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EQUIDISTANT CURVE OF CONICS IN ISOTROPIC PLANE
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ABSTRACT. In this paper we introduce the concept of equidistant
curve of two curves in an isotropic plane. We study the properties of
equidistant curve of conics and classify them according to their type of
circularity.

1. MOTIVATION

In the Euclidean plane the bisector of an angle is defined as the line that
divides the angle into two equal parts. Each point of an angle bisector is
equidistant from the sides of the angle. That’s why the bisector of two planar
curves is usually defined as the set of all points in the plane that are at the
same distance from two given curves.

It is well-known that the set of points equidistant from two intersecting
lines is a pair of perpendicular lines as well as that a parabola is the set of
points that are equidistant from a point and a line. It is less known that
ellipses and single branches of hyperbolas admit similar definitions, [10]. In
[7] it was shown that all conics can be realized as the equidistant set of two
circles. The set of points equidistant from two nested circles is an ellipse
with foci at their centers. The set of points equidistant from two disjoint,
not nested, circles of different sizes, is that branch of a hyperbola with foci at
their centers which opens around the smaller circle. If the radii of circles are
equal, a straight line is obtained.

In [5] the authors studied the equidistant sets of a conic and a line. They
showed that it is a part of a curve of degree 8 if the conic is an ellipse or a
hyperbola, and it is a part of a curve of degree 6 in the case of parabola. The
degree of obtained curve decreases if the line touches the conic.
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The authors of [1] consider C!-continuous plane rational curves, and
present a method of elimination to obtain a representation of the bisector
in terms of the parameters of the initial curves. In [2] a general theoretical
treatment, from the perspective of the algebraic geometry, of the untrimmed
bisector of two real algebraic plane curves is presented. The trimmed bisector
of two curves is the locus of those points being at the same distance from the
two curves. The untrimmed bisector is the locus of those points that, being
on the normal lines to both curves, are at the same distance from the two
footpoints in the intersection of each curve with the normal line. The points
in the untrimmed bisector are the centers of the circles which are tangent to
both curves. The trimmed bisector is a subset of the untrimmed bisector, [2].

Let us now consider the situation in an isotropic plane. In such a plane
the bisector t of two lines a and b is defined as a line such that Z(a,t) = Z(t,b).
If an isotropic line intersects lines a, b and their bisector in points A, B and T
respectively, then s(A,T) = s(T, B), where s denotes a span whose definition
is given in Section 2. For bisector defined in such a way does not hold that
it is a set of points equidistant from two given lines. For this reason it makes
sense to observe two types of curves, the bisectors and the equidistant curves.
The bisector of the algebraic curves was defined and studied in [3]. In this
paper we offer the definition of the equidistant curve of algebraic curves and
we study the equidistant curves of two conics.

2. INTRODUCTION

Let us start by recalling some basic definitions in an isotropic plane. The
isotropic plane is a real projective plane where the metric is induced by a real
line f and a real point F' incident with it. The lines incident with the absolute
point F' are called isotropic lines, and the points incident with the absolute
line f are called isotropic points. Two lines are parallel if they are incident
with the same isotropic point, and two points are parallel if they are incident
with same isotropic line.

In the affine model of the isotropic plane where the coordinates of points
are defined by x = %, Yy = ?, the absolute line has the equation xy = 0
and the absolute point has the coordinates (0,0,1). For two non-parallel
points A = (za,ya) and B = (xp,yp) a distance is defined by d(A, B) =
xp — x4, and for two parallel points A = (x,y4) and B = (x,yg) a span
is defined by s(4,B) = yp — ya. Two non-parallel lines p and ¢, given by
the equations y = k,z + [, and y = ko + [;, form an angle defined by
Z(p,q) = kg — kyp, [6], [8]. The midpoint of points A and B has coordinates
(%(xA +xp), %(yA + yB)), while the bisector of lines p and ¢ is a line given by
the equation y = % (kp+ky)z+35(l,+1,). If an isotropic line 7 intersects lines p,
g and their bisector in points A, B and T respectively, then s(A,T) = s(T, B).
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This fact was used as a definition of the bisector of the algebraic curves of
general degree, [3].

3. EQUIDISTANT CURVE OF TWO CURVES

Let the curves A and B of degrees n and m, respectively, be given. Every
(horizontal) line y = ¢ intersects A in n points A;, i = 1...n, and B in m
points B, j = 1,...m. Let M;; be midpoints of points 4; and B;. All points
M;; belong to the equidistant curve € of curves A and B. Since every isotropic
line intersects £ in n - m points, we can conclude that £ is a curve of degree
n-m.

EXAMPLE 3.1. The equidistant curve of lines p and g given by the equa-
tions y = kpx + 1, and y = ksx + [, respectively, is the line given by the
equation

2kpkqr — (kp + ki)y + kply + kqglp, = 0.

4. EQUIDISTANT CURVE OF CONICS
Let conics A and B be given by the equations of the form
A ago + a1z + azy® + 2401z + 2a02y + 2a127y = 0,
B...boo + b11x* + bagy® + 2bg1x + 2bo2y + 2b12xy = 0.
In general, ai1,b11 # 0, the equations of A and B can be rewritten as
(4.1) A+ 2p1(y)z + pa(y) = O,
(4.2) B...2% +2q(y)x + q2(y) = 0,
where p;, g; are polinomials of degree i in y, i.e.
p1(y) = aray +aor, p2(y) = a2y’ + 2a02y + ago,
q1(y) = bioy + o1, q2(y) = bazy® + 2bo2y + boo.
After intersecting A and B with the line
(4.4) y=t

we get the intersection points

Aip = <p1 + \/P% p27t> , DBip= <Q1 T4/ CI% - Q2at) .

The midpoints M;;, i,j € {1, 2}, have coordinates

(Pli P —p2—q1 VG — ¢ t)

(4.3)

2

for four combinations of signs. For all four parametrizations above, the fol-
lowing implicit equation of unique quartic curve &£ is obtained:

2
(4.5) [z +p1+ @) —pT — @ +p2+ @] =407 — p2)(@F — @),
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where p;, ¢; are given by (4.3). The term of (4.5) of the highest degree equals
(4.6)

(22 + (a12 + b12) ¥)° + (a2 + baz — afy — b,) yﬂ 2—4(6@2—@22)(17%2—[722)2/47
which equals

162* + 32(a12 + bio)x3y + 8 (2a%y + 2b35 + 3ai2b12 + ags + bao) 2°y?
(4.7) + 4 (a12+b12)(2a12b12+ Az +ba2) 2y
+ ((2012b12 +aga+bo2)? —4(a2y—ag) (b3, *b22)> yt.

Since the deqree of circularety of a curve is defined as a number of its inter-
section points with the absolute line that fall into the absolute point, [4], the
degree of circularity of the obtained quartic obviously depends on the degree
of circularity of initial conics.

THEOREM 4.1. Let A and B be r- and s-circular conics, respectively. The
equidistant curve £ of A and B is an rs-circular quartic.

PrROOF. Let A and B be 1-circular conics, i.e. special hyperbolas. Then

azs = bys = 0 and the coefficient of y* in (4.7) vanishes. Homogenizing
(=21, y = 12) equation (4.5) and setting zo = 0 yields the intersections of

& with the absolute line f as
227 4 4(a1z + bi2)xirs + (2a§2 + 202, + 3a12b12) rixd

(4.8) 5
+ a12b12 (a12 + b12) 125 = 0.

The solution ; = 0 corresponds to the absolute point (0,0, 1). Thus, quartic
£ is circular.

If A is 1-circular conic (special hyperbola) and B be 2-circular conic (cir-
cle), than additionally b13 = 0 holds. Thus, (4.8) turns into

(4.9) 227 4 4ajoxizy + 23,2223 = 0,
which is equivalent to
(410) (E%(ifl + CL12£U2)2 =0.

Now, 21 = 0 is root with multiplicity 2, and the absolute point (0,0,1) is
the intersection of £ and f with the intersection multiplicity 2. Similarly we
conclude that the isotropic point (0, —aj2,1) is also the intersection point of
& and f with the intersection multiplicity 2.

If both conics A and B are circles, than a;2 = 0 also holds, and (4.9)
becomes

(4.11) z] =0.

Thus, all four intersection points of £ with the absolute line coincide with the
absolute point.
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It can be checked similarly that in the cases when at least one of the conic
is non-circular, the obtained quartic is in general also non-circular. ]

4 A B &

a

F1GURE 1. The equidistant curve & of the circle A and spe-
cial hyperbola B (left). The equidistant curve £ of the circles
A and B (right).

The equidistant curve & of the circle B with equation 22—y = 0 and special
hyperbola A with equation 22 —zy+1 = 0 is depicted in Fig. 1 (left). It is given
by 1624 —1623y+422y%+1623 — 1622y +4xy? —y> +122% —8xy+3y° +4x+y+1 =
0 and touches the absolute line at the absolute point and at the isotropic point
of the line y = 2x.

The equidistant curve £ of the circles A and B with equations z? —4y+3 =
0 and 22 — y = 0, respectively, is shown in Fig. 1 (right). It is given by the
equation 16z* — 4022y + 2422 + 9y?> — 18y + 9 = 0. The absolute point is
its double point at which the absolute line touches its both branches. Such a
double point is classified as a singular point of a higher order, [9].

In our study we assumed that ai1,b17 # 0, i.e. we omitted the cases
when conics A and B pass through the isotropic point (0,1,0). Since it is
the isotropic point all horizontal lines pass through, exactly in that cases
equidistant curve degenerates into a cubic or conic.

THEOREM 4.2. Let A and B be two conics and & their equidistant curve.

o If A and B pass through the isotropic point (0,1,0), then £ is a cubic
with a node at (0,1,0). Particularly, if A and B touch each other at
(0,1,0), & splits onto a conic and the common tangent line.
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o If A and B pass through the isotropic point (0,1,0) and one of them
touches the absolute line at (0,1,0), then & is a cubic with a node at
(0,1,0) at which one of the tangent lines coincides with the absolute
line.

o If A and B touch the absolute line at (0,1,0), then &£ is a parabola
touching the absolute line at the same point.

PROOF. If A and B pass through the isotropic point I = (0,1,0) (a1 =
b11 = 0), then they have equations of the form
A 2pi(y)x +pa(y) =0,

B...2q(y)z + ¢2(y) =0,
where p;, ¢; are given by (4.3). The intersection points A, B of A, B with the

line y =t are
A= (_p?,t), B= (_qat).
2p 21

Their midpoint M has coordinates

M= <quz+mt)
dp1q1

and lies on the cubic £ with equation

(4.12) dprgrz + p1gz + p2gi = 0.

If A and B have the common tangent line y = [ at I, then ag; = —a2l and
bo1 = —bi2l, and therefore p1(y) = a12(y — 1) and ¢1(y) = b12(y — ). Now
(4.12) takes the form

(4.13) (y — 1) [4a12b12(y — )2 + a12q2 + bi2pa] = 0.

Thus, we have proved the first part of Theorem 2.
Let us now assume that A touches absolute line f at I, i.e. a;o = 0. From
(4.3) and (4.12), the following equation of £ is obtained:
(4.14)
4ag1 (br2y+bo1)z+ao1 (b22y> +2b02y+boo )+ (b12y+bo1 ) (a2ey®+2aey+ae) = 0.

Homogenizing equation (4.14) and setting xo = 0 yields the intersections of £
with the absolute line f as

(4.15) blzaggxg =0.
Thus, [ is the intersection point of £ and f with intersection multiplicity 3.
Obviously every line y = m through I intersects £ at a unique proper point,
while two other intersection points fall into the isotropic point I. I is therefore
a node of £, Fig. 2.

It is left to study the case when both A and B touch the absolute line f
at I, i.e. aja = b1z = 0. The equation (4.14) becomes

(4.16) 4ao1borx + ao1 (ba2y® + 2bg2y + boo) + bo1 (a22y® + 2ag2y + ago) = 0.
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The equation above represents a parabola touching the absolute line at I. 0O

A

F1GURE 2. The equidistant curve £ of conics A and B
through isotropic point (0,1, 0).

In Fig. 2 the equidistant curve £ of the parabola A with equation = = y?
and special hyperbola B with equation xy = 1 is depicted. It is a cubic curve
given by equation ¥ — 22y +1 = 0.

5. EQUIDISTANT CURVE OF CONIC AND LINE

Let us for the end study the equidistant curve of a line and a conic. It
should be noticed that such a curve is not well defined for the horizontal line.

THEOREM 5.1. Let A be a conic and B a non-horizontal line. For the
equidistant curve € of A and B the following statements hold:

e if B is a non-isotropic line, then & is in general a 0-circular conic,
e if B is an isotropic line, then £ is a conic of the same degree of circu-
larity as A.

PROOF. Let A be given by equation (4.1) and B by
y=kx+1.
The line y = t intersects A in the points (—p1 +/p? —pg,t) and B in the

point (9771, t). Using the same method as in the previous proofs we get the
equation of £ as

(5.1) k(22 +p1) + (1 = y)* = k(0] — pa).
Since the term of the second degree equals

4k* 2% + dk(kayo — ay + (k2ag — 2kais + 1)y?,
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conic € is in general non-circular, see Fig. 3.
If B is an isotropic line given by

T =c,
the equation of &€ is

(5.2) (22 +p1 —¢)* = pi — pa.
The term of the second degree of (5.2) equals
(5.3) 422 4 dayozy + asoy®.

Therefore, after switching to homogeneous coordinates and inserting xg = 0
into (5.2), we get the intersections of £ and the absolute line f as

(5.4) 4xf +4a192129 + azgxg =0.
If A is a circular conic, aza = 0, (5.4) becomes
4371($1 + a12$2) =0.

The solution 27 = 0 corresponds to the absolute point (0,0, 1). Therefore, £
is a circular conic as well. If A is 2-circular conic, ass = a2 = 0, (5.4) turns
to

422 = 0.
Thus, the absolute point is the intersection of £ and f with intersection mul-
tiplicity 2, and £ is 2-circular conic. ]
y
g7 & B

F1GURE 3. The equidistant curve & of circle A and line B.

Fig. 3 shows the circle A with equation y = 22, line B with equation
y = z and their equidistant curve £ with equation 422 — 4zy + y*> —y = 0.
£ is a parabola touching the absolute line at the point (0, 1,2), the isotropic
point of the line y = 2z.
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EKVIDISTANTNE KRIVULJE KONIKA U IZOTROPNOJ
RAVNINI

EMA JURKIN

SAZETAK. U radu uvodimo pojam ekvidistantne krivulje dviju krivulja
u izotropnoj ravnini. Proucavamo svojstva ekvidistantnih krivulja dviju
konika te ih klasificiramo prema tipu cirkularnosti.



