REAL HYPERSURFACES WITH SEMI-PARALLEL NORMAL JACOBI OPERATOR IN THE REAL GRASSMANNIANS OF RANK TWO

HYUNJIN LEE AND YOUNG JIN SUH

Chosun University and Kyungpook National University, Republic of Korea

ABSTRACT. In this paper, we introduce the notion of a semi-parallel normal Jacobi operator for a real hypersurface in the real Grassmannian of rank two, denoted by $\mathbb{Q}^m(\varepsilon)$, where $\varepsilon = \pm 1$. Here, $\mathbb{Q}^m(\varepsilon)$ represents the complex quadric $\mathbb{Q}^m(1) = SO_{m+2}^m/SO_mSO_2$ for $\varepsilon = 1$ and $\mathbb{Q}^m(-1) = SO_{m,2}^m/SO_mSO_2$ for $\varepsilon = -1$, respectively. In general, the notion of semi-parallel is weaker than the notion of parallel normal Jacobi operator. In this paper we prove that the unit normal vector field of a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with semi-parallel normal Jacobi operator is singular. Moreover, the singularity of the normal vector field gives a nonexistence result for Hopf real hypersurfaces in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, admitting a semi-parallel normal Jacobi operator.

1. INTRODUCTION

As one of typical examples of real Grassmannians of rank two, we can consider the complex quadric Q^m , which is a complex hypersurface in the complex projective space $\mathbb{C}P^{m+1}$. The other is the complex hyperbolic quadric Q^{m*} , which can be regarded as the real Grassmann manifold of all oriented spacelike 2-dimensional subspaces in indefinite Euclidean space \mathbb{R}_2^{2m+2} (see Kobayashi-Nomizu [6], Romero [24] and [25], Smyth [26]). The sectional curvature 4ε of the complex quadric Q^m and the complex hyperbolic quadric Q^{m*} differ from

²⁰²⁰ Mathematics Subject Classification. 53C40, 53C55.

Key words and phrases. Semi-parallelism, normal Jacobi operator, \mathfrak{A} -isotropic, \mathfrak{A} -principal, real hypersurfaces, real Grassmannian of rank two, complex quadric, complex hyperbolic quadric.

⁴⁶¹

each other as $\varepsilon = \pm 1$. Therefore, let us denote them by $\mathbb{Q}^m(\varepsilon)$, that is,

$$\mathbb{Q}^{m}(\varepsilon) = \begin{cases} Q^{m} = SO_{m+2}/SO_{m}SO_{2} & \text{for } \varepsilon = 1, \\ Q^{m*} = SO_{m,2}^{0}/SO_{m}SO_{2} & \text{for } \varepsilon = -1. \end{cases}$$

It is well known that the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$ admit two kinds of geometric structures. One is a rank two vector subbundle $\mathfrak{A} = \{A_{\lambda \overline{\varepsilon}} | \lambda \in S^1\}$ which is the set of real structures. The other is a complex structure J on $T_p(\mathbb{Q}^m(\varepsilon)), p \in \mathbb{Q}^m(\varepsilon)$, which anti-commutes with real structure A, AJ = -JA. Then for $m \ge 2$, the triple $(\mathbb{Q}^m(\varepsilon), J, g)$ is a Hermitian symmetric space of rank 2 with the Riemannian metric g and whose sectional curvatures are equal to ± 4 (see Klein [4], Kobayashi-Nomizu [6], Reckziegel [23], Suh [29] and [30]). In particular, Q^1 is isomorphic to the sphere S^2 , and Q^2 is isomorphic to the Riemannian product of two 2-spheres $S^2 \times S^2$ with constant holomorphic sectional curvature. Additionally, the 1-dimensional complex hyperbolic quadric Q^{1^*} is isomorphic to the real hyperbolic space $\mathbb{R}H^2 = SO_{1,2}^0/SO_2$, and the 2-dimensional complex hyperbolic spaces $\mathbb{C}H^1 \times \mathbb{C}H^1$. For these reasons, we suppose $m \ge 3$ throughout this paper (see Klein-Suh [5], Smyth [26] and [27], Suh [28]).

For any $A \in \mathfrak{A}_p$ and $p \in \mathbb{Q}^m(\varepsilon)$, the real structure A induces a splitting $T_p\mathbb{Q}^m(\varepsilon) = V(A) \oplus JV(A)$ into two orthogonal, maximal totally real subspaces of the tangent space $T_p\mathbb{Q}^m(\varepsilon)$. Here V(A) and JV(A) are the (+1)-eigenspace and the (-1)-eigenspace of A, respectively. This implies that for every unit vector $W \in T_p\mathbb{Q}^m(\varepsilon)$, there exist $t \in [0, \frac{\pi}{4}]$, $A \in \mathfrak{A}_p$, and orthonormal vectors $Z_1, Z_2 \in V(A)$ such that

$$W = \cos(t)Z_1 + \sin(t)JZ_2$$

(see Proposition 3 in Reckziegel [23]). Here, t is uniquely determined by the vector W. In particular, the vector W is *singular*, i.e., contained in more than one Cartan subalgebra of $\mathfrak{m} \cong T_p \mathbb{Q}^m(\varepsilon)$, if and only if either t = 0 or $t = \frac{\pi}{4}$ holds. The vectors with t = 0 are called \mathfrak{A} -principal, whereas the vectors with $t = \frac{\pi}{4}$ are called \mathfrak{A} -isotropic. If W is regular, i.e., $0 < t < \frac{\pi}{4}$ holds, then also A and Z_1 , Z_2 are uniquely determined by the unit vector W.

As a remarkable classification of real hypersurfaces in $\mathbb{Q}^m(\varepsilon)$, we introduce the notion of *isometric Reeb flow* of a real hypersurface M in $\mathbb{Q}^m(\varepsilon)$, which means that the Reeb flow on M in $(\mathbb{Q}^m(\varepsilon), J, g)$ satisfies the property $\mathcal{L}_{\xi}g = 0$, where \mathcal{L}_{ξ} is the Lie derivative with respect to $\xi = -JN$ (N is a (local) unit normal vector field of M in $\mathbb{Q}^m(\varepsilon)$). Then the complete classification of real hypersurfaces with isometric Reeb flow are introduced in [8] and [29] as given in the following theorem.

THEOREM A. Let M be a real hypersurface with isometric Reeb flow in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$. Then m is even, say

462

m = 2k, and M is locally congruent to an open part of one of the following hypersurfaces:

- For $\varepsilon = 1$
 - (\mathcal{T}_A) a tube around the totally geodesic $\mathbb{C}P^k$ in the complex quadric $\mathbb{Q}^{2k}(1) = Q^{2k}, \ k \geq 2.$
- For $\varepsilon = -1$
 - (\mathcal{T}_A^*) a tube around the totally geodesic $\mathbb{C}H^k$ in the complex hyperbolic quadric $\mathbb{Q}^{2k}(-1) = Q^{2k^*}, k \geq 2$, or (\mathcal{H}_A^*) a horosphere in $\mathbb{Q}^m(-1) = Q^{m^*}$ whose center at infinity is the
 - (\mathcal{H}_A^*) a horosphere in $\mathbb{Q}^m(-1) = Q^{m^*}$ whose center at infinity is the equivalence class of \mathfrak{A} -isotropic singular geodesic in Q^{m^*} .

As mentioned above, we say that the unit normal vector field N of a real hypersurface M in $\mathbb{Q}^m(\varepsilon)$ is *singular*, if the unit normal vector field N is either \mathfrak{A} -isotropic or \mathfrak{A} -principal (see [10, 29]). In fact, (\mathcal{T}_A) , (\mathcal{T}_A^*) and (\mathcal{H}_A^*) in Theorem A can be regarded as model spaces with \mathfrak{A} -isotropic unit normal vector field N (see Proposition 4.1 in Suh [29]). Apart from this, the following model spaces have an \mathfrak{A} -principal unit normal vector field N in $\mathbb{Q}^m(\varepsilon)$:

- for $\varepsilon = 1$
 - (\mathcal{T}_B) : a tube of radius $0 < r < \frac{\pi}{2\sqrt{2}}$ around the m-dimensional sphere S^m in Q^m .
- for $\varepsilon = -1$ (see Propositions 3.1, 3.2 and 4.1 in Klein-Suh [5])
 - $(\mathcal{T}_{B_1}^*)$: a tube of radius r around the Hermitian symmetric space Q^{m-1^*} which is embedded in Q^{m^*} as a totally geodesic complex hypersurface,
 - $(\mathcal{T}_{B_2}^*)$: a tube of radius r around the m-dimensional real hyperbolic space $\mathbb{R}H^m$ which is embedded in Q^{m*} as a real space form of Q^{m*} , and
 - (\mathcal{H}_B^*) : a horosphere in Q^{m*} whose center at infinity is the equivalence class of an \mathfrak{A} -principal geodesic in Q^{m*} .

On the other hand, a real hypersurface M of $\mathbb{Q}^m(\varepsilon)$ is said to be *Hopf* if the Reeb vector field ξ of M is principal for the shape operator S, meaning $S\xi = g(S\xi, \xi)\xi = \alpha\xi$. Specifically, if the Reeb function $\alpha = g(S\xi, \xi)$ vanishes identically on M, we say that M has vanishing geodesic Reeb flow. Otherwise, it has non-vanishing geodesic Reeb flow.

Recently, a common tool in studying submanifold theory is given by Jacobi operators (see, for example, [1,3,7,8,12,14,16,18,22]). Jacobi operators of a Riemannian manifold $(\overline{M}, g, \overline{R})$ are defined as follows: If \overline{R} is the curvature tensor of \overline{M} , then the Jacobi operator with respect to a unit vector Wat $p \in \overline{M}$ is defined by

$$(\bar{R}_W Z)(p) := \bar{R}((Z, W)W)(p)$$

for any $Z \in T_p \overline{M}$, $p \in \overline{M}$. Consequently, $\overline{R}_W \in \text{End}(T_p \overline{M})$ is a self-adjoint endomorphism of the tangent space $T\overline{M}$ of \overline{M} . Clearly, each tangent vector field W to \overline{M} provides a Jacobi operator with respect to W.

Regarding such Jacobi operators, several classification results have been provided for real hypersurfaces of Hermitian symmetric spaces. For real hypersurfaces in the complex two-plane Grassmannians $\mathbb{G}_2(\mathbb{C}^{m+2})$, in [2,13], Jeong, Machado, Pérez and Suh gave nonexistence theorems concerning the concept of parallelism for Jacobi operators. Additionally, in [31], Wang proved the nonexistence of Hopf hypersurfaces in $\mathbb{G}_2(\mathbb{C}^{m+2})$ admitting a parallel normal Jacobi operator with respect to the generalized Tanaka-Webster connection. On the other hand, Wang [32, 33] classified real hypersurfaces in the complex projective space $\mathbb{C}P^2$ with either constant Reeb sectional curvature or a GTW-parallel structure Jacobi operator, respectively. Furthermore, Pérez and others gave some classification results for real hypersurfaces in complex space forms in terms of the structure Jacobi operator (see Pérez [15], Pérez-Santos [19], Pérez-Santos-Suh [20], Pérez-Suh [21]).

For a real hypersurface M in $\mathbb{Q}^m(\varepsilon)$, the normal Jacobi operator \overline{R}_N can be defined as follows:

$$\bar{R}_N := \bar{R}(\cdot, N)N \in \operatorname{End}(T_pM), \quad p \in M,$$

where N represents a unit normal vector field of M in $\mathbb{Q}^m(\varepsilon)$. Here, \overline{R} denotes the (Riemannian) curvature tensor of $\mathbb{Q}^m(\varepsilon)$. We recall that the normal Jacobi operator \overline{R}_N of M is called *parallel* if $\nabla_X \overline{R}_N = 0$ and is said to be *semi-parallel* when

$$R(X,Y)\bar{R}_N = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]})\bar{R}_N = 0$$

for every tangent vector fields X, Y on M, where the curvature tensor R of M acts as a derivation on \bar{R}_N . The notion of semi-parallelism of the normal Jacobi operator is a generalization of parallelism.

Based on such notions, if the normal Jacobi operator \overline{R}_N of M in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$ is semi-parallel, we can assert that the unit normal vector field N is singular as follows.

THEOREM 1. Let M be a Hopf real hypersurface in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$ for $m \geq 3$. If the normal Jacobi operator \overline{R}_N of M in $\mathbb{Q}^m(\varepsilon)$ is semi-parallel, then the unit normal vector field N is singular. That is, N is either \mathfrak{A} -isotropic or \mathfrak{A} -principal.

By Theorem 1, we can give a classification for Hopf real hypersurfaces in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$ satisfying semi-parallelism of the normal Jacobi operator \bar{R}_N as follows.

THEOREM 2. There does not exist any Hopf real hypersurface in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with semi-parallel normal Jacobi operator.

This paper is organized as follows. In Section 2, we provide preliminaries on $\mathbb{Q}^m(\varepsilon)$ and real hypersurfaces in it. In this section, we introduce some general equations and results for Hopf real hypersurfaces in $\mathbb{Q}^m(\varepsilon)$. In Sections 3, 4, and 5, we can prove these results, respectively. In Section 3, we derive some general equations related to the normal Jacobi operator \overline{R}_N of a Hopf real hypersurface M in $\mathbb{Q}^m(\varepsilon)$. Using these formulas, we show that the unit normal vector field N of M admitting semi-parallel normal Jacobi operator in $\mathbb{Q}^m(\varepsilon)$ is singular. Based on the singularity of N, in Sections 4 and 5, we will consider the classification problem for Hopf real hypersurfaces in $\mathbb{Q}^m(\varepsilon)$ admitting semi-parallel normal Jacobi operator.

2. Preliminaries

We use some references [5, 7, 8, 11] and [17] to recall the Riemannian geometry of the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $\varepsilon = \pm 1$, and some fundamental formulas including the Codazzi and Gauss equations for a real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$. Through this paper all manifolds, vector fields, etc., are considered of class C^{∞} .

Let M be a connected real hypersurface in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. As mentioned before, the ambient space $\mathbb{Q}^m(\varepsilon)$ is equipped with a Kähler structure (J,g) and a real structure A. With respect to the Kähler structure we write $JX = \phi X + \eta(X)N$ and $JN = -\xi$, where N is a (local) unit normal vector field of M and η the corresponding 1-form defined by $\eta(X) = g(\xi, X)$ for any tangent vector field X on M. The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathcal{C}^{\perp}$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and $\phi\xi = 0$. Moreover, since $\mathbb{Q}^m(\varepsilon)$ has also a real structure A, we decompose AX into its tangential and normal components for a fixed $A \in \mathfrak{A}$ and $X \in TM$:

$$AX = BX + g(AX, N)N$$

where BX denotes the tangential component of AX. Since A is symmetric, that is, g(AX, Y) = g(X, AY), we see that the operator B is also symmetric.

By virtue of Proposition 3 in [23], at each point $p \in M$ we can choose a real structure $A \in \mathfrak{A}_p$ such that

$$(2.2) N = \cos(t)Z_1 + \sin(t)JZ_2$$

for some orthonormal vectors $Z_1, Z_2 \in V(A) := \{Z \in T_p \mathbb{Q}^m(\varepsilon) | AZ = Z\}$ and $0 \le t \le \frac{\pi}{4}$. This implies

(2.3)
$$\begin{cases} JN = \cos(t)JZ_1 - \sin(t)Z_2 & \text{(i.e. } \xi = \sin(t)Z_2 - \cos(t)JZ_1), \\ AN = \cos(t)Z_1 - \sin(t)JZ_2, \\ A\xi = \cos(t)JZ_1 + \sin(t)Z_2, \end{cases}$$

and therefore $g(A\xi, N) = g(AN, \xi) = 0$ and $g(A\xi, \xi) = -g(AN, N) = -\cos(2t)$ on M. From this, we assert that the unit vector $A\xi$ of $\mathbb{Q}^m(\varepsilon)$ is tangent to M. Since the real structure A anti-commutes with the Kähler structure J, that is, JA = -AJ, we obtain

(2.4)
$$AN = AJ\xi = -JA\xi = -\phi A\xi - g(A\xi,\xi)N,$$

and

(2.5)
$$\phi BX + g(X, \phi A\xi)\xi = JAX = -AJX = -B\phi X + \eta(X)\phi A\xi,$$

for any $X \in TM$. In addition, from the property of $A^2 = I$, we get

(2.6)
$$B^2 X = X - g(\phi A\xi, X)\phi A\xi, \quad B\phi A\xi = g(A\xi, \xi)\phi A\xi.$$

In [5] and [28], the Riemannian curvature tensor \overline{R} of $\mathbb{Q}^m(\varepsilon)$ was introduced as follows:

$$\bar{R}(U,V)W = \varepsilon \{g(V,W)U - g(U,W)V + g(JV,W)JU - g(JU,W)JV - 2g(JU,V)JW + g(AV,W)AU - g(AU,W)AV + g(JAV,W)JAU - g(JAU,W)JAV \}$$

for any complex conjugation $A \in \mathfrak{A}$ and any vector fields U, V, and $W \in T\mathbb{Q}^m(\varepsilon)$. By virtue of the Gauss and Weingarten formulas, given respectively as $\overline{\nabla}_X Y = \nabla_X Y + g(SX, Y)N$ and $\overline{\nabla}_X N = -SX$, the left-hand side of (2.7) becomes

$$\bar{R}(X,Y)Z = \bar{\nabla}_U \bar{\nabla}_V W - \bar{\nabla}_V \bar{\nabla}_U W - \bar{\nabla}_{[U,V]} W$$
$$= R(X,Y)Z - g(SY,Z)SX + g(SX,Z)SY$$
$$+ g((\nabla_X S)Y,Z)N - g((\nabla_Y S)X,Z)N,$$

where S is the shape operator of M and R is the Riemannian curvature tensor of M defined as $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ for any vector fields X, Y and $Z \in TM$. From this formula and the expression of the curvature tensor \overline{R} of $\mathbb{Q}^m(\varepsilon)$ in (2.7), the Gauss and Codazzi equations for a real hypersurface M in $\mathbb{Q}^m(\varepsilon)$ can be derived as follows:

$$R(X,Y)Z - g(SY,Z)SX + g(SX,Z)SY$$

$$= \varepsilon \{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z + g(BY,Z)BX - g(BX,Z)BY + g(\phi BY,Z)\phi BX + g(\phi BY,Z)g(X,\phi A\xi)\xi + g(Y,\phi A\xi)\eta(Z)\phi BX - g(\phi BX,Z)\phi BY - g(\phi BX,Z)g(Y,\phi A\xi)\xi - g(X,\phi A\xi)\eta(Z)\phi BY \}$$

$$(2.8)$$

and

$$g((\nabla_X S)Y - (\nabla_Y S)X, Z)$$

$$= \varepsilon \{\eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y)$$

$$- g(BY, Z)g(\phi A\xi, X) + g(BX, Z)g(\phi A\xi, Y)$$

$$+ g(A\xi, X)g(\phi BY, Z) + \eta(Z)g(A\xi, X)g(\phi A\xi, Y)$$

$$- g(A\xi, Y)g(\phi BX, Z) - \eta(Z)g(A\xi, Y)g(\phi A\xi, X)\}$$

for any $X, Y, Z \in TM$.

When the Reeb vector field ξ on M is a principal vector field with Reeb curvature function $\alpha = g(S\xi, \xi)$, M is said to be a *Hopf* real hypersurface in $\mathbb{Q}^m(\varepsilon)$. Then, differentiating the equation $S\xi = \alpha\xi$ and using the equation of Codazzi, we obtain the following lemma.

LEMMA 2.1 ([8,29]). Let M be a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$. Then we obtain

(2.10)
$$Y\alpha = (\xi\alpha)\eta(Y) - 2\varepsilon g(A\xi,\xi)g(\phi A\xi,Y)$$

and

$$2S\phi SY - \alpha(S\phi + \phi S)Y$$

(2.11)
$$= 2\varepsilon \{ \phi Y - g(A\xi,\xi)g(\phi A\xi,Y)\xi + \eta(Y)g(A\xi,\xi)\phi A\xi + g(\phi A\xi,Y)A\xi - g(A\xi,Y)\phi A\xi \}$$

for any tangent vector fields X and Y of M.

According to the fact mentioned above, we already knew that $A\xi$ is a tangent vector field on M, that is, $A\xi \in T_pM$ for any point p of M. By using the Gauss formula and the covariant derivative formula given by $(\bar{\nabla}_U A)V = q(U)JAV$ for any $U, V \in T_p\mathbb{Q}^m(\varepsilon)$, it leads to

$$\nabla_X(A\xi) = \overline{\nabla}_X(A\xi) - g(SX, A\xi)N$$

= $q(X)JA\xi + A(\nabla_X\xi) + g(SX,\xi)AN - g(SX, A\xi)N$
= $q(X)\{\phi A\xi + g(A\xi,\xi)N\} + B\phi SX + g(A\phi SX, N)N$
 $- g(SX,\xi)\{\phi A\xi + g(A\xi,\xi)N\} - g(SX, A\xi)N$

for any $X \in T_p M$. Then, by comparing the tangential and the normal components of the above equation, we get, respectively,

(2.12)
$$\nabla_X(A\xi) = q(X)\phi A\xi + B\phi SX - g(SX,\xi)\phi A\xi,$$
$$q(X)g(A\xi,\xi) = -g(A\phi SX,N) + g(SX,\xi)g(A\xi,\xi) + g(SX,A\xi)$$
$$(2.13) = g(\phi SX,\phi A\xi) + g(SX,\xi)g(A\xi,\xi) + g(SX,A\xi)$$

$$= g(\phi SX, \phi A\xi)$$
$$= 2g(SX, A\xi).$$

In particular, if M is Hopf, then the equation (2.13) becomes

(2.14)
$$q(\xi)g(A\xi,\xi) = 2\alpha g(A\xi,\xi)$$

H. LEE AND Y.J. SUH

In [9], the authors prove the following result from (2.10).

LEMMA 2.2 ([9]). Let M be a Hopf real hypersurface in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$. If the Reeb function $\alpha = g(S\xi, \xi)$ identically vanishes on any subset $\mathcal{V} \subset M$, then the normal vector field N is singular on \mathcal{V} .

3. SINGULARITY OF THE UNIT NORMAL VECTOR FIELD ON A HOPF REAL HYPERSURFACE ADMITTING SEMI-PARALLEL NORMAL JACOBI OPERATOR

In this section, from the Gauss equation in the ambient space of the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$ we can define the normal Jacobi operator \bar{R}_N of M in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$. As mentioned in the introduction, we say that the normal Jacobi operator \bar{R}_N of M is *semi-parallel* if the (1, 1)-type tensor field \bar{R}_N satisfies

$$(3.1) R \cdot \bar{R}_N = 0,$$

where the curvature tensor R acts on \bar{R}_N as a derivation. More precisely, it means that $(R(X,Y)\bar{R}_N)Z = 0$ for any tangent vector fields X, Y, Z of M. Using $R(X,Y)(\bar{R}_NZ) = (R(X,Y)\bar{R}_N)Z + \bar{R}_N(R(X,Y)Z)$, we see that equation (3.1) is equivalent to

(3.2)
$$R(X,Y)(\overline{R}_N Z) = \overline{R}_N(R(X,Y)Z).$$

On the other hand, the normal Jacobi operator \bar{R}_N induced from the curvature tensor \bar{R} of $\mathbb{Q}^m(\varepsilon)$ introduced in Section 2 is given, for any vector field U in $T\mathbb{Q}^m(\varepsilon)$, by

(3.3)

$$\bar{R}_N U = \bar{R}(U, N)N$$

$$= \varepsilon \{ U - g(U, N)N + 3g(U, \xi)\xi + g(AN, N)AU$$

$$- g(AN, U)AN - g(A\xi, U)A\xi \} \in T\mathbb{Q}^m(\varepsilon),$$

where $JN = -\xi$ and $g(JAN, N) = -g(AJN, N) = g(A\xi, N) = 0$. It means that the tensor field \bar{R}_N of type (1,1) defined by (3.3) is an endomorphism of $T\mathbb{Q}^m(\varepsilon)$. From this and $T\mathbb{Q}^m(\varepsilon) = TM \oplus \operatorname{span}\{N\}$, the vector field $\bar{R}_N Y$ for any tangent vector field Y of M is decomposed as follows:

$$\bar{R}_N Y = (\bar{R}_N Y)^\top + g(\bar{R}_N Y, N) N_s$$

where $(\cdot)^{\top}$ denotes the tangential part of (\cdot) .

Bearing in mind $g(\bar{R}(Y, N)N, N) = 0$, the normal part of $\bar{R}_N Y$ vanishes on M in $\mathbb{Q}^m(\varepsilon)$. Hence, we see that $\bar{R}_N \in \text{End}(TM)$. In fact, by applying (2.1), (2.4), and $g(AN, N) = -g(A\xi, \xi)$ in (3.3), the normal Jacobi operator \bar{R}_N of M is given by:

$$(3.4) \quad \bar{R}_N Y = \varepsilon \{ Y + 3\eta(Y)\xi - g(A\xi,\xi)BY - g(\phi A\xi,Y)\phi A\xi - g(A\xi,Y)A\xi \}$$

for any $Y \in TM$, which means $\overline{R}_N \in \text{End}(TM)$. Then, we obtain

$$(3.5) R_N \xi = \varepsilon \{ 4\xi - 2g(A\xi,\xi)A\xi \} = \varepsilon \{ 4\xi - 2\beta A\xi \},$$

(3.6)
$$\bar{R}_N A \xi = 2\varepsilon g(A\xi,\xi)\xi = 2\varepsilon \beta \xi,$$

(3.7)
$$\bar{R}_N \phi A\xi = \varepsilon \{ \phi A\xi - g(A\xi,\xi) B \phi A\xi - g(\phi A\xi,\phi A\xi) \phi A\xi \} = 0$$

where we have used $A\xi = B\xi$, $BA\xi = A^2\xi - g(A^2\xi, N)N = \xi$, $g(A\xi, A\xi) = g(\xi, \xi) = 1$, $B\phi A\xi = \beta\phi A\xi$, and $g(\phi A\xi, \phi A\xi) = 1 - \beta^2$. Here, β denotes the smooth function $\beta = g(A\xi, \xi)$ on M.

To give a proof of Theorem 1, let us assume that M is a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with semi-parallel normal Jacobi operator. That is, the normal Jacobi operator \bar{R}_N of M satisfies (3.2). Taking $Y = Z = \xi$ in (3.2) gives

(3.8)
$$R(X,\xi)(\bar{R}_N\xi) = \bar{R}_N(R(X,\xi)\xi).$$

Now, let us define another Jacobi operator $R_{\xi} \in \text{End}(TM)$ distinguished from the normal Jacobi operator $\bar{R}_N \in \text{End}(TM)$. We call such an operator the *structure Jacobi operator* and define it as the Jacobi operator with respect to $\xi = -JN$, that is, $R_{\xi}X = R(X,\xi)\xi$ for any $X \in TM$. Here, R stands for the Riemannian curvature tensor field of M. In fact, by virtue of (2.8), the structure Jacobi operator R_{ξ} of a Hopf real hypersurface M in $\mathbb{Q}^m(\varepsilon)$ is given by:

(3.9)

$$R_{\xi}X = R(X,\xi)\xi$$

$$= \varepsilon \{X - \eta(X)\xi + \beta BX - g(A\xi,X)A\xi - g(X,\phi A\xi)\phi A\xi\}$$

$$+ \alpha SX - \alpha^2 \eta(X)\xi.$$

Bearing in mind the notation of structure Jacobi operator R_{ξ} , (3.8) is rearranged using (3.5) as follows:

(3.10)
$$\varepsilon \left\{ 4R_{\xi}X - 2\beta R(X,\xi)A\xi \right\} = \bar{R}_N R_{\xi}X.$$

Taking the inner product of (3.10) with ξ and using the symmetry of \bar{R}_N , we obtain

(3.11)
$$\varepsilon \left\{ 4g(R_{\xi}X,\xi) - 2\beta g(R(X,\xi)A\xi,\xi) \right\} = g(R_{\xi}X,\bar{R}_N\xi).$$

By the skew-symmetries of R, we have

$$g(R_{\xi}X,\xi) = g(R(X,\xi)\xi,\xi) = -g(R(X,\xi)\xi,\xi) = -g(R_{\xi}X,\xi)$$

Thus, it implies $g(R_{\xi}X,\xi) = 0$. Similarly, we get

$$g(R(X,\xi)A\xi,\xi) = -g(R(X,\xi)\xi,A\xi) = -g(R_{\xi}X,A\xi).$$

Furthermore, by (3.5), the right-hand side of (3.11) becomes

$$g(R_{\xi}X, \bar{R}_N\xi) = 4\varepsilon g(R_{\xi}X, \xi) - 2\varepsilon\beta g(R_{\xi}X, A\xi).$$

Using the above three equations, (3.11) leads to

(3.12)
$$\varepsilon \beta g(R_{\xi}X, A\xi) = 0.$$

Applying properties of R, we obtain

$$g(R_{\xi}X, A\xi) = g(R(X, \xi)\xi, A\xi) = g(R(\xi, A\xi)X, \xi)$$
$$= g(R(A\xi, \xi)\xi, X) = g(R_{\xi}A\xi, X)$$

for any $X \in TM$. From this, together with the fact that $\varepsilon = \pm 1$, (3.12) yields two cases: either $\beta = 0$ or $R_{\xi}A\xi = 0$.

If $\beta = 0$, it naturally implies that the unit normal vector field N is \mathfrak{A} -isotropic. In fact, from (2.3), we have

$$\beta = g(A\xi,\xi) = g(\cos(t)JZ_1 + \sin(t)Z_2, \sin(t)Z_2 - \cos(t)JZ_1)$$

= $-\cos^2(t)g(JZ_1, JZ_1) + \sin^2(t)g(Z_2, Z_2)$
= $-\cos^2(t) + \sin^2(t) = -\cos(2t),$

where $0 \le t \le \frac{\pi}{4}$. Here, Z_1 , Z_2 are unit orthonormal vector fields of $T\mathbb{Q}^m(\varepsilon)$ such that $AZ_{\nu} = Z_{\nu}$ for $\nu = 1, 2$. Thus, the condition of $\beta = 0$ implies $t = \frac{\pi}{4}$, which means that there exists a real structure $A \in \mathfrak{A}$ such that $N = \frac{1}{\sqrt{2}} \{Z_1 + JZ_2\}$ by (2.2), ensuring that N is \mathfrak{A} -isotropic.

Now, let us consider the case where $\beta \neq 0$. From (3.12), we have

$$R_{\xi}A\xi = 0.$$

Since $BA\xi = \xi$ and $g(\phi X, X) = 0$, (3.9) yields

(3.13)
$$\alpha SA\xi = \alpha^2 \beta \xi.$$

As a direct consequence of Lemma 2.2, if the smooth function $\alpha = g(S\xi, \xi)$ vanishes identically on any open subset of M, then the unit normal vector field N is singular. Therefore, in the remaining part of this section, we focus on the case where $\alpha \neq 0$. With (3.13), we obtain the following lemma.

LEMMA 3.1. Let M be a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with semi-parallel normal Jacobi operator. If the smooth functions $\alpha = g(S\xi, \xi)$ and $\beta = g(A\xi, \xi)$ are non-vanishing on an open subset $\mathcal{U} \subset M$, then it holds that

$$SA\xi = \alpha\beta\xi \quad and \quad S\phi A\xi = \kappa\phi A\xi,$$

where $\kappa = -\frac{2\varepsilon\beta^2}{\alpha}$.

PROOF. On \mathcal{U} , the two smooth functions $\alpha = g(S\xi,\xi)$ and $\beta = g(A\xi,\xi)$ are non-vanishing. Therefore, from (3.13), we have $SA\xi = \alpha\beta\xi$. This implies $\phi SA\xi = 0$. By substituting $A\xi$ for Y in (2.11) and utilizing these expressions, we obtain

$$-\alpha S\phi A\xi = 2\varepsilon\beta^2\phi A\xi$$

Consequently, we have

$$S\phi A\xi = -\frac{2\varepsilon\beta^2}{\alpha}\phi A\xi,$$

which completes a proof of Lemma 3.1.

Using Lemma 3.1, we can state the following lemma:

LEMMA 3.2. Let M be a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with semi-parallel normal Jacobi operator. If the smooth functions $\alpha = g(S\xi, \xi)$ and $\beta = g(A\xi, \xi)$ are non-vanishing on an open subset $\mathcal{U} \subset M$, then the unit normal vector field N is singular on \mathcal{U} .

PROOF. Let \mathcal{U} be an open subset of a Hopf real hypersurface M in $\mathbb{Q}^m(\varepsilon)$ such that $\mathcal{U} = \{p \in M \mid \alpha(p) \neq 0, \ \beta(p) \neq 0\}$. Assume that M has semiparallel normal Jacobi operator. Then, by virtue of (3.2) and (3.7), the normal Jacobi operator \overline{R}_N satisfies

$$(3.14) R_N(R(\phi A\xi,\xi)\phi A\xi) = 0$$

for $X = Z = \phi A \xi$ and $Y = \xi$. On the other hand, (2.8) provides us

$$\begin{aligned} R(\phi A\xi,\xi)\phi A\xi + \alpha g(S\phi A\xi,\phi A\xi)\xi \\ &= \varepsilon \left\{ -g(\phi A\xi,\phi A\xi)\xi - \beta g(\phi A\xi,\phi A\xi)A\xi \right. \\ &+ \beta g(\phi A\xi,\phi A\xi)\phi^2 A\xi + g(\phi A\xi,\phi A\xi)g(\phi A\xi,\phi A\xi)\xi \right\} \\ &= -2\varepsilon\beta(1-\beta^2)A\xi, \end{aligned}$$

where we have used $B\xi = A\xi$, $B\phi A\xi = \beta\phi A\xi$, $\phi^2 A\xi = -A\xi + \beta\xi$ and $g(\phi A\xi, \phi A\xi) = 1 - \beta^2$. Making use of Lemma 3.1, it leads to

$$R(\phi A\xi,\xi)\phi A\xi = -2\varepsilon\beta(1-\beta^2)A\xi - \alpha\kappa g(\phi A\xi,\phi A\xi)\xi$$
$$= -2\varepsilon\beta(1-\beta^2)A\xi + 2\varepsilon\beta^2(1-\beta^2)\xi.$$

Moreover, by (3.5) and (3.6), together with $\varepsilon^2 = 1$, we get

$$\bar{R}_N(R(\phi A\xi,\xi)\phi A\xi) = -2\varepsilon\beta(1-\beta^2)\bar{R}_NA\xi + 2\varepsilon\beta^2(1-\beta^2)\bar{R}_N\xi$$
$$= 4\beta^2(1-\beta^2)\{\xi-\beta A\xi\}.$$

From this, (3.14) is rearranged as

(3.15)
$$(1 - \beta^2) \{ \xi - \beta A \xi \} = 0$$

on $\mathcal{U} = \{ p \in M \mid \alpha(p) \neq 0, \ \beta(p) \neq 0 \}.$

Taking the inner product of (3.15) with ξ yields $(1 - \beta^2)^2 = 0$. This implies $1 - \beta^2 = 0$ on \mathcal{U} . By virtue of (2.3), the smooth function $\beta = g(A\xi, \xi)$ satisfies $\beta = -\cos 2t$, where $0 \le t \le \frac{\pi}{4}$. From this, $\beta^2 = 1$ implies t = 0. Then, according to (2.2), the unit normal vector field N is expressed as $N = Z_1 \in V(A)$, meaning that N is \mathfrak{A} -principal on \mathcal{U} .

From the discussion above and Lemma 2.2, we have provided a complete proof of Theorem 1, and we will prove our Theorem 2 in sections 4 and 5, respectively. This will depend on whether the normal vector field N of M is either \mathfrak{A} -principal or \mathfrak{A} -isotropic.

4. **A-**PRINCIPAL UNIT NORMAL VECTOR FIELD

In this section, we assume that a Hopf real hypersurface M admitting a semi-parallel normal Jacobi operator has an \mathfrak{A} -principal unit normal vector field N in $\mathbb{Q}^m(\varepsilon)$. The assumption of N being \mathfrak{A} -principal yields t = 0 in (2.2). Applying this fact to (2.3), we get $A\xi = -\xi$ and AN = N. Moreover, these properties lead to the following result.

LEMMA 4.1. Let M be a real hypersurface in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with \mathfrak{A} -principal normal vector field N. Then we obtain:

- (i) AX = BX
- (ii) $A\phi X = -\phi A X$
- (iii) $A\phi SX = -\phi SX$ and $q(X) = 2g(SX,\xi)$
- (iv) $ASX = SX 2g(SX,\xi)\xi$

for any $X \in T_pM$, $p \in M$, where $BX = (AX)^T$ denotes the tangential part of the vector field AX on M in $\mathbb{Q}^m(\varepsilon)$.

PROOF. As M has an \mathfrak{A} -principal unit normal vector field N in $\mathbb{Q}^m(\varepsilon)$, we have g(AX, N) = 0 for any vector field $X \in TM$. It means that AX is always orthogonal to N. Consequently, we can assert $AX \in TM$, that is, AX = BX for any $X \in TM$.

As already mentioned in Section 1, we know that the complex structure J anti-commutes with the real structure $A \in \mathfrak{A}$ of $\mathbb{Q}^m(\varepsilon)$, that is, JA = -AJ. Making use of (i), $JX = \phi X + \eta(X)N$ yields

$$\phi AX - \eta(X)N = \phi AX + \eta(AX)N = JAX$$
$$= -AJX = -A(\phi X + \eta(X)N) = -A\phi X - \eta(X)N.$$

It implies $A\phi X = -\phi AX$, which gives a complete proof of (ii).

Now, differentiating the equations $A\xi = -\xi$ and AN = N with respect to the Levi-Civita connection $\overline{\nabla}$ of $\mathbb{Q}^m(\varepsilon)$ respectively yields:

$$(4.1) - q(X)N + A\phi SX + g(SX,\xi)N$$
$$= q(X)JA\xi + A\phi SX + g(SX,\xi)AN$$
$$= (\bar{\nabla}_X A)\xi + A(\bar{\nabla}_X \xi) = -\bar{\nabla}_X \xi = -\phi SX - g(SX,\xi)N$$

and

(4.2)
$$-q(X)\xi - ASX = q(X)JAN - ASX \\ = (\bar{\nabla}_X A)N + A(\bar{\nabla}_X N) = \bar{\nabla}_X N = -SX.$$

Here, we have used $\overline{\nabla}_X Y = \nabla_X Y + g(SX, Y)N$, $\overline{\nabla}_X N = -SX$ (known as the Gauss and Weingarten formulas), and $\nabla_X \xi = \phi SX$. By comparing the tangential and normal parts of (4.1), we obtain both formulas in (iii). Moreover, (iv) follows from $q(X) = 2g(SX, \xi)$ obtained in (iii) and (4.2).

By using these formulas for real hypersurfaces in $\mathbb{Q}^m(\varepsilon)$ with \mathfrak{A} -principal normal vector field, we assert the following lemma.

LEMMA 4.2. There does not exist any Hopf real hypersurface admitting a semi-parallel normal Jacobi operator in $\mathbb{Q}^m(\varepsilon)$ for $m \geq 3$, with \mathfrak{A} -principal normal vector field N.

PROOF. Let us suppose that M is a Hopf real hypersurface with semiparallel normal Jacobi operator and \mathfrak{A} -principal normal vector field N in $\mathbb{Q}^m(\varepsilon)$. From the assumption that N is \mathfrak{A} -principal, we obtain $A\xi = -\xi$, implying $\beta = g(A\xi,\xi) = -1$. Thus, (3.5) yields $\bar{R}_N\xi = 2\varepsilon\xi$. Using this fact and inserting $Y = Z = \xi$ into (3.2), we obtain $2\varepsilon R(X,\xi)\xi = \bar{R}_N(R(X,\xi)\xi)$, which can be expressed as follows:

(4.3)
$$2\varepsilon R_{\xi}X = \bar{R}_N R_{\xi}X.$$

On the other hand, when the unit normal vector field N is \mathfrak{A} -principal, the structure Jacobi operator R_{ξ} given in (3.9) becomes

(4.4)
$$R_{\xi}X = \varepsilon \{ X - 2\eta(X)\xi - AX \} + \alpha SX - \alpha^2 \eta(X)\xi.$$

Due to (4.4) and $\varepsilon^2 = 1$, (4.3) can be rearranged as

(4.5)
$$2\{X - 2\eta(X)\xi - AX\} + 2\varepsilon\alpha SX - 2\varepsilon\alpha^2\eta(X)\xi \\ = \varepsilon\{\bar{R}_N X - 2\eta(X)\bar{R}_N\xi - \bar{R}_N AX\} + \alpha\bar{R}_N SX - \alpha^2\eta(X)\bar{R}_N\xi.$$

Now, according to (3.4), the normal Jacobi operator \bar{R}_N of M with \mathfrak{A} principal normal vector field satisfies

$$\bar{R}_N X = \varepsilon \{ X + 2\eta(X)\xi + AX \}$$

for any tangent vector field X on M. We obtain

$$\bar{R}_N \xi = 2\varepsilon\xi,$$

$$\bar{R}_N AX = \varepsilon \{AX - 2\eta(X)\xi + X\},$$

$$\bar{R}_N SX = \varepsilon \{SX + 2\alpha\eta(X)\xi + ASX\}.$$

Substituting the above four formulas into (4.5) yields

(4.6)
$$2\{X - 2\eta(X)\xi - AX\} = \varepsilon\alpha\{ASX - SX + 2\alpha\eta(X)\xi\}.$$

By (iv) in Lemma 4.1, (4.6) becomes

$$X - 2\eta(X)\xi - AX = 0,$$

which implies

$$(4.7) AX = X - 2\eta(X)\xi$$

for any $X \in TM$.

Take a local orthonormal frame field \mathfrak{B} of $\mathbb{Q}^m(\varepsilon)$ as follows

$$\mathfrak{B} = \left\{ e_1, e_2 = \phi e_1, e_3, e_4 = \phi e_3, e_5, e_6 = \phi e_5, \dots \\ \dots, e_{2m-3}, e_{2m-2} = \phi e_{2m-3}, e_{2m-1} = \xi, e_{2m} = N \right\}$$

It follows from (4.7) that the trace of the real structure A, defined as $\text{Tr}A = \sum_{k=1}^{2m} g(Ae_k, e_k)$, is given by

$$Tr A = \sum_{k=1}^{2m-2} g(Ae_k, e_k) + g(A\xi, \xi) + g(AN, N)$$

= 2m - 2,

where we have used $A\xi = -\xi$ and AN = N. It is well known that the trace of the real structure A vanishes on $\mathbb{Q}^m(\varepsilon)$, i.e., $\operatorname{Tr} A = 0$. Therefore, we obtain m = 1, which leads to a contradiction for $m \geq 3$. This completes the proof of Lemma 4.2.

5. \mathfrak{A} -isotropic unit normal vector field

Expanding upon Theorem 1 and Lemma 4.2 discussed previously, we assert that if M is a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with semiparallel normal Jacobi operator, then the unit normal vector field N of M is \mathfrak{A} -isotropic.

By the definition of \mathfrak{A} -isotropic tangent vector field on $\mathbb{Q}^m(\varepsilon)$, (2.2) implies $N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$, where $t = \frac{\pi}{4}$. From (2.3), we also obtain $\beta = g(A\xi,\xi) = -g(AN,N) = 0$. This implies that the vector field $AN = -\phi A\xi$ is tangent to M. By differentiating the tangent vector field AN and using the Gauss and Weingarten formulas, we obtain the following:

(5.1)
$$\nabla_X(AN) = \nabla_X(AN) - \sigma(X, AN)$$
$$= (\bar{\nabla}_X A)N + A(\bar{\nabla}_X N) - g(SX, AN)N$$
$$= q(X)JAN - ASX - g(SX, AN)N.$$

Here, we have used $(\bar{\nabla}_U A)W = q(U)JAW$ for $U, W \in T\mathbb{Q}^m(\varepsilon)$ (see [26]). Moreover, taking the inner product of (5.1) with N, we get SAN = 0.

Similarly, by differentiating the tangent vector field $A\xi,$ we get the following:

(5.2)
$$\nabla_X(A\xi) = \bar{\nabla}_X(A\xi) - \sigma(X, A\xi)$$
$$= (\bar{\nabla}_X A)\xi + A(\bar{\nabla}_X \xi) - g(SX, A\xi)N$$
$$= q(X)JA\xi + A(\nabla_X \xi) + g(SX, \xi)AN - g(SX, A\xi)N.$$

Then, by taking the inner product of (5.2) with the unit normal vector field N, we get $SA\xi = 0$.

Summing up these discussions, in general it holds:

LEMMA 5.1. Let M be a real hypersurface in the real Grassmannian of rank two $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, with \mathfrak{A} -isotropic normal vector field N. Then the tangent vector fields $A\xi$ and AN are principal, satisfying $SA\xi = SAN =$ $S\phi A\xi = 0$ for the shape operator S of M in $\mathbb{Q}^m(\varepsilon)$.

And, in the case where a Hopf real hypersurface M in $\mathbb{Q}^m(\varepsilon)$ possesses an \mathfrak{A} -isotropic normal vector field N, it can be deduced from (3.4) and (3.9) that the normal and structure Jacobi operators of M are given by the following expressions:

(5.3)
$$\bar{R}_N X = \varepsilon \{ X + 3\eta(X)\xi - g(A\xi, X)A\xi - g(\phi A\xi, X)\phi A\xi \}, R_{\xi} X = \varepsilon \{ X - \eta(X)\xi - g(A\xi, X)A\xi - g(X, \phi A\xi)\phi A\xi \} + \alpha S X - \alpha^2 \eta(X)\xi.$$

Hereafter, M denotes a Hopf real hypersurface in $\mathbb{Q}^m(\varepsilon)$ with $m \geq 3$, admitting a semi-parallel normal Jacobi operator. We take \mathfrak{B} as the orthonormal frame field on M given by

$$\mathfrak{B} = \{e_1, e_2 = \phi e_1, e_3, e_4 = \phi e_3, \dots \\ \dots, e_{2m-5}, e_{2m-4} = \phi e_{2m-5}, e_{2m-3} = A\xi, e_{2m-2} = \phi A\xi, e_{2m-1} = \xi\}.$$

Then, it follows from (5.3) that the normal Jacobi operator of M is expressed as follows:

(5.4)
$$\bar{R}_N X = \begin{cases} 4\varepsilon\xi & \text{if } X = \xi, \\ 0 & \text{if } X = A\xi, \\ 0 & \text{if } X = \phi A\xi, \\ \varepsilon X & \text{if } X \perp \xi, A\xi, \phi A\xi. \end{cases}$$

Take $Y = \phi A \xi$ and $Z = A \xi$ in (3.2). Then, according to (5.4), the assumption of \bar{R}_N being semi-parallel implies

(5.5)
$$\bar{R}_N(R(X,\phi A\xi)A\xi) = 0.$$

On the other hand, using the equation of Gauss in (2.8) and Lemma 5.1, we obtain

(5.6)
$$R(X,\phi A\xi)A\xi = \varepsilon \left\{ -3g(X,A\xi)\phi A\xi - \phi X + g(\phi X,A\xi)A\xi \right\},$$

along with (2.6) and $\phi^2 A \xi = -A \xi$. Substituting (5.6) into (5.5) and using (5.4) again yields

(5.7)
$$0 = \varepsilon \left\{ -3g(X, A\xi)\bar{R}_N \phi A\xi - \bar{R}_N \phi X + g(\phi X, A\xi)\bar{R}_N A\xi \right\} \\ = -\varepsilon \bar{R}_N \phi X$$

for any tangent vector field X on M. Due to (5.3) and $\varepsilon^2 = 1$, we obtain

$$-\varepsilon \bar{R}_N \phi X = -\{\phi X - g(A\xi, \phi X)A\xi - g(\phi A\xi, \phi X)\phi A\xi\},\$$

which implies that (5.7) can be rewritten as:

(5.8)
$$\phi X - g(A\xi, \phi X)A\xi - g(\phi A\xi, \phi X)\phi A\xi = 0.$$

Applying the structure tensor field ϕ from (5.8) yields, for any $X \in TM$:

$$X = \eta(X)\xi + g(\phi A\xi, X)\phi A\xi + g(A\xi, X)A\xi,$$

where we have used $\phi^2 X = -X + \eta(X)\xi$ and $\beta = g(A\xi, \xi) = 0$. According to the construction of \mathfrak{B} for M, it implies that the dimension of M is exactly 3, i.e., dimM = 2m - 1 = 3. Consequently, we obtain m = 2. This leads to a contradiction for $m \geq 3$, providing a comprehensive proof of our Theorem 2 in the introduction.

ACKNOWLEDGEMENTS.

The authors would like to express their hearty thanks to reviewer for his/her valuable suggestions and comments to develop this article. The first author was supported by grants (Project Nos. NRF-2022-R1I1A1A01055993 and NRF-2022-R1A2C100456411) from the National Research Foundation of Korea. The second author was supported by grants (Project Nos. NRF-2018-R1D1A1B-05040381 and NRF-2021-R1C1C2009847) from the National Research Foundation of Korea.

References

- T.A. Ivey and P.J. Ryan, The structure Jacobi operator for real hypersurfaces in CP² and CH², Results Math. 56 (2009), 473–488.
- [2] I. Jeong, C. J. G. Machado, J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with D[⊥]-parallel structure Jacobi operator, Internat. J. Math. 22 (2011), 655–673.
- [3] I. Jeong, J.D. Pérez and Y.J. Suh, Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians, Bull. Korean Math. Soc. 50 (2013), 525–536.
- [4] S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl. 26 (2008), 79–96.
- [5] S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mate. Pura Appl. (4) 198 (2019), 1481–1494.
- [6] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, John Wiley & Sons, Inc., New York, 1996.
- [7] H. Lee, J. Pérez, and Y. J. Suh, Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric, Bull. London Math. Soc. 52 (2020), 1122–1133.
- [8] H. Lee and Y. J. Suh, Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric, J. Geom. Phys. 123 (2018), 463–474.
- [9] H. Lee and Y. J. Suh, Real hypersurfaces with quadratic Killing normal Jacobi operator in the real Grassmannians of rank two, Results Math. 76 (2021), Paper No. 113, 19 pp.
- [10] H. Lee and Y. J. Suh, A new classification on parallel Ricci tensor for real hypersurfaces in the complex quadric, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 1846–1868.
- [11] H. Lee and Y. J. Suh, Semi-parallel Hopf real hypersurfaces in the complex quadric, Glas. Mat. Ser. III 58(78) (2023), 101–124.

- [12] H. Lee, Y.J. Suh, and C. Woo, Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 152 (2022), 939–964.
- [13] C. J. G. Machado, J. D. Pérez, I. Jeong and Y. J. Suh, *D*-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians, Ann. Mat. Pura Appl. (4) **193** (2014), 591–608.
- [14] M. Ortega, J. D. Pérez and F. Santos, Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36 (2006), 1603–1613.
- [15] J. D. Pérez, Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space, Ann. Mat. Pura Appl. (4) 194 (2015), 1781–1794.
- [16] J. D. Pérez, Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric, Publ. Math. Debrecen 95 (2019), 157–168.
- [17] J. D. Pérez, Some real hypersurfaces in complex and complex hyperbolic quadrics, Bull. Malays. Math. Sci. Soc. 43 (2020), 1709–1718.
- [18] J.D. Pérez, D. Pérez-López and Y.J. Suh, On the structure Lie operator of a real hypersurface in the complex quadric, Math. Slovaca 73 (2023), 1569–1576.
- [19] J.D. Pérez and F.G. Santos, Real hypersurfaces in complex projective space with recurrent structure Jacobi operator, Differential Geom. Appl. 26 (2008), 218–223.
- [20] J. D. Pérez, F. G. Santos and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ-parallel, Differential Geom. Appl. 22 (2005), 181–188.
- [21] J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie D-parallel, Canad. Math. Bull. 56 (2013), 306–316.
- [22] J. D. Pérez and Y. J. Suh, New conditions on normal Jacobi operator of real hypersurfaces in the complex quadric, Bull. Malays. Math. Sci. Soc. 44 (2021), 891–903.
- [23] H. Reckziegel, On the geometry of the complex quadric, in: Geometry and topology of submanifolds, VIII (ed. F. Dillen, B. Komrakov, U. Simon, I. Van de Woestyne and L. Verstraelen, Eds.), World Sci. Publ., River Edge, 1996, 302–315.
- [24] A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc. 98 (1986), 283–286.
- [25] A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math Z 192 (1986), 627–635.
- [26] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967), 246–266.
- [27] B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan 20 (1968), 643– 647.
- [28] Y. J. Suh, Real hypersurfaces in the complex quadric with parallel structure Jacobi operator, Differential Geom. Appl. 51 (2017), 33–48.
- [29] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with isometric Reeb flow, Commun. Contemp. Math. 20 (2018), 1750031, 20 pp.
- [30] Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math. 15 (2018), Paper No. 159, 14 pp.
- [31] Y. Wang, Nonexistence of Hopf hypersurfaces in complex two-plane Grassmannians with GTW parallel normal Jacobi operator, Rocky Mountain J. Math. 49 (2019), 2375–2393.
- [32] Y. Wang, Real hypersurfaces in CP² with constant Reeb sectional curvature, Differential Geom. Appl. 73 (2020), 101683, 10 pp.
- [33] Y. Wang and P. Wang, GTW parallel structure Jacobi operator of real hypersurfaces in nonflat complex space forms, J. Geom. Phys. 192 (2023), Paper No. 104925, 9 pp.

H. Lee Department of Mathematics Education Chosun University Gwangju 61452 Republic of Korea *E-mail*: lhjibis@hanmail.net

Y.J. Suh Department of Mathematics & RIRCM Kyungpook National University Daegu 41566 Republic of Korea *E-mail*: yjsuh@knu.ac.kr

Received: 1.4.2024. Revised: 27.6.2024.

REALNE HIPERPLOHE S POLUPARALELNIM NORMALNIM JACOBIJEVIM OPERATOROM U REALNIM GRASSMANNOVIM MNOGOSTRUKOSTIMA RANGA DVA

SAŽETAK. U ovom radu uvodimo pojam poluparalelnog normalnog Jacobijevog operatora za realne hiperplohe u realnim Grassmannovim mnogostrukostima ranga dva, kojeg označavamo s $\mathbb{Q}^m(\varepsilon)$, gdje je $\varepsilon = \pm 1$. Ovdje $\mathbb{Q}^m(\varepsilon)$ predstavlja kompleksnu kvadriku $\mathbb{Q}^m(1) = SO_{m+2}/SO_mSO_2$ za $\varepsilon = 1$ i $\mathbb{Q}^m(-1) = SO_{m,2}^0/SO_mSO_2$ za $\varepsilon = -1$, redom. Općenito, pojam poluparalelnog je slabiji od pojma paralelnog normalnog Jacobijevog operatora. U ovom radu dokazujemo da je jedinično normalno vektorsko polje Hopfove realne hiperplohe u $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, s poluparalelnim normalnim Jacobijevim operatorom singularno. Štoviše, singularnost normalnog vektorskog polja daje rezultat nepostojanja za Hopfove realne hiperplohe u $\mathbb{Q}^m(\varepsilon)$, $m \geq 3$, koje dopuštaju poluparalelni normalni Jacobijev operator.

478