).

1. The following tables Tables 1-8 below lists all triples [i, s, k] such that π
is either non-regular or reducible. In particular, for each triple [i, s, k]
the entry in the ith table for this value of s and k will be
• irr. for non-regular and irreducible π.
• red. for non-regular and reducible π.
• red.∗ for regular and reducible π.

For any triple [i, s, k], not appearing in the tables, the degenerate prin-
cipal series iGMi

(ΩMi,s,χ), with ord(χ) = k, is regular and irreducible.

2. All π = iGMi
(ΩMi,s,χ) admit a unique irreducible subrepresentation,

with the exception of:
(a) [i, s, k] is one of [1,−5/2, 1], [3,−1/2, 2] [6, 0, 1], [6, 0, 2] and

[7,−3/2, 1]. In these cases, the representation π admits a max-
imal semi-simple subrepresentation of length 2.

(b) [i, s, k] is one of [2,−1/2, 1] and [5,−1/2, 1], in which case the
length of the maximal semi-simple subrepresentation of π is at
most 2.

1. For P = P1

s

ord (χ)
1 2

− 23
2

red.∗

− 21
2

irr.

− 19
2

irr.

− 17
2

red.

− 15
2

irr.

− 13
2

red.

− 11
2

red.

− 9
2

irr.

− 7
2

red. red.∗

−3 irr. irr.

− 5
2

red. irr.

−2 irr. irr.

− 3
2

irr. irr.
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s

ord (χ)
1 2

−1 irr. irr.

− 1
2

red. red.

0 irr. irr.

Table 1: P1-Reducibility Points

2. For P = P2

s

ord (χ)
1 2 3

− 17
2

red.∗

− 15
2

irr.

− 13
2

red.

− 11
2

red.

− 9
2

red.

− 7
2

red. red.∗

−3 irr. irr.

− 5
2

red. red.

−2 irr. irr.

− 3
2

red. red. red.∗

− 7
6

irr. irr.

−1 irr. irr.

− 5
6

irr. irr.

− 1
2

red. red. irr.

− 1
6

irr. irr.

0 irr. irr.

Table 2: P2-Reducibility Points
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3. For P = P3

s

ord (χ)
1 2 3 4

− 13
2

red.∗

− 11
2

red.

− 9
2

red.

− 7
2

red. red.∗

−3 irr. irr.

− 5
2

red. red.

−2 red. red.

− 3
2

red. red. red.∗

− 7
6

red. red.

−1 red. red. red.∗

− 5
6

irr. irr.

− 3
4

irr. irr. irr.

− 1
2

red. red. irr. irr.

− 1
4

irr. irr. irr.

− 1
6

irr. irr.

0 irr. irr. irr.

Table 3: P3-Reducibility Points

4. For P = P4

s

ord (χ)
1 2 3 4 5 6

− 9
2

red.∗

− 7
2

red.

− 5
2

red. red.∗

−2 red. red.

− 3
2

red. red. red.∗

− 7
6

red. red.

−1 red. red. red.∗

− 5
6

red. red.

− 3
4

red. red. red.

− 1
2

red. red. red. red. red.∗ red.∗

− 1
3

irr. irr. irr. irr.
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s

ord (χ)
1 2 3 4 5 6

− 3
10

red. red.

− 1
4

irr. irr. irr.

− 1
6

irr. irr. irr. irr.

− 1
10

irr. irr.

0 irr. irr. irr. irr. irr.

Table 4: P4-Reducibility Points

5. For P = P5

s

ord (χ)
1 2 3 4 5

− 11
2

red.∗

− 9
2

red.

− 7
2

red.

− 5
2

red. red.∗

−2 red. red.

− 3
2

red. red. red.∗

− 7
6

red. red.

−1 red. red. red.∗

− 5
6

red. red.

− 3
4

irr. irr. irr.

− 1
2

red. red. red. red. red.∗

− 3
10

irr. irr.

− 1
4

irr. irr. irr.

− 1
6

irr. irr.

− 1
10

irr. irr.

0 irr. irr. irr.

Table 5: P5-Reducibility Points
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6. For P = P6

s

ord (χ)
1 2 3 4

−7 red.∗

−6 red.

−5 red.

−4 red.

−3 red. red.∗

− 5
2

red. red.

−2 red. red. red.∗

− 5
3

irr. irr.

− 3
2

irr. irr.

− 4
3

irr. irr.

−1 red. red. red.

− 2
3

irr. irr.

− 1
2

red. red. red.∗

− 1
3

irr. irr.

− 1
4

irr. irr. irr.

0 red. red. irr. irr.

Table 6: P6-Reducibility Points

7. For P = P7

s

ord (χ)
1 2 3

− 19
2

red.∗

− 17
2

red.

− 15
2

irr.

− 13
2

irr.

− 11
2

red.

− 9
2

red. red.∗

−4 irr. irr.

− 7
2

irr. irr.

−3 irr. irr.

− 5
2

red. red.

−2 irr. irr.

− 3
2

red. irr.
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s

ord (χ)
1 2 3

−1 irr. irr.

− 1
2

red. red. red.∗

− 1
6

irr. irr.

0 irr. irr.

Table 7: P7-Reducibility Points

8. For P = P8

s

ord (χ)
1 2

− 29
2

red.∗

− 27
2

irr.

− 25
2

irr.

− 23
2

irr.

− 21
2

irr.

− 19
2

red.

− 17
2

irr.

− 15
2

irr.

− 13
2

irr.

− 11
2

red.

− 9
2

irr.

− 7
2

irr.

− 5
2

irr.

− 3
2

irr.

− 1
2

red. red.∗

0 irr. irr.

Table 8: P8-Reducibility Points

Remark. According to [GS05], the minimal representation of E8 is
the unique irreducible subrepresentation of [8,−19/2, 1] (note that P8 is the
Heisenberg parabolic subgroup of E8). From the data provided by Tadić’s
reducibility criterion, it follows that the minimal representation is also a sub-
quotient of the following cases: [1,−17/2, 1], [2,−13/2, 1] and [4,−7/2, 1].
Indeed, it is isomorphic to their unique irreducible subrepresentations.

Proof. We separate the proof into four parts: proof of reducibility (for
all reducible π), proof of irreducibility (for most irreducible cases), proof of
unique irreducible subrepresentation (for most cases) and exceptional cases.
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The last part is dealt with in Section 5 while the remainder of this section is
devoted to the first three parts (which use the algorithm from Section 3).

4.1. Reducibility. For most reducible cases, it is enough to find π′ ̸= π
which shares an irreducible subquotient with π. As explained in Subsec-
tion 3.2, for most cases, one can find π′ = iGMj

(
ΩMj ,t,χl

)
which satisfy the

required conditions. In the following tables we list, for each reducible non-
regular [i, s, ord (χ)] a triple

[
j, t, ord

(
χl
)]

= [j, t, ord (χ)] which provides a
representation π′ ̸= π sharing a common irreducible subquotient with π. Fur-
thermore, we list an exponent λ of π such mπ,λ > mπ′,λ, where

mπ,λ = mult
(
λ, rGT π

)
, mπ′,λ = mult

(
λ, rGT π

′) .
In the table, the exponent λ is separated into real and imaginary part,

and should be read as follows:

• Fix a character χ of the prescribed order.
• Let Re (λ) be given by [k1, . . . , k8] and let Im (λ) be given by

[m1, . . . ,m8].
• Then

λ =
8∑

i=1

(kiω̄αi
+ χmi ◦ ω̄αi

) .

i s o (χ) j t Re (λ) Im (λ) mπ,λ mπ′,λ

1 − 17
2 1 2 − 13

2 [−1,−19, 11, 7,−8, 7,−8,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

1 − 13
2 1 7 − 11

2 [−1, 13,−1,−1,−5,−8, 7,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

1 − 11
2 1 8 − 5

2 [−4,−5,−1,−1,−1, 6,−1, 6] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

1 − 5
2 1 3 − 5

2 [2, 1,−1,−2,−1,−1, 3,−1] [0, 0, 0, 0, 0, 0, 0, 0] 2 1

1 − 1
2 1 7 − 3

2 [−5,−1,−1, 5,−1,−5, 4,−5] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 13
2 1 1 − 17

2 [6,−1,−15, 14,−1,−5,−13, 12] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 11
2 1 8 − 13

2 [−1, 11, 11,−7,−5,−4,−1,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 9
2 1 8 − 3

2 [−1, 4, 12,−5,−1,−1,−10, 4] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 7
2 1 1 − 7

2 [−8,−1, 7,−1,−2,−1,−4, 12] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 7
2 2 1 − 7

2 [−1, 4,−4, 3,−4,−4, 3, 4] [0, 1, 1, 1, 1, 0, 0, 1] 1 0

2 − 5
2 1 1 − 1

2 [2,−5,−1,−2, 5,−1,−3, 5] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 1
2 1 6 −1 [4,−3,−1, 2,−3,−1, 3,−1] [0, 0, 0, 0, 0, 0, 0, 0] 2 1

3 − 11
2 1 1 − 19

2 [−6, 6, 12,−1,−23, 11, 6, 5] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

3 − 9
2 1 8 − 15

2 [−9,−1, 15,−7,−1, 8,−16, 7] [0, 0, 0, 0, 0, 0, 0, 0] 2 0

3 − 7
2 1 8 − 1

2 [−1,−11, 9, 1, 6,−8,−1,−4] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

3 − 5
2 1 1 − 5

2 [−4, 1,−5, 3, 4,−3,−5, 3] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

3 −2 1 7 −1
[
−3, 4,−1,− 3

2 ,− 7
2 , 8,−4,− 3

2

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

3 −2 2 7 −1
[
5,−1,−6, 5,−9, 152 , 12 ,− 3

2

]
[0, 0, 0, 0, 0, 1, 1, 1] 1 0

3 − 3
2 1 2 − 3

2 [−1,−1,−4,−1, 4, 2,−3, 2] [0, 0, 0, 0, 0, 0, 0, 0] 3 0

3 − 7
6 1 2 − 5

6

[
−1,−1, 53 ,−2, 23 ,− 4

3 ,
5
3 ,

2
3

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

3 − 1
2 1 6 0 [2, 3, 1,−2,−2, 3,−4, 0] [0, 0, 0, 0, 0, 0, 0, 0] 2 0
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i s o (χ) j t Re (λ) Im (λ) mπ,λ mπ′,λ

4 − 7
2 1 1 − 17

2 [−10,−3,−11, 7, 13,−14, 7,−3] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 − 5
2 1 8 − 1

2 [2,−8,−8, 7,−1, 7,−8,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 −2 1 7 −3
[
2, 52 , 7,− 7

2 ,−1, 72 ,−9,−1
]

[0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 −2 2 7 −3
[
13
2 , 4,−4, 3,−4,−4,−2, 72

]
[1, 0, 0, 0, 0, 0, 0, 1] 1 0

4 − 3
2 1 7 − 1

2 [−1,−2, 2,−5, 6, 1,−5, 2] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 − 3
2 2 7 − 1

2 [−6,−7, 5, 4,−5, 2, 5,−3] [1, 0, 1, 0, 0, 1, 0, 1] 1 0

4 − 7
6 1 6 − 4

3

[
−1, 173 , 173 ,− 19

3 ,−1,− 5
3 ,

7
3 ,

10
3

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 −1 1 3 −1
[
−3,−1,− 3

2 , 4,−2,− 3
2 , 2,−3

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 −1 2 3 −1
[
1
2 ,

7
2 ,−2, 12 ,− 9

2 , 1, 4,−2
]

[1, 1, 0, 1, 1, 0, 0, 0] 1 0

4 − 5
6 1 6 − 1

3

[
− 2

3 ,
2
3 ,−4, 103 ,− 11

3 ,
8
3 ,

2
3 ,− 5

3

]
[0, 0, 0, 0, 0, 0, 0, 0] 2 0

4 − 5
6 3 6 − 1

3

[
1
3 , 5, 1,− 11

3 ,−1, 83 ,−1,−3
]

[2, 0, 0, 2, 0, 1, 0, 0] 1 0

4 − 3
4 1 3 − 1

4

[
11
4 ,− 5

4 ,
7
4 ,− 11

4 ,
5
2 ,−1,− 1

4 ,− 11
4

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

4 − 3
4 2 3 − 1

4

[
7
2 ,− 11

4 ,− 11
4 ,

7
4 ,

5
2 ,−1,− 17

4 ,
7
4

]
[0, 1, 1, 1, 0, 0, 1, 1] 1 0

4 − 1
2 1 5 − 1

2 [3,−1,−1, 0, 1,−2,−1, 2] [0, 0, 0, 0, 0, 0, 0, 0] 62 34

4 − 3
10 1 5 − 1

10

[
− 4

5 ,
6
5 ,

7
5 ,− 8

5 ,− 2
5 ,− 1

5 ,− 3
5 , 2
]

[0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 − 9
2 1 8 − 21

2 [14,−14,−18, 17,−8, 13,−14, 5] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 − 7
2 1 1 − 13

2 [−1, 8, 3,−1,−12, 9,−10, 9] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 − 5
2 1 1 − 7

2 [−2, 2, 4,−5,−1,−1, 14,−10] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 −2 1 1 −1
[
−1, 4,− 1

2 ,−1, 132 ,− 21
2 , 3,−4

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 −2 2 1 −1
[
−1,− 9

2 , 3,
1
2 ,−1,−1,− 7

2 ,
17
2

]
[0, 1, 0, 1, 0, 0, 1, 1] 1 0

5 − 3
2 1 2 − 3

2 [−1, 2, 4,−1,−1,−5, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 −1 1 6 − 1
2

[
11
2 ,

1
2 ,−2,− 3

2 ,− 1
2 ,

5
2 ,− 3

2 ,−2
]

[0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 −1 2 6 − 1
2

[
−1, 52 ,− 3

2 ,
1
2 ,−1, 3,− 9

2 ,−1
]

[0, 1, 1, 1, 0, 0, 1, 0] 1 0

5 − 5
6 1 3 − 1

6

[
4,− 8

3 ,− 2
3 ,− 1

3 ,−1,− 1
3 , 4,−1

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 − 7
6 1 2 − 1

6

[
2, 43 ,− 14

3 ,
1
3 ,

4
3 ,−1, 53 ,−3

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

5 − 7
6 3 2 − 1

6

[
11
3 ,

8
3 ,− 4

3 ,
1
3 ,− 11

3 ,−1, 103 ,− 8
3

]
[2, 2, 2, 1, 1, 0, 1, 1] 1 0

6 −6 1 8 − 23
2 [−7,−3,−1, 17,−18, 11,−17, 5] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 −5 1 7 − 13
2 [−20, 5, 5, 5,−1,−5,−1,−4] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 −4 1 8 − 7
2 [7,−6,−6,−2, 13,−14, 8, 5] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 −3 1 1 − 7
2 [−2, 2, 4,−5,−1,−1, 14,−10] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 − 5
2 1 1 −2

[
−1, 4, 4,− 7

2 ,−2,− 7
2 ,

5
2 ,

3
2

]
[0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 − 5
2 2 1 −2

[
17
2 , 4,

5
2 ,− 15

2 ,
5
2 ,− 7

2 ,
5
2 ,− 7

2

]
[1, 0, 1, 1, 1, 1, 1, 1] 1 0

6 −2 1 7 − 1
2 [−1,−1,−1,−1, 5,−7, 1, 8] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 −1 1 2 − 1
2 [−1, 7, 3,−8, 3, 1,−2, 1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

6 0 1 3 − 1
2 [−1,−1,−3, 2,−1, 4,−1,−4] [0, 0, 0, 0, 0, 0, 0, 0] 2 1

7 − 17
2 1 8 − 25

2 [15,−1,−1, 6,−26, 19,−1,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

7 − 11
2 1 1 − 13

2 [−1,−17,−1, 13,−9, 8,−9, 8] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

7 − 9
2 1 8 − 1

2 [2,−8,−8, 7,−1, 7,−8,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

7 − 5
2 1 1 − 5

2 [−1,−3,−1, 2,−3,−1, 13,−10] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

7 − 3
2 1 1 − 1

2 [−1,−1,−1, 6,−7, 3,−4,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

8 − 19
2 1 1 − 17

2 [8,−9,−9, 8,−1,−1,−7, 6] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

8 − 11
2 1 1 − 13

2 [−1,−1,−12, 11,−1,−1,−10, 9] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

Table 9: Data for the proof of the reducibility of iGMi
(ΩMi,s,χ) using maximal

Levi subgroups.
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In the remaining non-regular reducible cases, one needs to find π′ of the
form π′ = iGMj1,j2

Ωs1,s2,χ,k1,k2
, where Ωs1,s2,χ,k1,k2

is given by (3.1). In the

following table we list the data
[
j, s, k

]
= [[j1, j2] , [s1, s2] , [k1, k2]] for these

cases as well as an exponent λ of π such that mπ,λ > mπ′,λ.

i s o (χ) j s k Re (λ) Im (λ) mπ,λ mπ′,λ

1 − 7
2 1 [1, 8]

[
− 7

2 ,−2
]

[0, 0] [4,−1,−1,−1,−1,−1,−1, 3] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

2 − 3
2 1 [1, 8]

[
1
2 ,−2

]
[0, 0] [3, 3, 4,−4,−1,−1,−2, 1] [0, 0, 0, 0, 0, 0, 0, 0] 2 0

2 − 3
2 2 [2, 8] [−2, 0] [1, 1] [−1, 4,−4,−1,−1, 1, 4,−1] [0, 1, 0, 0, 0, 1, 1, 0] 1 0

3 − 3
2 2 [6, 7]

[
1,− 7

2

]
[0, 1] [−1,−5,−1, 3,−3, 4,−1,−1] [0, 0, 0, 1, 1, 0, 0, 1] 2 0

3 − 7
6 3 [4, 5]

[
3
2 ,− 19

6

]
[0, 1]

[
−1, 53 ,−1,− 1

3 ,
1
3 ,− 4

3 ,
1
3 ,− 4

3

]
[0, 2, 0, 2, 1, 2, 1, 2] 2 0

3 −1 1 [6, 8] [−1, 0] [0, 0]
[
1
2 ,−3,−1, 12 , 32 , 12 ,− 3

2 ,−2
]

[0, 0, 0, 0, 0, 0, 0, 0] 2 0

3 −1 2 [6, 7] [−3, 4] [0, 1]
[
1
2 ,−3,−1, 12 , 32 , 12 ,− 3

2 ,−2
]

[1, 0, 0, 1, 1, 1, 1, 0] 2 0

4 − 7
6 3 [1, 6]

[
6,− 10

3

]
[0, 2]

[
−1, 43 ,− 4

3 ,
1
3 , 0,−1,− 5

3 ,
4
3

]
[0, 1, 2, 1, 0, 0, 1, 1] 2 1

4 − 3
4 4 [5, 6]

[
− 11

4 ,
17
4

]
[3, 3]

[
− 9

4 ,− 13
4 ,

1
2 ,

7
4 ,

1
2 ,− 3

2 ,
1
2 ,−1

]
[1, 1, 2, 1, 2, 2, 2, 0] 2 1

4 − 1
2 2 [3, 8]

[
− 1

2 ,
3
2

]
[1, 0] [−1,−1, 4,−1, 1,−3, 1,−2] [0, 1, 1, 0, 1, 1, 0, 0] 2 0

4 − 1
2 3 [3, 8]

[
− 1

2 ,
3
2

]
[1, 1] [0,−1,−1, 0, 0, 1,−2, 5] [1, 2, 2, 1, 2, 2, 1, 0] 2 0

4 − 1
2 4 [2, 6] [−1, 0] [3, 3] [−1,−2, 2, 1,−2, 2,−4, 3] [0, 3, 1, 1, 3, 1, 2, 2] 2 0

4 − 3
10 5 [2, 5]

[
− 11

10 ,− 1
5

]
[2, 1]

[
− 2

5 ,
6
5 ,−1, 25 ,− 6

5 ,− 1
5 ,

3
5 , 0
]

[3, 1, 0, 2, 4, 4, 3, 0] 2 0

5 − 5
6 3 [2, 3]

[
− 7

6 , 0
]

[2, 0] [0,−1,−2, 1, 2,−2,−1, 1] [2, 0, 2, 1, 1, 2, 0, 1] 2 0

5 − 1
2 1 [3, 8]

[
− 1

2 ,
3
2

]
[0, 0] [−2, 3,−1, 2,−3, 0, 2,−3] [0, 0, 0, 0, 0, 0, 0, 0] 2 0

5 − 1
2 2 [3, 7]

[
− 3

2 ,
3
2

]
[1, 1] [−1, 1, 1, 1,−4, 1, 1,−1] [1, 1, 1, 1, 1, 1, 1, 0] 2 0

5 − 1
2 3 [3, 8]

[
− 1

2 ,
3
2

]
[1, 0]

[
− 5

3 ,−1,− 4
3 ,

8
3 ,− 7

3 ,
4
3 ,−1,− 1

3

]
[2, 0, 1, 1, 1, 2, 0, 1] 2 0

5 − 1
2 4 [2, 5]

[
1
2 ,−1

]
[3, 3] [−1, 1, 2,−2, 0, 1,−2, 0] [0, 2, 1, 2, 1, 1, 2, 1] 2 0

6 −2 2 [2, 3]
[
− 3

2 ,−1
]

[1, 0] [−1,−6, 2,−3, 6,−4, 6,−3] [0, 0, 1, 0, 1, 1, 0, 1] 1 0

6 −1 3 [1, 7]
[
−2, 52

]
[1, 1] [−2, 2,−2, 1, 0,−2, 1,−1] [2, 1, 2, 1, 0, 2, 1, 0] 2 0

6 − 1
2 1 [2, 8]

[
− 1

2 ,−1
]

[0, 0]
[
− 1

2 ,
1
2 ,− 1

2 ,− 1
2 ,−1,−1, 32 , 5

]
[0, 0, 0, 0, 0, 0, 0, 0] 2 0

6 − 1
2 2 [1, 2]

[
1,− 3

2

]
[0, 1]

[
7
2 , 3,− 9

2 ,
3
2 ,−1,− 3

2 ,−1, 32
]

[1, 0, 1, 1, 0, 1, 0, 1] 2 0

6 0 2 [3, 7]
[
− 3

2 ,
1
2

]
[1, 1] [−1,−1,−3, 2, 3,−4, 1,−1] [0, 0, 0, 1, 0, 0, 1, 0] 2 1

7 − 1
2 1 [6, 8]

[
− 7

2 ,
15
2

]
[0, 0] [−4,−9, 3, 5,−1,−1,−1,−1] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

7 − 1
2 2 [3, 8]

[
− 5

2 ,
3
2

]
[1, 0] [−1, 3,−2, 1,−3,−2, 4,−1] [0, 0, 1, 1, 0, 1, 1, 0] 1 0

8 − 1
2 1 [1, 8]

[
− 11

2 ,−1
]

[0, 0] [2,−1,−1,−1,−1,−1,−1, 4] [0, 0, 0, 0, 0, 0, 0, 0] 1 0

Table 10: Data for the proof of the reducibility of iGMi
(ΩMi,s,χ) using non-

maximal Levi subgroups.

4.2. Irreducibility. For most irreducible non-regular π = iGMi
(ΩMi,s,χ), it

is possible to prove irreducibility using the branching rules calculation, as
explained in Subsection 3.4. The only exceptions were those of the cases
[4, 0, 1] and [4, 0, 2], which will be dealt with in Section 5.

4.3. Unique irreducible subrepresentation. Here too, for most reducible
non-regular π = iGMi

(ΩMi,s,χ), one can use the algorithm in Subsection 3.5 to
determine the length of the maximal semi-simple subrepresentation. There
are, however, two kinds of exceptions:
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• π with unique irreducible subrepresentation which could not have been
determined using the algorithm: [2,−5/2, 1], [3,−3/2, 1], [3,−3/2, 2],
[4,−1/2, 1], [4,−1/2, 2], [4,−3/2, 1], [5,−3/2, 1], [6,−2, 1] and [6,−2, 2].

• Non-unitary π with a maximal semi-simple subrepresentation of length
2: [1,−5/2, 1], [3,−1/2, 2] and [7,−3/2, 1].

Also, there are the cases [2,−1/2, 1] and [5,−1/2, 1] where we are able to
show that the maximal semi-simple subrepresentation is of length at most
2. In these cases we further show that the irreducible spherical subquotient
is a subrepresentation and describe the other candidate subrepresentation in
terms of its Langlands data.

4.4. Some remarks regarding the algorithm runtime. We finish this sec-
tion by shortly commenting on the runtime of our algorithm to arrive at the
data in this section and in the following one. As explained in Section 3, the
algorithm is made of various parts, we list them:

1. Generating the object E8, the list of reducible regular points and non-
regular points was a relatively simple matter. We were able to perform
this within a few days on a laptop with 16GB RAM Memory and 8
processors.

2. Organizing the non-regular degenerate principal series into the equiva-
lence classes Ξ = ∪λa.d.

Ξλa.d.
(see Subsection 3.2) and determining re-

ducibility by comparison of different degenerate principal series within
each class, is also a simple matter. This step was calculated in a few
hours on the same computer.

It should be reminded here that there were still cases which are
reducible but there was no data showing their reducibility arising from
another degenerate principal series. For each of these cases, we were
able to find such data arising from an induction from a Levi subgroup
of co-rank 2. Calculating each of these cases could have taken hours,
days or weeks as the search for such data requires two indented loops
going through the exponents of π. For these calculations we used a
computer with 16 processors and 64 GB of RAM memory.

3. Applying branching rule calculation in order to determine irreducibility
or the existence of unique irreducible subrepresentations was the most
tedious process as each case could have taken days or weeks to calculate
on the 16 processors and 64 GB of RAM memory computer.

After improving the algorithm by using the partition of
[
rGT π

]

into A1-equivalency class (see Subsection 3.4) instead of using the A1

branching rule (as we have done in previous cases), runtime of these
cases was decreased significantly. Also, when we obtained a computer
with 256 GB of RAM memory and 32 processors, we were able to
further parallelize the cases.
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4. Some of the arguments in Subsection 5.1 rely on data from various
branching rule calculations, these were the calculations already per-
formed in the previous step.

5. Exceptional cases

In this section, we finish the proof of Theorem 4.1 by resolving the cases
not solved by the algorithm of Section 3.

5.1. Fully resolved cases. In this subsection, we deal with all cases listed
in Section 4.2 and Section 4.3 except for [2,−1/2, 1] and [5,−1/2, 1]. We
organize the discussion according to similarities between the arguments used
for the various cases, such as:

• Using a chain of isomorphisms to embed π in a parabolic induction
that admits a unique irreducible subrepresentation in common with π.

• Using a chain of isomorphisms to embed π in a parabolic induction with
two irreducible subrepresentations and then calculating its intersection
with π.

• Using R-groups of unitary principal series representations of Levi sub-
groups of G.

When χ = 1F× , the representation π = iGMi
Ωi,s,χ admits a unique anti-

dominant exponent and the Orthogonality Rule in [HS21, Appendix A.1] im-
plies that there exists a unique irreducible subquotient π0 of π such that
λa.d. ≤ rGT π0. However, when ord (χ) > 1, this is not necessarily true as can
be seen from [HS21, Propositions 4.7 and 4.8] or Proposition 5.6 below, for
example. In the following lemma, we verify the existence of a unique such π0
for certain π = iGMi

Ωi,s,χ with ord (χ) = 2.

Lemma 5.1. Let χ be a character of F× of order 2. In the following cases,
[i, s, ord (χ)], there exists a unique irreducible subquotient π0 of π = iGMi

Ωi,s,χ

such that rGT π0 contains an anti-dominant exponent λa.d. of π:

[3,−1/2, 2] , [3,−3/2, 2] , [4,−1/2, 2] , [5,−1/2, 2] , [6,−2, 2] .
Proof. We argue by a similar argument to that of [HS21, Proposition

4.7(3)]. We do this by first studying the restricition
(
iLTλa.d.

) ∣∣∣
Lder

of iLTλa.d.

to Lder, where Lder is the derived group of the Levi subgroup L associated
with

Θ (λa.d.) = {α ∈ ∆ | Re (⟨λa.d., α∨⟩) = 0} .
Since G is simply-connected and simply-laced and L is of type An1

×· · ·×Anl
,

it follows that in these cases

Lder =
l∏

k=1

SLnk
(F ) , nk ∈ N.
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Hence, the length of
(
iLTλa.d.

) ∣∣∣
Lder

can be determined from the represen-

tation theory of SLn (F ) (see [GK81, Tad92] for details). In the follow-
ing table, we list one anti-dominant exponent λa.d., the set Θ (λa.d.) and

len
((
iLTλa.d.

) ∣∣∣
Lder

)
for each of these cases:

[i, s, ord (χ)] λa.d. Θ(λa.d.) Lder len
((
iLTλa.d.

) ∣∣∣
Lder

)

[3,−1/2, 2]
(

χ
χ χ χ −1 χ χ −1

)
{1, 2, 3, 4, 6, 7} SL5 × SL3 1

[3,−3/2, 2]
(

χ
χ χ −1 χ χ −1 0

)
{1, 2, 3, 5, 6, 8} SL3 × SL3 × SL2 × SL2 2

[4,−1/2, 2]
(

χ
χ χ χ −1 χ χ 0

)
{1, 2, 3, 4, 6, 7, 8} SL5 × SL4 1

[5,−1/2, 2]
(

χ
χ χ χ −1 χ χ χ

)
{1, 2, 3, 4, 6, 7, 8} SL5 × SL4 1

[6,−2, 2]
(

χ
χ χ −1 0 χ −1 −1

)
{1, 2, 3, 5, 6} SL3 × SL3 × SL2 2

Table 11: Data for the proof of Lemma 5.1.

In the cases [3,−1/2, 2], [4,−1/2, 2] and [5,−1/2, 2] the representation(
iLTλa.d.

) ∣∣∣
Lder

is irreducible and hence, so is iLTλa.d..

In the other two cases, [3,−3/2, 2] and [6,−2, 2], the representation(
iLTλa.d.

) ∣∣∣
Lder

has length 2. Since L is generated by Lder and T , the re-

ducibility of iLTλa.d. is determined by the action of T on the irreducible pieces

of
(
iLTλa.d.

) ∣∣∣
Lder

.

More precisely, we have

L =

{ 〈
Lder, α∨

4 (x1) , α
∨
7 (x2)

∣∣ x1, x2 ∈ F
〉
,〈

Lder, α∨
4 (x1) , α

∨
7 (x2)α

∨
8 (x3)

∣∣ x1, x2, x3 ∈ F
〉
,

[i, s, ord (χ)] = [3,−3/2, 2]
[i, s, ord (χ)] = [6,−2, 2] .

The representation
(
iLTλa.d.

) ∣∣∣
Lder

of Lder can be written as

{
σ
(2)
χ ⊗ σ(3)

χ,χ ⊗ σ(3)
χ,χ ⊗ σ(2)

0 , [i, s, ord (χ)] = [3,−3/2, 2]
σ
(2)
χ ⊗ σ(3)

χ,χ ⊗ σ(3)
0,χ, [i, s, ord (χ)] = [6,−2, 2]

,

where σ
(3)
χ,χ and σ

(3)
0,χ are irreducible unitary principal series representations

of SL3 (F ), σ
(2)
0 is an irreducible unitary principal series representation of

SL2 (F ) and σ
(2)
χ = σ1⊕ σ−1 is a reducible unitary representation of SL2 (F )

of length 2. However, from the representation theory of SL2 (F ) and GL2 (F ),
it follows that α∨

4 (ϖ) ·σϵ = σ−ϵ, where ϵ = ±1. Thus iLTλa.d. is an irreducible
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representation of L in both cases. See [HS21, Proposition 4.7(3)] for more
details.

We note that

Re (⟨λ, α∨⟩) < 0 ∀α /∈ ∆λ.

Hence, by Langlands’ unique irreducible subrepresentation theorem (see
[Jan98, Section 1]),

iGT λa.d.
∼= iGL

(
iLTλa.d.

)

admits a unique irreducible subrepresentation π0 which appears in iGT λa.d.
with multiplicity 1. We now argue that

mult
(
λa.d., r

G
T π0

)
= mult

(
λa.d., r

G
T

(
iGT λa.d.

))
.

Assume to the contrary that there exists a subquotient τ ̸= π0 of iGT λa.d. such
that λa.d. ≤ rGT (τ). By a central character argument, see (2.3), it holds that
τ ↪→ iGT λa.d.. Since π0 is the unique irreducible subrepresentation of iGT λa.d.,
it follows that τ ∼= π0, contradicting the multiplicity 1 property of π0.

Remark. If one chooses a different anti-dominant element λ′a.d. in the
orbit of λa.d. in Table 11, they would have the same real part. Thus Θ ⊂ ∆
and Lder are invariant under the choice of representative of the orbit. Further

more,
(
iLTλ

′
a.d.

) ∣∣∣
Lder

is isomorphic to
(
iLTλa.d.

) ∣∣∣
Lder

Proposition 5.2. In the following cases, [i, s, ord (χ)], the representation
π = iGMi

Ωi,s,χ admits a unique irreducible subrepresentation:

[3,−3/2, 2] , [6,−2, 2] .
Proof. Let λa.d. be an anti-dominant exponent of π and π0 be the

unique irreducible subquotient of π such that λa.d. ≤ rGT π0 as in Table 11
and Lemma 5.1. One checks, using a branching rule calculation (performed
on the computer as explained in Subsection 3.3), that in these cases

mult
(
λa.d., r

G
T π0

)
= |StabW (λa.d.)|

⇒ mult
(
λ0, r

G
T π0

)
= mult

(
λ0, r

G
T π
)
= 2.

From which the claim follows. Here,

|StabW (λa.d.)| =
{
8, [i, s, ord (χ)] = [3,−3/2, 2]
4, [i, s, ord (χ)] = [6,−2, 2] .

In the following, we make a repeated use of a certain inclusion argument.
It is thus convenient to state it in general at this point. For that matter, let
Ω0 = Ωi,s,χ and π = iGMi

Ω0. For j ̸= i let Mi,j =Mi ∩Mj and Ω1 = rMi

Mi,j
Ω0.

By Frobenius reciprocity,

Ω0 ↪→ iMi

Mi,j
Ω1.
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and hence, by induction in stages,

(5.1) π = iGMi
Ω0 ↪→ iGMi

(
iMi

Mi,j
Ω1

)
∼= iGMi,j

Ω1
∼= iGMj

(
i
Mj

Mi,j
Ω1

)
.

Proposition 5.3. In the following cases, [i, s, ord (χ)], the representation
π = iGMi

Ωi,s,χ admits a unique irreducible subrepresentation:

[2,−5/2, 1] , [3,−3/2, 1] , [4,−1/2, 1] , [4,−3/2, 1] ,
[5,−1/2, 2] [5,−3/2, 1] , [6,−2, 1] .

Proof. Since the proof is similar for all cases, we start by outlining it
and conclude by listing the relevant data for each of the cases in Table 12.

For [i, s, ord (χ)] as above, let λ0 = rMi

T Ωi,s,χ. For j ̸= i as in Table 12,

let Mi,j =Mi ∩Mj and Ω1 = rMi

Mi,j
Ω0. It holds that

λ0 = rMi

T Ω = r
Mi,j

T Ω1.

Assume that i
Mj

Mi,j
Ω1 is an irreducible representation ofMj , this can be verified

by a branching rule calculation in Mj or by referring to previous knowledge
on the representation theory of Mj as explained below in Remark 5.1. Let λ1

be an Mj-anti-dominant exponent of i
Mj

Mi,j
Ω1, that is λ1 ≤ rMj

T

(
i
Mj

Mi,j
Ω1

)
and

(5.2) Re (⟨λ1, α∨
l ⟩) ≤ 0 ∀l ̸= j.

By a central character argument, see (2.3), it holds that

i
Mj

Mi,j
Ω1 ↪→ i

Mj

T λ1.

Hence, by (5.1) and induction in stages,

π ↪→ iGMj

(
i
Mj

Mi,j
Ω1

)
↪→ iGT λ1.

By Frobenius reciprocity, any irreducible subrepresentation τ of iGT λ1 must
satisfy

λ1 ≤ rGT τ.
On the other hand, let λa.d. be an anti-dominant exponent of π and let

π0 denote the unique irreducible subquotient of π such that λa.d. ≤ rGT π0. If
ord (χ) = 1 the existence of π0 is automatic, and if ord (χ) = 2, it follows
from Lemma 5.1.

In each of these cases, a branching rule calculation (performed on the
computer as explained in Subsection 3.3) implies that

mult
(
λ1, r

G
T π
)
= mult

(
λ1, r

G
T π0

)
.

It follows that π0 is the unique irreducible subquotient of π which admits λ1
as an exponent. In other words, π0 is the unique irreducible subquotient of π
such that

π0 ↪→ iGT λ1.
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On the other hand, since

mult
(
λa.d., r

G
T π
)
= mult

(
λa.d., r

G
T i

G
T λ1

)
= mult

(
λa.d., r

G
T π0

)
,

it follows that π0 appears in iGT λ1, and in π, with multiplicity 1. We conclude
that π0 is the unique irreducible subrepresentation of π.

i s ord (χ) j λ0 λ1 λa.d.

2 − 5
2 1 1

(
5

−1 −1 −1 −1 −1 −1 −1

) (
−1

2 −1 0 −1 0 −1 0

) (
0

−1 0 −1 0 0 −1 0

)

3 − 3
2 1 7

(
−1

−1 4 −1 −1 −1 −1 −1

) (
0

0 0 −1 0 −1 1 −1

) (
0

0 0 −1 0 0 −1 0

)

4 − 1
2 1 8

(
−1

−1 −1 3 −1 −1 −1 −1

) (
0

0 0 0 −1 0 0 0

) (
0

0 0 0 −1 0 0 0

)

4 − 3
2 1 6

(
−1

−1 −1 2 −1 −1 −1 −1

) (
0

0 0 −1 0 0 −1 −1

) (
0

0 0 −1 0 0 −1 −1

)

5 − 1
2 2 8

(
−1

−1 −1 −1 4 + χ −1 −1 −1

) (
χ

χ χ −1 + χ χ χ χ 1 + χ

) (
χ

χ χ χ −1 χ χ χ

)

5 − 3
2 1 7

(
−1

−1 −1 −1 3 −1 −1 −1

) (
0

0 0 −1 0 −1 1 −1

) (
0

0 0 −1 0 0 −1 0

)

6 −2 1 8

(
−1

−1 −1 −1 −1 4 −1 −1

) (
0

0 0 −1 0 −1 −1 2

) (
0

0 0 −1 0 0 −1 −1

)

Table 12: Data for the proof of Proposition 5.3.

For the case [5,−1/2, 2], χ denotes in Table 12 a character of F× of order 2.

Remark. The above argument, as well as other arguments below, used

the fact that σ = i
Mj

Mi,j
Ω1 is an irreducible representation of Mj . One way to

prove the irreducibility of σ is using branching rule calculations but it can also
be inferred from previous works. We wish to allow for a common reference
for following arguments and thus we treat all values of j and not only 1, 6, 7
and 8.

More precisely, σ is a degenerate principal series ofMj and if its restriction

σ
∣∣∣
Mder

j

to Mder
j is irreducible, then so is σ. For different values of j, one can

find the list of reducible and irreducible degenerate principal series of Mder
j

in the following sources:

• [BJ03] for j = 1,
• [Tad92] for j = 2, 3, 4, 5,
• [BJ03] and [Tad92] for j = 6,
• [HS20,HS21] for j = 7, 8.

It should be noted here that [BJ03] deals only with representations of or-
thogonal groups, while Mder

1 = Spin14 and Mder
6 = Spin10 × SL2. That is,

in order to prove irreducibility, one should also take the isogeny map into
account, using [Tad92].
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A slight modification of the argument made in Proposition 5.3 can be
used to prove the following result.

Proposition 5.4. The representation π = iGMi
Ω4,− 1

2 ,χ
, where χ has order

2, admits a unique irreducible subrepresentation.

Proof. Let Ω0 = Ω4,− 1
2 ,χ

and let

λ0 = rM4

T Ω0 =

(
−1

−1 −1 3 + χ −1 −1 −1 −1

)
.

We fix an anti-dominant exponent

λa.d. =

(
χ

χ χ χ −1 χ χ 0

)

of π. Let Ω1 = rM4

M3,4
Ω0. By (5.1),

π ↪→ iGM3

(
iM3

M3,4
Ω1

)
.

The representation iM3

M3,4
Ω1 of M3 is an irreducible degenerate principal series

of M3. This can be verified by a branching rule calculation in M7 or by a
similar argument to that of Remark 5.1. Furthermore, by invertedness, it
holds that iM3

M3,4
Ω1
∼= iM3

M3,7
Ω2, where

r
M3,7

T Ω2 =

(
−1

−1 3 −1 −1 −1 2 + χ −1

)

and iM3

M3,7
Ω2 is the invert of the irreducible iM3

M3,4
Ω1. It follows, by induction

in stages, that

(5.3) π ↪→ iGM3

(
iM3

M3,7
Ω2

)
∼= iGM7

(
iM7

M3,7
Ω2

)
.

The M7-anti-dominant exponent of iM7

M3,7
Ω2 (see (5.2)) is given by

λ1 =

(
0

−1 0 −1 0 0 2 + χ −1

)
.

By a central character argument, see (2.3),

iM7

M3,7
Ω1 ↪→ iM7

T λ1.

and hence
π ↪→ iGT λ1.

On the other hand, for the unique irreducible subrepresentation π0 of π such
that λa.d. ≤ rGT π0 as in Lemma 5.1, a branching rule calculation shows that

mult
(
λ1, r

G
T π
)
= mult

(
λ1, r

G
T π0

)
= 48.

Arguing as in Proposition 5.3, it follows that π admits a unique irreducible
subrepresentation.
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Proposition 5.5. The representation π = iGM4
Ω4,0,χ, where χ

2 = 1, is
irreducible.

Proof. Let Ω0 = Ω4,0,χ and let Ω1 = rM4

M2,4
Ω0. By (5.1),

π ↪→ iGM2

(
iM2

M2,4
Ω1

)
.

In what follows, we consider a sequence of isomorphisms, similar to the one
in (5.3). That is, we wish to write a sequence of isomorphisms:
(5.4)

iGMik

(
i
Mik

Mik,jk
Ωk

)
∼= iGMjk+1

(
i
Mjk+1

Mik+1,jk+1
Ωk+1

)
∼= iGMik+1

(
i
Mik+1

Mik+1,jk+1
Ωk+1

)
,

where

• jk+1 = ik,
• Ωk is a 1-dimensional representation of Mik,jk ,
• Ωk+1 is a 1-dimensional representation of Mik,jk+1

,

• iMik

Mik,jk
Ωk is an irreducible representation of Mik ,

• iMjk+1

Mjk+1,ik+1
Ωk+1 is the invert representation of i

Mik

Mik,jk
Ωk.

The sequence in (5.4) relies on an isomorphism

(5.5) i
Mik

Mik,jk
Ωk
∼= i

Mjk+1

Mjk+1,ik+1
Ωk+1

of irreducible representations for each k. The irreducibility of each of the

i
Mik

Mik,jk
Ωk follows from a branching rule calculation in Mik and it can also be

inferred from the references in Remark 5.1.
We summarize this data for the sequence of isomorphisms in the following

table

k ik jk r
Mik.jk

T Ωk ik+1 r
Mjk+1,ik+1

T Ωk+1

1 2 4

(
−1

−1 −1 7
2 + χ −1 −1 −1 −1

)
6

(
7
2 + χ

−1 −1 −1 −1 5
2 + χ −1 −1

)

2 6 2

(
7
2 + χ

−1 −1 −1 −1 5
2 + χ −1 −1

)
5

(
−1

−1 −1 −1 5
2 + χ 3

2 + χ −1 −1

)

3 5 6

(
−1

−1 −1 −1 5
2 + χ 3

2 + χ −1 −1

)
8

(
−1

−1 −1 −1 4 −1 −1 1
2 + χ

)

Table 13: Data for the proof of Proposition 5.5.

Namely, the following sequence of isomorphisms hold

(5.6)
iGM2

(
iM2

M2,4
Ω1

)
∼= iGM2

(
iM2

M2,6
Ω2

)
∼= iGM6

(
iM6

M2,6
Ω2

)

∼= iGM6

(
iM6

M5,6
Ω3

)
∼= iGM5

(
iM5

M5,6
Ω3

)
∼= iGM8

(
iM8

M5,8
Ω4

)
.
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In each step we use either induction in stages or invert a representation. That
is:

• iGM2

(
iM2

M2,4
Ω1

)
∼= iGM2

(
iM2

M2,6
Ω2

)
since iM2

M2,4
Ω1 and iM2

M2,6
Ω1 are two ir-

reducible degenerate principal series representations of M2 which are
invert to each other,

• iGM2

(
iM2

M2,6
Ω1

)
∼= iGM6

(
iM6

M2,6
Ω1

)
by induction in stages,

• etc.

It follows that

π ↪→ iGM8

(
iM8

M5,8
Ω4

)
.

Let

λ1 =

(
0

0 0 −1 0 0 0 5
2 + χ

)

be the M8-anti-dominant exponent of iGM8

(
iM8

M5,8
Ω4

)
. By a central character

argument, see (2.3), it follows that

π ↪→ iGM8

(
iM8

M5,8
Ω4

)
↪→ iGT λ1.

Let

λa.d. =

(
0

0 − 1
2 + χ 0 0 − 1

2 + χ 0 0

)

denote the anti-dominant exponent of π and let π0 denote the unique (due to
[HS21, Lemma A.1]) subquotient of π such that λa.d. ≤ rGT π0. A branching
rule calculation yields that

mult
(
λ1, r

G
T π0

)
= 288 = mult

(
λ1, r

G
T π
)
.

Hence, π0 is the unique subquotient of π which is a subrepresentation of
iGT λ1. Thus, π0 is the unique irreducible subrepresentation of π. Since π is
semi-simple, it follows that it is irreducible.

Proposition 5.6. In the following cases, [i, s, ord (χ)], the maximal semi-
simple subrepresentation of π = iGMi

Ωi,s,χ has length 2:

[1,−5/2, 1] , [3,−1/2, 2] .
Proof. We prove the two cases using a similar argument and so we deal

with them simultaneously and point out where the arguments diverge. Let
Ω0 = Ωi,s,χ and π = iGMi

Ω0. We point out that

mult
(
λ0, r

G
T π
)
= 2,

where λ0 = rMi

T Ω0. Hence, π admits a maximal semi-simple subrepresentation
of length at most 2.

For each case, we write a similar sequence of isomorphisms as in (5.4)
(see also (5.6) and Remark 5.1), summarized in the following tables (analog
to Table 13):
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• Fix a character χ of order 2. In the case [3,−1/2, 2]:

k ik jk r
Mik.jk

T Ωk ik+1 r
Mjk+1,ik+1

T Ωk+1

1 1 3

(
−1

−1 5 + χ −1 −1 −1 −1 −1

)
2

(
5 + χ

2 + χ −1 −1 −1 −1 −1 −1

)

2 2 1

(
5 + χ

2 + χ −1 −1 −1 −1 −1 −1

)
8

(
5

−1 −1 −1 −1 −1 −1 4 + χ

)

Table 14: Data for the proof of Proposition 5.6 in the case [3,−1/2, 2].

• In the case [1,−5/2, 1]:

k ik jk r
Mik.jk

T Ωk ik+1 r
Mjk+1,ik+1

T Ωk+1

1 2 1

(
−1

8 −1 −1 −1 −1 −1 −1

)
8

(
5

−1 −1 −1 −1 −1 −1 −2

)

Table 15: Data for the proof of Proposition 5.6 in the case [1,−5/2, 1].

In order to match notations with the previous case, we write Ω3 = Ω2

for this case.

The conclusion of the above discussion is that in both cases it holds that

π ↪→ iGM2,8
Ω3
∼= iGM8

(
iM8

M2,8
Ω3

)
.

The representation iM8

M2,8
Ω3 is reducible and admits a maximal semi-simple

subrepresentation of length 2 (this is the case denoted by [2,−1, 1] in [HS21]).
It follows that iGM2,8

Ω3 admits a maximal semi-simple subrepresentation of
length at least 2.

On the other hand,

mult
(
λ1, r

G
T

(
iGM2,8

Ω3

))
= mult

(
λ1, r

G
T π
)
= 2,

where λ1 = r
M2,8

T Ω3. Hence, iGM2,8
Ω3 admits a maximal semi-simple subrep-

resentation of length precisely 2 and both of these subrepresentation intersect
π, from which the claim follows.

The following is a slight variation of the previous argument.

Proposition 5.7. The representation π = iGM7
Ω7,−3/2 admits a maximal

semi-simple subrepresentation of length 2.



DEGENERATE PRINCIPAL SERIES OF E8 389

Proof. Let Ω0 = Ω7,−3/2 and λ0 = rGT Ω0. We note that

mult
(
λ0, r

G
T π
)
= 2.

Hence, π admits a maximal semi-simple subrepresentation of length at most
2.

We write a similar sequence of isomorphisms to that of (5.4) (see also (5.6)
and Remark 5.1), summarized in the following table (analog to Table 13).

k ik jk r
Mik.jk

T Ωk ik+1 r
Mjk+1,ik+1

T Ωk+1

1 3 7

(
−1

−1 −1 −1 −1 −1 7 −1

)
4

(
−1

−1 5 −2 −1 −1 −1 −1

)

2 4 3

(
−1

−1 5 −2 −1 −1 −1 −1

)
1

(
−1

−4 −1 3 −1 −1 −1 −1

)

Table 16: Data for the proof of Proposition 5.7.

It follows that

π ↪→ iGM1

(
iM1

M1,4
Ω3

)
.

Since iM1

M1,4
Ω3 is a reducible unitary degenerate principal series ofM1, it follows

that iM1

M1,4
Ω3 = σ0 ⊕ σ1, with λa.d. ≤ rM1

T σ0 and λa.d. ≰ rM1

T σ1, where

λa.d. =

(
0

−1 0 −1 0 0 −1 0

)
.

On the other hand, λ1 ≤ rM1

T σ0, r
M1

T σ1, where λ1 = r
M1,4

T Ω3. Using (2.2), one
checks that

mult
(
λ1, r

G
T i

G
M1,4

Ω3

)
= mult

(
λ1, r

G
T π
)
= 2.

On the other hand,

mult
(
λ1, r

G
T i

G
M1
σ0
)
= mult

(
λ1, r

G
T i

G
M1
σ1
)
= 1.

It follows that iGM1
σ0 and iGM1

σ1 each contains a unique irreducible subrepre-
sentation, π0 and π1, both of which intersect π. Thus,

π0 ⊕ π1 ↪→ π.
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5.2. Unresolved cases. We finish with two cases we were unable to fully
resolve, these are the cases of π = iGM2

Ω2,− 1
2
and π = iGM5

Ω5,− 1
2
. In both cases

we show that π admits a maximal semi-simple subrepresentation of length 1
or 2 and that the spherical subquotient of π is a subrepresentation. We were,
however, unable to determine the precise length of the socle. We do, however,
outline computational methods to determine this in the future, when stronger
computers are readily available.

Let π = iGMi
(ΩMi,s,χ) with s < 0. Also, let λa.d. be an anti-dominant

exponent of π and let π0 be an irreducible subquotient of π such that
λa.d. ≤ rGT π0. It seems to be the case that π0 is a subrepresentation of π
automatically. However, we were unable to find a general proof for that.
While this usually follows from a simple branching rule calculation, this line
of argument was insufficient in the following case and the claim requires a
more circuitous proof.

Lemma 5.8. Let π = iGM2
Ω2,− 1

2
and let π0 denote the unique irreducible

subquotient of π such that λa.d. ≤ rGT π0, where

λa.d. =

(
0

0 0 −1 0 0 0 −1

)
.

Then, π0 ↪→ π.

Proof. Since λa.d. is the anti-dominant exponent of π, the uniqueness
of π0 follows from [HS21, Lemma A.1]. In fact, it follows that π0 appears in
iGT λa.d. with multiplicity 1.

We fix the following exponents of π

λ0 =

(
7

−1 −1 −1 −1 −1 −1 −1

)
,

λ1 =

(
−1

−1 −1 −1 −1 5 −1 −1

)
,

λ2 =

(
−1

−1 −1 −2 1 4 −1 −1

)
,

where λ0 is its initial exponent.
By a branching rule calculation, we have

mult
(
λ1, r

G
T π
)
= mult

(
λ1, r

G
T π0

)
= 2.

On the other hand, by a central character argument (see (2.3) for details)
it holds that π0 ↪→ iGT λ1. We consider the normalized intertwining operator
(see [HS21, Subsection 2D] for a short account on these operators and their
properties)

iGT λ1
Nw−→ iGT λ0,

where

w = s5s4s3s2s4s5s1s3s4s2.



DEGENERATE PRINCIPAL SERIES OF E8 391

Note that it decomposes as Nw (λ1) = Nw′ (λ2) ◦Ns5 (λ1), where

w′ = s4s3s2s4s5s1s3s4s2

and that Nw′ (λ2) is an isomorphism between iGT λ2 and iGT λ0.
On the other hand, the operator

iGT λ1
Ns5−→ iGT λ2,

is not an isomorphism. However, (2.2) implies that

mult
(
λa.d., r

G
T ker (Ns5 (λ1))

)
= 0.

It follows that π0 is not contained in the kernel of Ns5 (λ1) or Nw (λ1) and
hence π0 is a subrepresentation of iGT λ0. In particular, since π0 appears in
iGT λ0 with multiplicity 1, it is also a subrepresentation of π.

Remark. By (2.2), mult
(
λ0, r

G
T π
)

= 2. Hence, the length of
the socle of π is either 1 or 2. We point out that, by Table 9, π0 is
also an irreducible subquotient of iGM6

Ω6,−1. It follows from (2.2) that

mult
(
λ0, r

G
T i

G
M6

Ω6,−1

)
= 1 and hence also mult

(
λ0, r

G
T π0

)
= 1, while on

the other hand mult
(
λ0, r

G
T π
)
= 2. Hence, π admits an irreducible subquo-

tient π1 ̸= π0 of π such that λ0 ≤ rGT π1. It remains to determine whether π1 is
a subrepresentation of π or not. Namely, whether the length of the maximal
semi-simple subrepresentation of π is 1 or 2.

It seems that the methods used above are futile for this case. One could
technically use the method of [HS21, Proposition 4.9] to determine whether
π1 is a subrepresentation of π, or not. The method described there has two
steps:

• Find a standard intertwining operator Nw (λ0), such that the kernel
of the operator is composed of the irreducible subrepresentations of π
other than π0.

• Calculate the dimension d of the space of Iwahori-fixed vectors in the
kernel of Nw (λ0). If d = 0, then π0 is the unique irreducible sub-
representation and if d > 0 then π admits a socle of length at least
2.

This is, however, beyond the capabilities of the computers available to us
as the minimal Weyl word that could be used for this is

w = s5s4s3s2s4s5s1s3s4s2.

which is of length 10. The issue is that the required computing time grows ex-
ponentially with the length of the Weyl word and the cardinalities of relevant
Weyl groups and their coset spaces.

below, we suggest a slightly simpler method to determine this in hope
that it could be used in the near future. In the discussion, we give further
indications on the properties of π1.
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Let π, π0, λ0, λ1 and λa.d. be as in Lemma 5.8 and let w be as above.
Let Θ0 = {1, 2, 3, 4, 5}. Since w ∈ WΘ0 , the action of the intertwining

operator Nw (λ0) factors through any of M6, M7 or M8. We will describe a
unified argument for a calculation that can be performed for each choice of
Mj , with j ∈ {6, 7, 8}, to factor through. We will then explain why factorizing
through M8 seems to be the most efficient.

Write Ω0 = Ω2,− 1
2 ,1

and Ω1 = rM2

M2,j
(Ω0).

We now recall, from [HS20,HS21,BJ03], that

length
(
i
Mj

M2,j
Ω1

)
=

{
2, j = 6, 7

3, j = 8
.

More precisely:

• If j = 6 or j = 7, τ = i
Mj

M2,j
Ω1 is of length 2 and one may write a

non-splitting exact sequence

τ0 ↪→ τ ↠ τ1,

where τ0 and τ1 are irreducible and τ1 is spherical. In the case j = 6,
the quotient τ1 is in fact 1-dimensional.

• If j = 8, τ = iM8

M2,8
Ω1 is of length 3 and one may write a non-splitting

exact sequence

τ0 ↪→ τ ↠ τ1 ⊕ τ−1,

where τ0, τ−1 and τ1 are irreducible and τ1 is spherical.

Since

mult
(
λ1, r

Mj

T τ
)
= mult

(
λ1, r

Mj

T τ1

)
= 1,

we conclude that the kernel and image of the intertwining operator N
Mj
w (λ0)

is given by:

I = Im
(
NMj

w (λ0)
)
= τ1, K = ker

(
NMj

w (λ0)
)
=

{
τ0, j = 6, 7

τ0 + τ−1, j = 8
.

Hence, it holds that

iGMj
(K) ↪→ iGM2,j

(Ω1) ↠ iGMj
(I) .

On the other hand, since

mult
(
λ1, r

G
T π0

)
= mult

(
λ1, r

G
T i

G
M2,j

(Ω1)
)
= mult

(
λ1, r

G
T π
)
= 2,

it follows that π0 is the unique irreducible subrepresentation of iGMj
(I).

It follows from the above discussion that π admits a unique irreducible
subrepresentation if and only if π ∩ iGMj

(K) = 0.

In order to determine if the intersection is indeed 0, we consider

dimC
[
πJ ∩ iGMj

(K)
J
]
,



DEGENERATE PRINCIPAL SERIES OF E8 393

where J denotes the Iwahori subgroup of G. That is, we calculate the inter-

section of the 17, 280-dimensional space πJ with iGMj
(K)

J
whose dimension

depends on j and is given by

dimC
(
iGMj

(K)
J
)
=
[
dimC

(
r
Mj

T (K)
)]
×
∣∣WMj ,T

∣∣ .

We collect relevant data in the following table.

j 6 7 8

dimC r
Mj

T (K) 1919 15 120=105+15∣∣WMj ,T
∣∣ 60,480 6,720 240

dimC
(
iGMj

(K)
J
)

116,061,120 100,800 28,800

Thus, while the choice of j = 6 seems more intuitive, it is seems like using
j = 8 would be more efficient.

We have tried to produce the basis of iGMj
(K)

J
on a computer with 256

GB of RAM memory and 32 processors and were not able to create it in
reasonable time but this might be overcome by improving parallelization of
the calculation. Having said that, even if a basis for the module

iGMj
(K)

J

is generated, calculating the intersection πJ ∩ iGMj
(K)

J
will probably also

prove to be difficult, as we we wish to intersect a 17, 280 and 28, 800 dimen-
sional subspaces of a 696, 729, 600 dimensional space.

We now turn to deal with the other unresolved case, π = iGM5
Ω5,− 1

2
. In

this case, a branching rule calculation shows that the irreducible spherical
subquotient π0 of π is a subrepresentation. However, from (2.2) we have
mult

(
λ0, r

G
T π
)
= 30, where

λ0 =

(
−1

−1 −1 −1 4 −1 −1 −1

)

is the initial exponent of π. Thus, it is not immediately clear that the length
of the socle of π is at most 2.

Lemma 5.9. The representation π = iGM5
Ω5,− 1

2
admits a maximal semi-

simple subrepresentation of length at most 2.

Proof. We consider the following exponents of π:

λ0 =

(
−1

−1 −1 −1 4 −1 −1 −1

)
,

λ1 =

(
0

0 0 −1 0 0 0 1

)
,

λa.d. =

(
0

0 0 0 −1 0 0 0

)
.



394 H. HALAWI AND A. SEGAL

Here, λ0 is the initial exponent of π, λa.d. is its anti-dominant exponent. Let
π0 denote the unique irreducible subquotient of π such that λa.d. ≤ rGT π0.

Since mult
(
λ0, r

G
T π
)
= 30 and since a branching rule calculation yielded

only mult
(
λ0, r

G
T π0

)
≥ 4, the claim is not immediate. However, this does

imply that π0 ↪→ π.
On the other hand, [HS21, Lemma A.1] implies that for every σ ∈ Rep (G),

it holds that

288
∣∣∣mult

(
λ1, r

G
T σ
)
.

Let Ω1 = rM5

M5,8
Ω5,−1 1

2
and note that iM8

M5,8
Ω1 is irreducible. Hence, reasoning

as in Proposition 5.3, it follows that

π ↪→ iGM8

(
iM8

M5,8
Ω1

)
↪→ iGT λ1

as λ1 = r
M5,8

T Ω1. By (2.2),

mult
(
λ1, r

G
T π
)
= 864

and on the other hand, a branching rule calculation yields,

mult
(
λ1, r

G
T π0

)
≥ 576.

Hence, π could have at most one more subquotient π1 such that π1 ↪→ iGT λ1.
Thus, the length of the maximal semi-simple subrepresentation of π is at most
2.

Remark. Attempting to follow the methods of [HS21, Proposition
4.9] in order to determine the length of the socle of π is, too, beyond the
capabilities of current available computers and even more so. The expo-
nent λ “closest” to λ0 such that a branching rule calculation guarantees that
mult

(
λ, rGT π0

)
= mult

(
λ, rGT π

)
is λ = λa.d. and the shortest Weyl element w

such that w · λ0 = λ is

w = s5s6s7s8s4s3s2s4s5s6s7s4s1s3s2s4s5s6s4s1s3s2s4s5

which is of length 24 and thus, the associated intertwining operator cannot be
realistically generated in currently available computers. Also, since this word
contains all 8 generators of W , the associated operator does not factor via a
Levi subgroup and the method suggested in Section 5.2 is not applicable here.

Here, we are able to show that the same calculation can be performed with
a Weyl element of length 21. While this is an improvement, this calculation
still seems to be infeasible.

As noted above,

π ↪→ iGT λ1 = iGM4

(
iM4

T λ1

)
.

We also note that, by [HS21, Lemma A.4 and Equation (OR)], iM4

T λ1 is non-
semi-simple of length 2, we write

σ1 ↪→ iM4

T λ1 ↠ σ0,
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where σ0 is spherical.
Let

λ2 =

(
0

0 0 −1 0 0 −1 1

)
.

We show that iM4

T λ2 = σ0 ⊕ σ1 and that πi is the unique irreducible subrep-
resentation of iGM4

σi.
Indeed, let Ω2 denote the 1-dimensional representation of L8 such that

rL8

T Ω2 = λ2. By [NSS20, Corollary 4.4], both iM4

L8
Ω2 and iM4

L8
(Ω2 ⊗ StL8

)
admit a unique irreducible subrepresentation, where L8 is the rank 1 Levi
subgroup introduced in Subsection 2.1.1 item (17). Similarly, so do iGL8

Ω2

and iGL8
(Ω2 ⊗ StL8

).
On the other hand, since

iL8

T λ2 = Ω2 ⊕ (Ω2 ⊗ StL8) ,

it follows that σ0 = iL8

T Ω2 and σ1 = iL8

T (Ω2 ⊗ StL8
). We thus conclude that

πi is the unique irreducible subrepresentation of iGM4
σi.

We now note that σ1 = ker
(
NM4

s8(λ1)

)
. On the other hand, π ↪→ iGT λ1.

If π1 is a subrepresentation of π, then the kernel of Nw′ (λ0)
∣∣∣
π
is non-trivial,

where

w′ = s8s4s3s2s4s5s6s7s4s1s3s2s4s5s6s4s1s3s2s4s5.

Here, too, all 8 generators of W appear and thus, the method suggested in
Section 5.2 cannot be applied to this case.

In order to calculate the dimension of the kernel Nw′ (λ0)
∣∣∣
π
using the

method of [HS21, Proposition 4.9], one first need to generate the element
nw′ ∈ J associated with Nw′ and then apply the basis elements of πJ . How-
ever, using a computer with 256 GB of RAM memory and 36 processors did
not allow us to generate nw′ ∈ J due to the length of w′. In particular, the
calculation runs out of memory (even with an addition of an extra 1 TB of
SWAP memory) when using Weyl elements of length lower than 10. Thus,
it seems likely a much more powerful computer is needed for this particular
task, if such already exists.

Appendix A. Branching rules database

In this section, we retain the notations of Subsection 2.1 and list data on
irreducible representations of Levi subgroups which are used for the branching
rule calculations performed for this paper.

That is, we wish to list triples of (λ,M, τ) where λ is a character of T ,
M is a Levi subgroup of G and τ is the unique irreducible representation of
M such that λ ≤ rMT τ .
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We start, by a general rule. For a character λ of T , set

Θλ = {α ∈ ∆L | ⟨λ, α∨⟩ = 0} .
It holds that M = MΘλ

admits a unique irreducible representation τ such
that λ ≤ rMT τ , as shown in [NSS20, Lemma 2.3], which satisfies

[
r
MΘλ

T τ
]
=
∣∣∣WMΘλ

∣∣∣× [λ] .

This can be decoded by the Orthogonality Rule which states that, for any
irreducible representation σ of G it holds that

(A.1) λ ≤ σ ⇒
∣∣∣WMΘλ

∣∣∣× [λ] ≤ rGT σ.

For other branching rules however, instead of listing the data by Levi
subgroups M of G, it is more convenient to list them by simple factors L of
the derived subgroups Mder. Moreover, we recall that the uniqueness of τ is
not required, only the uniqueness of

[
rLT τ

]
is. Thus we list the semi-simplified

Jacquet functors
[
rLT τ

]
of irreducible representations. Finally, it would be

more convenient to write these in the “intrinsic coordinates” of a maximal
split torus of L instead of those of the torus of G.

That is, we list triples of data
(
L, λ,

[
rGT τ

])
, where:

• L is a simple, split and simply-connected p-adic group (whose Dynkin
diagram is a sub-Dynkin diagram of E8), by abuse of notations we fix
a maximal split torus T of L.

• λ is a character of T .
•
[
rLT τ

]
is the unique semi-simplified Jacquet functor of an irreducible

representation τ of L such that λ ≤ rGT τ .
We separate the list of branching rules by the type of L. Most of these

rules are listed in [HS21, Appendix A] while the rest can be deduced from the
results of [HS20,HS21,BJ03,Jan96,Jan93,BZ76].

For convenience of applying the branching rules, we list the elements
appearing in

[
rLT τ

]
using the action of the Weyl group W = WL of L on the

characters of T . Also, we point out the each rules can be written with several
variations, either due to automorphisms of the Dynkin diagram (if L is of
type An, Dn or E6) but also due to the Aubert involution (see [Ban02]), we
list only one variation of each rule.

A.1. L of type An. Let L be a simple group of type An. We think of
it as a simple factor in the derived group Mder of a Levi subgroup M of G.
We fix a labeling for the Dynkin diagram of type An and use this labeling to
formulate the branching rules arising from L of type An instead of the labeling
inherited from that of the Dynkin diagram of type E8 given in Subsection 2.2.
This labeling is given by
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Below, we list the branching rules arising from L of type An which were
implemented by us in the context of this paper, this list is by no means
exhaustive and there are many branching rules arising from other irreducible
representations of groups of type An:

• If L of type A1, it admits a unique simple root β1. For λ such that
⟨λ, β∨

1 ⟩ ≠ ±1, there exist a unique irreducible representation τ such
that λ ≤ rLT τ . In fact, it holds that

[
rLT (τ)

]
= [λ] + [sβ1 · λ] .

This could be encoded as follows

(A.2) λ ≤ rLT (τ) , ⟨λ, β∨
1 ⟩ ≠ ±1 =⇒ [λ] + [sβ1

· λ] ≤
[
rLT (τ)

]
.

In what follows, branching rules will be encoded in this fashion.
We point out that this rule is correct since L = GL2 (F )× (F×)

m
.

If L was of the form SL2 (F )× (F×)
m+1

, then iLT (λ) would also have
been reducible if ⟨λ, β∨

1 ⟩ is a non trivial quadratic character. However,
there are no such Levi subgroups under our assumptions on G.

• For group L of type An with n ≥ 2, we have the following rule:




λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = ±1,

⟨λ, β∨
k ⟩ = 0 ∀ 2 ≤ k ≤ n

=⇒
[
rLT (τ)

]
=

∑

w∈WL,T

(n− l(w)) · (n− 1)! [w · λ] ,

where M =M{β2...βn}.
For example, in type A2, this rule can be written as

(A.3)





λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = ±1,

⟨λ, β∨
2 ⟩ = 0

=⇒ 2× [λ] + [sβ1
· λ] ≤

[
rLT (τ)

]
.

In type A3, this rule can be written as




λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = 1,

⟨λ, β∨
2 ⟩ = ⟨λ, β∨

3 ⟩ = 0

=⇒ 6× [λ] + 4× [sβ1
· λ] + 2× [sβ2

sβ1
· λ] ≤

[
rLT (τ)

]

• For L of type A3 we have an additional rule:




λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = 1,

⟨λ, β∨
2 ⟩ = 0,

⟨λ, β∨
3 ⟩ = −1

=⇒ 2× [λ] + [sβ1 · λ] + [sβ3 · λ] + 2× [sβ1sβ3 · λ] ≤
[
rLT (τ)

]
.
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• In type A4, we have the following two additional rules:




λ ≤ rLT (τ) ,

⟨λ, β∨
2 ⟩ = 1,

⟨λ, β∨
k ⟩ = 0, k = 1, 3, 4

=⇒ 12× [λ] + 8× [sβ2 · λ] + 4× [sβ3sβ2 · λ]
+4× [sβ1

sβ2
· λ] + 2× [sβ1

sβ3
sβ2
· λ] ≤

[
rLT (τ)

]
.

and




λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = 1,

⟨λ, β∨
4 ⟩ = −1,

⟨λ, β∨
k ⟩ = 0, k = 2, 3

=⇒ 6× [λ] + 4× [sβ1 · λ] + 4× [sβ4 · λ] + 4× [sβ1sβ4 · λ]
+2× [sβ3sβ4 · λ] + 2× [sβ2sβ1 · λ] + 4× [sβ4sβ2sβ1 · λ]
+4× [sβ1

sβ3
sβ4
· λ] ≤

[
rLT (τ)

]
.

• In type A5 we have the following two rules:




λ ≤ rLT (τ) ,

⟨λ, β∨
3 ⟩ = 1,

⟨λ, β∨
k ⟩ = 0, k = 1, 2, 4, 5

=⇒ 36× [λ] + 24× [sβ3
· λ] + 12× [sβ2

sβ3
· λ]

+12× [sβ4
sβ3
· λ] + 6× [sβ2

sβ4
sβ3
· λ] ≤

[
rLT (τ)

]
.

and




λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = 1,

⟨λ, β∨
4 ⟩ = −1,

⟨λ, β∨
k ⟩ = 0, k = 2, 3, 5

=⇒ 12× [λ] + 12× [sβ5
sβ4

sβ2
sβ1
· λ] + 8× [sβ1

· λ] + 8× [sβ4
· λ]

+8× [sβ1
sβ4
· λ] + 8× [sβ4

sβ2
sβ1
· λ] + 8× [sβ1

sβ3
sβ4
· λ]

+8× [sβ5
sβ4

sβ1
· λ] + 4× [sβ3

sβ4
· λ] + 4× [sβ5

sβ4
· λ]

+4× [sβ5sβ1 · λ] + 4× [sβ5sβ1sβ3sβ4 · λ] + 2× [sβ5sβ3sβ4 · λ]
≤
[
rLT (τ)

]
.

A.2. L of type Dn. We fix the following labeling of the Dynkin diagram
of type Dn.
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If L is of type Dn we encode the branching rules in a similar fashion to
that of type An.

• For L of type D4, we have the following two rules:




λ ≤ rLT (τ) ,

⟨λ, β∨
2 ⟩ = 1,

⟨λ, β∨
k ⟩ = 0, k = 1, 3, 4

=⇒ 8× [λ] + 5× [sβ2 · λ] + 2× [sβ1sβ2 · λ] + 2× [sβ3sβ2 · λ]
+2× [sβ4

sβ2
· λ] + [sβ1

sβ3
sβ2
· λ] + [sβ1

sβ4
sβ2
· λ]

+ [sβ3
sβ4

sβ2
· λ] ≤

[
rLT (τ)

]
.

and




λ ≤ rLT (τ) ,

⟨λ, β∨
1 ⟩ = 1,

⟨λ, β∨
4 ⟩ = −1,

⟨λ, β∨
k ⟩ = 0, k = 2, 3

=⇒ 12× [λ] + 8× [sβ1 · λ] + 8× [sβ4 · λ] + 12× [sβ1sβ4 · λ]
+4× [sβ2sβ4 · λ] + 4× [sβ2sβ1 · λ] ≤

[
rLT (τ)

]
.

• For L of type D5, we have the following two rules:




λ ≤ rLT (τ) ,

⟨λ, β∨
5 ⟩ = 1,

⟨λ, β∨
k ⟩ = 0, k = 1, 2, 3, 4

=⇒ 120× [λ] + 96× [sβ5 · λ] + 72× [sβ3sβ5 · λ] + 48× [sβ2sβ3sβ5 · λ]
+48× [sβ4

sβ3
sβ5
· λ] + 32× [sβ4

sβ2
sβ3

sβ5
· λ]

+24× [sβ1
sβ2

sβ3
sβ5
· λ] + 16× [sβ3

sβ2
sβ4

sβ3
sβ5
· λ]

+16× [sβ1sβ2sβ4sβ3sβ5 · λ] + 8× [sβ3sβ1sβ2sβ4sβ3sβ5 · λ]
≤
[
rLT (τ)

]
.

and




λ ≤ rLT (τ) ,

⟨λ, β∨
3 ⟩ = 1,

⟨λ, β∨
k ⟩ = 0, k = 1, 2, 4, 5

=⇒ 24× [λ] + 16× [sβ3
· λ] + 8× [sβ2

sβ3
· λ] + 8× [sβ4

sβ3
· λ]

+8× [sβ5
sβ3
· λ] + 4× [sβ4

sβ5
sβ3
· λ] + 4× [sβ2

sβ5
sβ3
· λ]

+4× [sβ2
sβ4

sβ3
· λ] + 2× [sβ4

sβ2
sβ5

sβ3
· λ]

+2× [sβ3sβ4sβ2sβ5sβ3 · λ] ≤
[
rLT (τ)

]
.

• For L of type D6, we use one branching rule. For this rule, however,
the list of exponents contains 30 different exponents of various multi-
plicities. Thus, we give a rough explanation on how to determine the
Jacquet functor of τ in the relevant case, see [HS21, Lemma A.6] for
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more details. First, we consider the degenerate principal series rep-
resentation σ of L corresponding to the notation [D6, 3, 0, 1]. This is
a direct sum of two irreducible representations, one spherical and the
other is not. We consider the spherical irreducible constituent τ , this
is the unique irreducible representation of L such that





λ ≤ rLT τ
⟨λ, β∨

1 ⟩ = ⟨λ, β∨
4 ⟩ = −1

⟨λ, β∨
k ⟩ = 0, k = 2, 3, 5, 6.

Let τ ′ denote the non-spherical constituent of σ. Using the method
described in [HS21, Appendix B], one can show that

dimC
(
rLT τ

)
= 155,

dimC
(
rLT τ

′) = 5,

dimC
(
rLTσ

)
= 160.

The initial exponent of σ is given by

λ0 =

[
−1

−1 −1 3 −1 −1

]
.

Applying (A.2), together with the above, yields

[
rLT τ

′] = [λ0] + [sβ3
· λ0] + [sβ2

sβ3
· λ0] + [sβ4

sβ3
· λ0] + [sβ2

sβ4
sβ3
· λ0] .

One then computes
[
rLTσ

]
using (2.2) and the structure of

[
rLT τ

]
follows

by reducing the multiplicity of these 5 exponents by 1.

A.3. L of type En. In the branching rules for L of type En, the list of
exponents is long. Thus, we only list the irreducible degenerate principal
series of L from which we derive the branching rules used by us. One then
needs to compute

[
rLT τ

]
using (2.2) in order to determine the branching rule

explicitly.
We fix the following labeling of the Dynkin diagram of group of type E6.

The irreducible degenerate principal series of L of type E6 whose Jacquet
functor

[
rLT τ

]
contribute additional information to the one given previously

are:
[
E6, 5,− 1

2 , 1
]
and

[
E6, 3,− 1

2 , 1
]
.

We fix the following labeling of the Dynkin diagram of group of type E7.
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The irreducible degenerate principal series of L whose Jacquet func-
tor

[
rLT τ

]
contribute additional information to the one given previously are:

[E7, 4, 0, 1], [E7, 5, 0, 1] and
[
E7, 5,− 3

2 , 1
]
.

Appendix B. Example of a branching rule calculation

In this appendix, we would like to demonstrate how a branching rule
calculation is performed by our algorithm. We consider the representation

π = iGM8

(
ΩM8,− 9

2 ,1

)
, namely the case denoted by

[
8,− 9

2 , 1
]
in Section 4 and

show how this calculation shows that this representation is irreducible.
As rGT π has dimension 240 and contains 196 different isomorphism classes

of exponents, we do not list the complete calculation and only follow the
exponents required to show irreducibility. We start with an irreducible sub-
quotient σ which contains the anti-dominant exponent λa.d. of π and show
that it contains the intial exponent λ0 and terminal exponent λt of π with
full multiplicity, that is

mult
(
λ0, r

G
T σ
)
= mult

(
λ0, r

G
T π
)
= 2, mult

(
λt, r

G
T σ
)
= mult

(
λt, r

G
T π
)
= 1.

This implies that σ is both the unique irreducible subrepresentation and the
unique irreducible quotient of π and hence π = σ is irreducible.

In order to do this, we construct a σ-dominated sequence f1 ≤ · · · ≤ f10
so that f10 (λ0) = 2 and f10 (λt) = 1. We start with f1 = δλa.d.

. At each step
of the calculation, the construction of fk+1 from fk is based on one of the
branching rules in Appendix A. In the table below we list the following data:

• An exponent λ′ of σ such that λ′ ∈ supp (fk).
• An exponent λ of σ such that λ′ ∈ supp (fk+1). This is the exponent

on which we obtain new information in this step of the calculation.
• A Levi subgroup L of G and a branching rule which we apply on λ′ in

order to obtain information on the multiplicity of λ in σ (which will
be encoded by fk+1 (λ)).

• A Weyl group element w ∈WM,T such that w · λ′ = λ.
• We also list the value mπ,λ = mult

(
λ, rGT π

)
calculated using (2.2), see

Subsection 3.6 for more information.

Below the table we explain some of the steps and how to read the infor-
mation in the table.
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k λ mπ,λ fk (λ) Rule (Levi) λ′ w

1 λa.d. =

(
0

−1 −1 −1 0 −1 0 −1

)
8 1 – – –

2 λa.d. =

(
0

−1 −1 −1 0 −1 0 −1

)
8 8 OR (M{2,5,6}) λa.d. –

3 λ1 =

(
−1

−1 −2 1 −1 −1 0 −1

)
4 4 A2 (M{2,4}) λa.d. s4

4 λ2 =

(
−1

−1 −2 1 −2 1 −1 −1

)
2 2 A2 (M{6,7}) λ1 s6

5 λ0 =

(
−1

−1 −1 −1 −1 −1 −1 9

)
2 2 A1 λ2 u1

6 λ3 =

(
0

−1 −1 −1 0 −1 −1 1

)
4 4 A2 (M{7,8}) λa.d. s8

7 λ4 =

(
0

−1 −1 −1 −1 1 −2 1

)
2 2 A2 (M{5,6}) λ3 s6

8 λ5 =

(
−1

−1 −2 1 −2 1 −2 1

)
1 1 A2 (M{2,4}) λ4 s4

9 λt =

(
−1

−1 −1 −1 −1 −1 −1 18

)
1 1 A1 λ5 u2

Here

u1 =s8s7s6s5s4s3s2s4s5s1s3

u2 =s8s7s6s5s4s3s2s4s5s6s7s8s1s3s4s5s6s2s4s5s3s4s1s3

· s2s4s5s6s7s6s5s4s3s2s4s5s1s3.
• When the calculation begins, we start with f1 = δλa.d.

. That is,

f1 (µ) =

{
1, µ = λa.d.
0, µ ̸= λa.d.

• In the first step, we consider the exponent λ′ = λa.d. and apply
the orthogonality rule, (A.1), with respect to the Levi subgroup
L = M{α2,α5,α6}. This rule implies that 8 × λa.d. ≤ rGT σ. Hence,
we have

f2 (µ) =

{
8, µ = λa.d.
0, µ ̸= λa.d.

• In the second step, we consider λ′ = λa.d. again and apply the branch-
ing rule associated with Levi groups of type A2 (see (A.3)), in this case
L = M{α2,α4}. Since f2 (λ

′) = 8, this implies that mult
(
τ, rGLσ

)
≥ 4,

where τ is the irreducible representation of L in this rule. The new
data from this step in the calculation is, by (3.2) and (A.3), that

mult
(
λ1, r

G
T σ
)
≥
⌈

f2 (λ
′)

mult
(
λ′, rLT τ

)
⌉
·mult

(
λ1, r

L
T τ
)
=

⌈
8

2

⌉
· 1 = 4,

since λ1 = w4 · λa.d..
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In particular, we have

f3 (µ) =





8, µ = λa.d.
4, µ = λ1
0, otherwise

.

• The next step is similar with λ′ = λ1, L =M{α6,α7}, λ2 = w6 · λ′ and
τ being the relevant representation of L for this case. In particular

mult
(
λ2, r

G
T σ
)
≥
⌈

f3 (λ
′)

mult
(
λ′, rLT τ

)
⌉
·mult

(
λ2, r

L
T τ
)
=

⌈
4

2

⌉
· 1 = 2,

Hence

f4 (µ) =





8, µ = λa.d.
4, µ = λ1
2, µ = λ2
0, otherwise

.

• The last step we detail is applying a sequence of branching rules of type
A1 starting at λ2. As explained in Subsection 3.3, for any exponent
which is A1-equivalent to λ2 has the same multiplicity in σ as λ2 does.
Namely,

f5 (µ) =





8, µ = λa.d.
4, µ = λ1
2, µ ∼ λ2
0, otherwise

,

where ∼ denotes the A1-equivalency relation on S. In particular, the
table also allows us, by reading the Weyl element u1, to write the
sequence of exponents in X (T ) in the definition of ∼ in Subsection 3.3.
This sequence is given by

λ2, w3 · λ2, w1w3 · λ2, . . . , u1 · λ2.
• Applying all the steps listed in the table, we would arrive at the fol-

lowing function

f10 (µ) =





8, µ = λa.d.
4, µ ∼ λ1
2, µ ∼ λ2
4, µ ∼ λ3
2, µ ∼ λ4
1, µ ∼ λ5

.

We note that f10 < fπ since the A1-equivalency of λi has cardinality

i 1 2 3 4 5

Cardinality 3 17 1 2 168
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and 1× 8+ 3× 4+ 17× 2+ 1× 4+ 2× 2+ 168× 1 = 230 < 240. Still,
the calculation implies that π = σ as explained above.
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DEGENERIRANE OSNOVNE SERIJE IZNIMNIH GRUPA
TIPA E8 NAD p-ADSKIM POLJIMA

Hezi Halawi i Avner Segal

Sažetak. U ovom radu proučavamo reducibilnost degeneriranih osnovnih

serija rascjepive, proste, jednostavno povezane izuzetne grupe tipa E8.
Nadalje, računamo maksimalnu poluprostu subreprezentaciju i kvocijent

tih reprezentacija za gotovo sve slučajeve.


