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The response function, efficiency and deposit energy spectra are calculated as
functions of energy of incident neutrons and the geometry of the detection system.
The thickness of the radiator and of the detector are taken into account. A compari-
son is made of deposit energy spectra of recoil protons for different energy spectra
of incoming neutrons.

1. Introduction

The method for detecting fast neutrons, commonly used in neutron spectro-
scopy, is based on energy measurements or on energy-loss measurements of char-
ged particles scattered from the target radiator. This, however, does not mean that
all problems associated with the detection of fast neutrons are solved. The need
for simple small-size detection systems appears in practice together with the need
for more accurate measurements of the intensity and energy distribution of fast
neutrons. Recent developments of detectors have made possible the construction
of simple small-size detection systems'’. Figure 1 shows the geometry of such
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a system. A polyethylene foil or a deuterised polyethylene foil was placed in front
of a Si detector of a surface area of a few mm?, at a distance of a few millimeters
from the detector. Since the Si crystal was thin, the deposit energy spectra were
composed of contributions from energy losses of fast protons and from the total
energy loss of low-energy protons stopped in the detector.

Fig. 1. Geometry of the detection system. A charged particle recoiled by a neutron at
point P is passing through the radiator R and hits the detector D at the ponit T.

The aim of this paper is to calculate deposit-energy spectra as a function of
the geometric parameters of the system and the energy distribution of incoming
neutrons.

Previous calculations?~®, performed by other authors, were based on the
assumption that the detection system was axially symmetric and the beam of inco-
ming neutrons monoenergetic. Calculations by Konijn?’ and Gotoh®’ were perfor-
med for a point neutron source and an infinitely thin radiator. The influence of
the radiator thickness and of the energy dispersion of incoming neutrons were
taken into account as a correction factor to the response function calculated pre-
viously®’. Gotoh and Yagy®’ assumed that the beam of incoming neutrons is parallel
to the axis of the system and that the energy loss of recoil protons in the radiator
is negligible. Later on®, however, they took into account the energy loss of protons
in the radiator material.

In this paper we perform calculations of the response function and deposit
energy spectra under the following assumptions: the detection system is consi-
dered to be axially symmetric; the beam of incoming neutrons is orthogonal to
the radiator surface; the neutron beam is not monoenergetic; the energy loss of
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recoil protons in the radiator is not negligible; protons are not all orthogonal to
the surface of the detector; the single Si crystal is chosen to act as an E and dE/dx
detector.

2. Calculation of response functions

The number of recoil protons impinging from the radiator upon the surface
of the detector with energy between E, and E, + AE, is usually called the res-
ponse function.

Fig. 2. The geometry and notation used in the calculations of the response functions of
the system.

We denote by n (E,) the number of neutrons of energy between E, and E, +
+ AE,, falling on a radiator surface of 1 cm?. = denotes the surface density in units
of mg/cm?. From dt - df milligrams of radiator material, neutrons with energy
E, will recoil protons with energy E, at an angle @ = arccos (E,/E,)"/2. The num-
ber of protons with energy between E, and E, + AE,, emerging from the radiator
surface df and falling on the detector surface df’ (Fig. 2) is

n (E,) dE, = n (E,) Ndvdfo(E,, @) d. (1)
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Here N denotes the number of hydrogen atoms in 1 mg of radiator material, o (E,, ©)
is the differential cross section of elastically scattered neutrons in the laboratory
system, d@2 is the solid angle subtended at the point P by the surface df’. Fig 2
shows that dQ = df’ cos O/R?, R?> =r'2 + d? and r' = dtg @. Inserting these
expressions in Eq. (1) and integrating over the radiator of radius r, and over the
detector surface of radius r,, we obtain the total number of recoil protons:

f n(E,)dE, = n(E) N [ 0 (E, ©)rsin @ dr dr d¥ do d6. 2)

If R(E) is the distance which a charged particle of energy E travels through the
radiator material before being stopped, then the distance between two points, P
and S, on the trajectory is equal to the difference of the range functions R (Ep) —
— R (Es). The proton at the point P, with energy E, cos? @ will travel a distance
7/cos O before leaving the radiator (Fig. 1). Thus,

R (E, cos?2 ©) — R (E,) = t/cos O, 3)

where E,, is the energy of the recoil proton at the instant of its emergence from the
radiator. Using Eq. (3), we can reduce the calculation of the response function to
the following intergration:

n(E,) = n(E,.)N!d—]RE! 2nfo E,, @) r sin @ cos O dr dO dP, 4)

with the condition

_ r24r'2—1? )
@ = arccos (—-——-—-—-2-”7-— . %)
Let us denote by I the integration over r and @:
I={2ardo.
Then the relation (4) reduces to
@max
n(E;)) =n(E,)N2xn (g) f ¢ (E,, ©) 1sin O cos O d6. 6)
dE E=Ep o
min

The integral I takes the value I(r) = r2x if the relation between r, ' and r,
allows the variable @ to run from 0 to 2z. If the values of @ are limited by Eq. (5),
then the integral I is™
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b
I(a,b) = f 2 arccos Z (r, r2) r dr = {r? arccos Z (r, r3) +

a

+ r2arccos Z (ry, r) — rr’ [1 — Z (r,7,)*]Y2]}2, (7
2 12 _ 2
Z(r,r) = T T +2rrr, T2, (8)

Since for a given r;, r, and ' both parts of the integration over @, i.e. I(r) and
I (a, b), will contribute to the integral I in Eq. (6), we have to calculate I =1 (a) +
+ I (a, b) for a given set of parameters. For example, if r, > r, + r and ' < r,,
then I =I(r, — ')+ I1(r, — ', 7, + ¢') =r2 z. There are only three different
values for I. For r, > r; + ' or r, > r, + r/, the integral I takes the simple form
r2m or r2m, respectively. In all other cases, I = I (r,, 0). Here I (r,, 0) denotes the
right-hand side of Eq. (7) for r = r,.

The upper limit of integration, @, is determined by the scattering angle,
ie. ON = arccos (E,[E,)"? for (n,p) scattering, or by the geometry of the detection
system, 02 = arctg ((ry + r2) [ d), if O3, < OL.. The lower limit O, is ze1o
if the difference in energy range, R (E,) — R(E,), is smaller than the radiator
thickness 7,. If, however, the difference in energy range is larger, then @,,, has
to be calculated from Eq. (3).

To evaluate the response function, we make the following choice of the diffe-
rential cross section ¢ (E,, ®) and the range functions R (E):

A) A polyethylene radiator, (CH,),
We choose
& (Ep ©) = (1 + 0.0025E, + 0.00015 E2) {3 [1.206 E, +
+ (— 1.86 + 0.0941 E, + 0.000130658 E2)2]-* +
+ [1.206 E, + (0.4233 + 0.13E,)?]~ 1} cos 6. )
This result is the same as that obtained by Gammel® for elastic (n, p) scattering
multiplied by a correction factor?’. In Eq. (9), the energy E, is in MeV and the

cross section in barns.
We write the range function for protons in the polyethylene foil in the form

R(E) =Ro+ R, E&, (10)

and determine the parameters Ry, R; and a by the best fit to the tabulated values of
range functions!® (E, is given in MeV). For protons of energies between 1 MeV
and 14 MeV, with the set of paramteters

R, = 0.063 mgfcm?, R, = 1.936 mg/cm? and a = 1.731,

the tabulated range function will be reproduced to within a deviation of less than 2%,.
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B) A deuterised polyethylene radiator, (CD,),

To find a simple phenomenological form of the differential cross section for
(n, d) elastic scattering, we made use of the fact that we need the differential cross
sections only for angles smaller than 7/4. We performed a multiparameter fit to
experimental data for forward scattering, trying to reduce the number of para-
meters as much as possible. In this way, the simplest form of the response function
we obtained describes experimental data for neutron energies between 0.5 MeV
and 14 MeV reasonably well; this form of the differential cross section is

64(E @) =4 - 104 cos O, (1D
where
A=C; —(C,E, + Cy)cos 2 4 (C,E, + Cs) cos? 2 (12)

and C, =1.92093, C, = — 0.30599, C; =0.69661, C, =0.27324, C; = —
— 0.04158, £2 is the scattering angle in the c.m. system. (E, is in MeV and o, (E,, ©)
in millibarns.)

En =14.0MeV

. To =10.8mg cm>
n = 02cm
= 0.6cm

NUMBER OF RECOIL PROTONS/INCIDENT NEUTRON {x10)

0" 10 n 2 %

13
EplMev]
Fig. 3. Theresponse functions for different radia of the detector. The energy of the incoming

neutrons is 14 MeV, the thickness of the radiator 7, = 10.8 mg cm?, the radius of the
radiator r; = 0.2 cm and the radiator-detector distance d = 0.6 cm.
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We have defined the agreement as »reasonably good« because the function A

satisfies the condition
Al - Aexp (i) )2
N < 1, 13
2 ( 2Ry ) (13)

where 4A,, (i) denotes the error in the i-th piece of experimental data.

Thus, the agreement between the experimental!? and calculated differential
cross sections (Eq. (11)) is within the limits of experimental accuracy for neutron
energies between 3.24 MeV and 20 MeV.

The range function for (CD,), radiators can be obtained from the range function
for (CH,), radiators:

R (E) - 2Ro + 21"GR1 Ea. (14)

However, to achieve better agreement with the tabulated values, the parameter a
was increased to @ = 1.820. In this way, the error in energy range was not larger
than 29%,. When the response function and efficiency are to be calculated for a
deuterised radiator, expression (3) has to be properly modified.

Ep =14.0 MeV
To =10.8 mg em™?

i?

r; =0lcm

d =0.6cm

~n
[=]
T

-
o
Iy

NUMBER OF RECOIL PROTONS /INCIDENT NEUTRON (x1075)

9 10 n 2 13 %
Ep(Mev)

Fig. 4. The response function as a function of radiator radius.
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The way of choosing the differential cross section and the range function for
(CH,), and (CD,), radiators, described above, enabled us to investigate the
behaviour of the response function for different geometrical parameters of the
system. We required the system to have an efficiency larger than 10~ ¢ for an inci-
dent flux of one neutron/cm?2, and the detector to have a surface not larger than a
few mm?2. Figs. 3-6 show some of the results we obtained. In these figures we list
the values of geometrical parameters of the detection system used in the calculation
of the response functions and efficiency.

Eq =14.0 MeV
T =10.8mg cm?

0.2cm
O.lcm

f
)

O3cm

NUMBER OF RECOIL PROTONS/INCIDENT NEUTRON {x107%)

YT T T T T T

8 9 10 n 12 13 %
EpMev]
Fig. 5. The response function as a function of radiator-detector distance.

To test the calculations performed, we made use of the fact that for high-energy
neutrons the efficiency does not depend on the thickness of the radiator z,. For
n-p elastic scattering and an infinitely thin radiator, the efficiency of the system
has a simple analytic form

e, = n(E,) Nzg mo [B — (B2 — 4¢242)112), (15)

where o is the total cross section and B =r? 4 r2 4 d2. Table 1 showsa com-
parison of the efficiency ¢ as a function of incident neutron energy for a radiator
of a thickness of 10.8 mg/cm?, and the corresponding value ¢, for an infinitely
thin (CH,), radiator. The geometrical parameters are r;, =0.2cm, r, = 0.1 cm
and d = 0.6 cm. :
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Fig. 6. The response functions for different energies of incoming neutrons.

TABLE 1
E,(MeV) 1 2 3 4 6 10 13
&(- 109 2.4 1.668 1.314 1.096 0.826 0.562 0.208

£00 (* 10%) 0.348 0.816 1.276 1.095 0.829 0.559 0.207

Comparison of the efficiencies & calculated by integration of Eq. (6) and those from Eq. (15).

3. Calculation of deposit-energy spectra of recoil particles for mono-
energetic neutrons

We use a thin detector of a thickness of 7, mgfcm?2. The detector stops protons
of low energy, while protons of energy higher than the limiting energy E, will lose
fraction of their energy in passing through the crystal. The deposit-energy spectrum
to be detected by the system is obtained by the superposition of the part of the
response function up to E, = E, and the energy loss of protons with energy higher
than E,. The amout of energy loss in the detector depends on the energy of protons,
E,, and on the angle of incidence of protons falling on the surface of the Si detector.
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The energy E of protons leaving the crystal can be determined from the diference

between the possible energy range of protons R (E,) and the path they have tra-
versed:

R(E) = R(E,) —EOTS'@.

(16)

However, because of the thickness of the radiator, protons of the same energy
E, will fall on the detector surface at different angles ©. Eq. (16) has to be averaged
over O:

Omax
Ty f F(@)cos~! 6 dO
R(E) =R(E,) — — 2=t > 17
f f(0)do
Omin

where f (@) is the angular distribution of protons of energy between E, and E, + 4E,

En =6 MaV

304
All)

20+ B

NUMBER OF PROTONS /INCIDENT NEUTRON {x10%)

J

0 4 1.6 1.8 2.0 2.2 2.4
E [ MeV)

Fig. 7. Deposit energy proton spectra for neutrons of 6 MeV. Curve A was calculated
assuming that all protons were orthogonal to the detector. Curve B was calculated using
into account the incident angle of protons on the surface of the detector. 7 = 10.8 mg,cm?,
7, = 0.02329 mg,cm?,
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The energy loss of protons in the passage through the detectoris dE’ = E, — E.
The equidistant variation in energy of protons, AE,, is not followed by the equidis-
tant variation in energy loss, 4E’, so that the number of protons n (E") with energy
loss between E’ and E’ + AE’, is determined by the condition

n (E') AE' = n (E,) 4E,. (15)

In calculating the energy loss of protons and deuterons in the Si detector we used
the tabulated values for range functions!?.
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Fig. 8. Calculated deposit energy spectra for a continuous constant neutron spectrum in
the range of 0-16 MeV. Open dots A denote that all recoil protons are orthogonal to the
detector surface. Full dots B denote that the angle of incident protons is taken into account.

We assumed that the Si crystal was 0.02329 gf/cm? thick, so that the limiting
energy E, was 3.14 MeV for protons and 4.16 MeV for deuterons. All other para-
meters of the detection system were the same as used previously, i.e. r; = 0.2 cm,
r2 =0.1cm, d =0.6cm and 7, = 10.8 mgcm~2,

Fig. 7 shows the calculated deposit energy spectra for an incoming neutron
energy of 6 MeV. As can be seen, inclusion of the angle of incoming protons affects
the shape of the spectrum, decreasing its maximum and producing a shift of the
energy distribution resulting in larger energy losses.
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4. Continuous neutron spectra and discussion of the results

To calculate the deposit energy spectrum of charged particles for a given
energy spectrum of incoming neutrons, we calculated the response function for
each energy interval AE, of the normalised spectrum and then mapped the response
function, described in section 3, onto the measuring range of the detector. We
have shown that the influence of the angle of incoming charged particles on the
detector surface is small except for the limiting-energy region where a small addi-
tional peak, appears, as shown in Fig. 8. Figure 8 shows the deposit energy spectra
of protons for a neutron source of constant intensity in the range of 0—16 MeV.
The geometrical parameters of the detector system are the same as those used in
Fig. 7. The energy intervals 4E, = 0.1 MeV and 4E, = 0.025 MeV are sufficient
to achieve a relative error per point of less than 19,.

o
N
i

01

NUMBER OF NEUTRON

'ﬁ._‘_“

F 5 o 21 16
EqlMev]

Fig. 9a. Energy spectra of different neutron sources.

Varying the incoming-neutron energy spectra varies the deposit energy spectra
of recoil charged particles. Accordingly, variations are associated with the position
and height of the maximum, as well as with the shape of the spectrum. Figs. 9a
and 9b show that these variations are measurable; this further indicates that a
detection system with a thin detector can be used to determine the energy distri-
bution .of incoming neutrons. We determined the energy distribution of incoming
neutrons by using an iteration procedure based on the least-square fit to the de-
posit energy spectra measured.

The calculated deposit energy spectra and the efficiency of the detector can
be compared with the spectra measured after the subtraction of the following
effects!*!'4: multiple scattering in the radiator, contributions from reactions on
carbon (e.g. !2C (n, @), detector-rim effect, and attenuation of neutrons in the
target holder.
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Fig. 9b. Deposit energy spectra of neutron sources shown in Fig. 9a.

T, = 5.4mgem
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Fig. 10. Deposit energy proton spectra of neutrons of 2.8 MeV. The solid line represents
the calculated spectra.
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Fig. 10 shows that the measured spectra for monoenergetic incident neutrons
are in good agreement with the calculated ones!:!4.

The spectrum of incident neutrons cannot be uniquely determined from a single
measurement of deposit energy spectra. However, if the approximate position of
the energy distribution maximum of incident neutrons is known, it is possible to
determine the effective energy distribution of incident neutrons by varying the
shape of the approximate spectrum and by comparing the corresponding calcu-
lated deposit energy spectra of recoil charged particles with the measured ones.

To =10.8 mgeni’2

D =200cm
10- } -Q =2009 A min

4

NUMBER OF COUNTS

0 0 1ho 150 200 250
_4/ CHANNEL .
05 15 20 ' 30 4.0
€ [Mev]

Fig. 11. Measured and calculated deposit energy proton spectra for continuous energy
spectra of incident neutrons.

Fig. 11 shows a spectrum calculated in the manner described above. The dotted
curve denotes the difference due to averaging over incident angle. The measurement
was performed on the cyclotron of the »Ruder Boskovi¢« Institute in Zagreb!3.
In an ideal case, the energy spectrum of incoming neutrons can be determined
from two measurements using different radiators!® or different radiator thicknesses.
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RACUNANIJE FUNKCIJE ODZIVA I EFIKASNOSTI MALOG DETEK-
TORSKOG SISTEMA ZA BRZE NEUTRONE
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Originalni nau¢ni rad

Pretpostavlja se samo da je detekcioni sistem aksijalno simetri¢an i da neutroni
upadaju okomito na povr$inu radijatora. Kao radijator sluZi polietilenska ili deu-
terizirana polietilenska folija. Kao E i dE/dx detektor sluZi tanki silicijev detektor
povr$ine nekoliko mm?2. Izra¢unate su funkcije odziva, efikasnosti i deponiranog
spektra u ovisnosti o energiji upadnih neutrona, debljini radijatora, debljini detek-
tora te geometrijskim parametrima sistema. Uporeduju se izraCunati deponirani
spektri za razliCite energetske raspodjele upadnih neutrona.

FIZIKA 11 (1979) 2, 89—103 103





