YU ISSN 0015-3206 FZKAAA 11 (3) 121 (1979)

T' (10040) AS AN I = 1. VECTOR MESON RESONANCE

S. FAJFER and Z. STIPČEVIĆ

Institute of Physics, Uni'versity of Sarajevo, Sarajevo

and

S. BLATNIK

Department of Technology, University of Tuzla, Tuzla

Received 26 June 1979

UDC 539.12

Original scientific paper

We treat ϱ^0 , ω , φ , ψ , T and T' as ground states of a six quark $Q\overline{Q}$ system **and consider T' to be the neutral member of an isospin triplet. By determining V' and T as appropriate mixtures of** *c,* **t and b quarks and assuming an extended vector meson dominance a good saturation of Weinberg's first spectral function sum rule** is obtained with the implication $\Gamma(T \to e^+ e^-) = 4.5$ keV and $\Gamma(T' \to e^+ e^-) = 0.5$ kg is the change of the consistence = **O.S keV for the electron pair decay widths.**

Motivated by the observation that the $T' - T$ mass difference is somewhat too **large 1 > for a bottomonium interpretation of** *T',* **i.e. as a radial excitation of** *T,* **we consider** *T'* (1.0040) **as a member of a family of six vector meson resonances made up of quark-antiquark pairs and characterized by zero values of quantum numbers. This approach, occasionally mentioned as a possibility** *²*> , **postpones the need for the introduction of new quarkonium potentials ³**> , **posibly different from the popular charmonium potential ⁴ >, until the eventual appearance of experimental data on separate radial excitations of** *T* **and** *T'.* **The predictive power of the model rests on** the assumption that T' should be a heavy quark-antiquark $I=1$ state and thus make an analog to the ρ^0 quark composition.

INZIKA 11 (1979) 3, 121—126 121

We start with six quarks: *u*, *d*, *s*, *c*, *t* and *b*. The most general unitary trans**formations, with the bar***y***on number conservation included, introduce a** *U(* **6) group. The masses of the quarks, however, are ver***y* **broadl***y* **spread, from about** 0.3 **GeV to 4.9 GeV, and an***y* **assumed s***y***mmetr***y* **of the theor***y* **would necessaril***y* **be ver***y* **badl***y* **broken. This does not prevent, however, that interaction currents transform like s***y***mmetr***y* **currents of the group, namel***y* **as linear combinations of the 36 components, of a tensor operator transforming b***y* **the regular representation of** *U* **(6). As for the weak and electromagnetic interactions we assume that** their currents are contained within the 16 components $j_{\mu}^1, \ldots, j_{\mu}^{15}$ and j_{μ}^0 of the *U* (4) **subgroup of** *U* **(6), such that it contains quantum numbers** *B,* **/***3***,** *Y* **and C. We maintain that with regard to this subgroup quarks transform like basis vectors of an irreducible, fundamental, six dimensional representation of** *SU* **(4), whereb***y* quarks obtain the following quantum numbers: $u(0,1/3, 1/2)$, $d(0,1/3, -1/2)$, *s* (0, -2/3,0), *c* (1,2/3,0), *t* (I, -1/3, 1/2), *b* (1, -1/3, -1/2) for *C*, *Y*, *I*₃ respectively, and from the point of $SU(3)_I$, $V(I)_C$ classification form an $SU(3)$ triplet (u, d, s) and an *SU* (3) antitriplet (c, t, b) . This coincides with Harari's view⁵⁾ on the six quark quantum numbers, but implies that the weak-electromagnetic interactions excite no new quantum numbers (ϕ heaviness ϕ H_1 , H_2).

In order to confine the electromagnetic-weak currents to the 16 components of a $U(4)$ tensor operator, which in a $SU(2) \times U(1)$ unified theory amounts to the requirement for an embedding $SU(2)_W \times U(1) \subset U(4)$ we fix the phase ambiguity in the matrices of the $\overline{SU}(4)$ generators $F_a^{(6)}$, $a = 1, ..., 15$ according **to the convention of /UM-positivit***y ⁶***>and take the electromagnetic current in the form⁷> :**

$$
j_{\mu}^{cm} = j_{\mu}^{1} + \frac{1}{V} \frac{1}{3} j_{\mu}^{3} + 2 \sqrt{\frac{2}{3}} (j_{\mu}^{15} + j_{\mu}^{0})
$$
 (1)

which corresponds to the quark charge assignment:

$$
Q(u,d,s,c,t,b) = (2/3, -1/3, -1/3, 5/3, 5/3, 2/3).
$$
 (2)

Note that the assumption for T' forming an $I = 1$ state would not be possible **had we ascribed as quark representation the** *SU* **(6) generalization of the Gell -Mami A-matrices because there the basis contains onl***y* **one pair of** *I=* **I/2 states** and in order to obtain two $I = 1$ triplets (one for ρ^0 and one for T') in the $\overline{O\overline{O}}$ com**position, we nced two such states.**

We assume that vector mesons ϱ^0 , ω , φ , ψ , T and T' form a unitary mapping of quark-antiquark pairs: $u\bar{u}$, $d\bar{d}$, $s\bar{s}$, $c\bar{c}$, \bar{u} and $b\bar{b}$. Also that ϱ^0 , ω and φ contain **only** SU (3) triplet quarks, *u*, *d*, and *s* and retain traditional structure with $\omega - \varphi$ ideal mixing. Finally, that ψ , T and T' contain only SU(3) antitriplet quarks c , **t and** *b* **and that** *T* **belongs to an isospin doublet. This determines the structure up to a constant** *a:*

$$
\sqrt{2} \varrho^{\circ} = u\overline{u} - d\overline{d},
$$

\n
$$
\sqrt{2} \omega = u\overline{u} + d\overline{d},
$$

\n
$$
\varphi = s\overline{s},
$$
\n(3)

122 **FIZIKA 11 (1979) 3, 121-126**

$$
\sqrt{2} \psi = \sqrt{2} \, ac\bar{c} + \beta \, (t\bar{t} + b\bar{b}),
$$

\n
$$
\sqrt{2} \, T = -\sqrt{2} \, \beta c\bar{c} + a \, (t\bar{t} + b\bar{b}),
$$

\n
$$
\sqrt{2} \, T' = t\bar{t} - b\bar{b},
$$

with,

$$
\alpha^2 + \beta^2 = I. \tag{4}
$$

To specify the undetermined constant α we consider implications of $U(4)$ symmetry on $(V \rightarrow e^+e^-)$ decay widths, where, in the zero width approximation, **one has**

$$
\Gamma \left(V \rightarrow e^+ e^- \right) = \frac{4 \pi a^2 m_V}{3 f_V^2} + 0 \left(\left(\frac{m_e}{m_V} \right)^4 \right), \tag{5}
$$

with f_V defined by

$$
<0|j_{\mu}^{em}(0)|V;\lambda,p>=\varepsilon_{\mu}^{(\lambda)}(p)\cdot\frac{m_{V}^{2}}{j_{V}(p^{2})}.
$$
 (6)

To compare the matrix elements $\lt 0$ $|j_n^m|$ V $>$ for different vector mesons we need to express e^0 , ω , φ , ψ , T and T' as linear combinations of the six states, with **zero quantum numbers, that appear in the reduction:** $6 \times 6^* \rightarrow 1 + 15 + 20$ **.**

Using notation $(SU(4), SU(3), SU(2), C, Y, I_3)$ these states are: (I, I, I) ,
 $I(3, 0, 1)$, (I, I_3) $(15, 1, 1)$, $(15, 8, 1)$, $(15, 8, 3)$, $(20, 8, 1)$ and $(20, 8, 3)$, where $C = Y = I_3 = 0$ is **understood. The first four of these basis vcctors belong to the U (4) regular representation associatcd, respectively, with the generators F⁰ , F 1 5, F8 and F**e**, and it** is convenient to write $|0>$, $|15>$, $|8>$, $|3>$, $|20, 8, 1>$, $|20, 8, 3>$, respecti**vely.**

The SU (4) reduction coefficients for $6 \times 6^*$ give:

	0>	15>	8>	3>	20,8,1>	20,8,3>
\bar{u}	\bar{V} 6	$\overline{\sqrt{6}}$	$2\sqrt{3}$	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\overline{2}$
$d\bar d$	\bar{V} $\bar{5}$	\overline{V} 6	$2\sqrt{3}$	$\overline{2}$	$2\sqrt{3}$	$\overline{2}$
$s\bar s$	\overline{V} 6	$\sqrt{6}$	\overline{V} ³	$\bf{0}$	$\overline{\sqrt{3}}$	$\mathbf 0$
$c\overline{c}$	$\sqrt{6}$	\vec{v} $\vec{6}$	$\sqrt{3}$	$\bf{0}$	$\sqrt{3}$	$\pmb{0}$
\bar{t}	$\overline{\overline{V}}\overline{\overline{6}}$	\bar{V} 6	$\overline{2V3}$	$\frac{1}{2}$	$2\sqrt{3}$	$\frac{1}{2}$
$b\bar{b}$	\bar{V} 6	\overline{V} 6	$2\sqrt{3}$	$\overline{2}$	$2\sqrt{3}$	$\overline{2}$

TABLE 1.

and consequently

$$
|V\rangle = \sum_{a} C_a^{\nu} |a\rangle, \quad a \in \{0, 3, 8, 15, (20, 8, 1), (20, 8, 3)\}
$$
 (7)

with C_a^{ν} given by:

	0>	3>	8>	15>	20,8,1>	$\left \right $ 20,8,3 $>$
$\boldsymbol{\varrho}^{\mathbf{0}}$	0	$\sqrt{2}$	$\bf{0}$	0	0	$\overline{V2}$
ω	$\sqrt{3}$	$\bf{0}$	\bar{V} 6	$\sqrt{3}$	$\overline{V6}$	0
φ	$\sqrt{6}$	$\bf{0}$	\overline{V} ^{$\overline{3}$}	\bar{V} 6	\bar{V} 3	0
	ψ $\frac{1}{\sqrt{6}}(a + \sqrt{2} \beta)$	$\pmb{0}$		$\frac{1}{\sqrt{6}}(\sqrt{2}a-\beta)\left \frac{1}{\sqrt{6}}(a+\sqrt{2}\beta)\right \frac{1}{\sqrt{6}}(\sqrt{2}a-\beta)$		$\bf{0}$
\pmb{T}	$\frac{1}{\sqrt{6}}(\sqrt{2}a-\beta)$	$\mathbf 0$			$\left -\frac{1}{\sqrt{6}}(a+\sqrt{2}\beta)\right \frac{1}{\sqrt{6}}(\sqrt{2}a-\beta)\left -\frac{1}{\sqrt{6}}(a+\sqrt{2}\beta)\right $	$\pmb{0}$
T'	$\bf{0}$	$\sqrt{2}$	0	0	0	V 2

TABLE 2.

For the U (4) regular representation basis vectors $| \text{ reg}, \beta \rangle$ one has

$$
\langle 0 | j^a_\mu | \text{reg}, \beta; \lambda, p \rangle = \delta_{\alpha\beta} \, \varepsilon^{(\lambda)}_\mu(p) \, g(p^2). \tag{8}
$$

Also, since the reduction of 15×20 does not contain trivial representation, one has

$$
\langle 0 | j_{\mu}^{a} | 20 \rangle = 0. \tag{9}
$$

This implies

$$
\langle 0 | \varepsilon \cdot j^{em} | V \rangle = C_V g(p^2), \qquad (10)
$$

with

$$
C_V = C_Y^V + \frac{1}{\sqrt{3}} C_Y^V + 2 \sqrt{\frac{2}{3}} (C_Y^V + C_0^V). \tag{11}
$$

From (7), we find:

$$
\sqrt{2} C_{\varrho 0} = \sqrt{2} C_{T'} = 1,
$$

$$
3\sqrt{2} C_{\omega} = -3\sqrt{2} C_{\varphi} = 1,
$$

FIZIKA 11 (1979) 3, 121-126

124

FAJFER et al. : T' (10040) AS AN I=l VECTOR MESON RESONANCE

$$
\sqrt{18} C_{\Psi} = 5\sqrt{2}a + 7\beta,
$$

\n
$$
\sqrt{18} C_{T} = 7a - 5\sqrt{2}\beta.
$$
\n(12)

In the CM system, $p^2 = m_V^2$, we have

$$
\Gamma(V \to e^+e^-) = \frac{4\pi a^2}{3m_V} C_V^2 \frac{g(m_V^2)}{m_V^2}.
$$
 (13)

In order to relate $g(m_V^2)$ for different vector mesons we use ϱ^0 , ω , φ , ψ , T , T' to saturate Weinberg's first spectral function sum rule⁸ and this results in the independence of the ratio $g^2(m_V^2)/m_V^2$ from the vector meson mass. Formula (13) **is then used to obtain an extended Das-Mathur-Okubo sum rule**⁹**> :**

$$
\Gamma_{\varrho} m_{\varrho} = 3 (\Gamma_{\omega} m_{\omega} + \Gamma_{\varphi} m_{\varphi}) = \frac{1}{11} (\Gamma_{\psi} m_{\psi} + \Gamma_{T} m_{T}) = \Gamma_{T'} m_{T'}, \qquad (14)
$$

and also the ratio

$$
\frac{m_{\Psi} \varGamma_{\Psi}}{m_{T} \varGamma_{T}} = \left(\frac{5\sqrt{2}a + 7\beta}{7a - 5\sqrt{2}\beta}\right)^{2}.
$$
\n(15)

Inserting experimental data for m_p , m_p , m_T , $m_{T'}$, Γ_q and Γ_{Ψ} into (14) one finds: $\Gamma(T \rightarrow e^+e^-) = 4.5$ keV and $\Gamma(T'' \rightarrow e^+e^-) = 0.5$ keV. This makes the ratio of $m_{\nu} \Gamma_{\nu}$ to $m_{\tau} \Gamma_{\tau}$ very close to 1/3 and subsequent determination of a produces the following quark composition for ψ and T :

$$
3\sqrt{3} \psi = 5 c\bar{c} - (t\bar{t} + b\bar{b})
$$

$$
3\sqrt{6} T = 2 c\bar{c} + 5 (t\bar{t} + b\bar{b})
$$
 (16)

giving the mix of $c\bar{c}$, $t\bar{t}$ and $b\bar{b}$ pairs in the ratio 5 : 1 : I, in ψ , and the ratio 2:5:1, in *T*. The appearance in ψ , in this model, of a $t\bar{t} + b\bar{b}$ ingredient in addition to cc , should not be too puzzling since t, b quarks each being heavier than the ψ particle, cannot make appearance in ψ decays. Also note that the conventional $c\bar{c}$ structure of ψ cannot saturate Weinberg's first sum rule, not even in the orthodox **charm theory with four** *SU* **(4) quarks and four vector mesons.**

To check the consistency of (3) and (16) with the experimental values for vector meson masses we apply the naive quark model and obtain :

$$
100 m_c^2 + 4 m_t^2 + 4 m_b^2 = 27 m_{\varphi}^2,
$$

\n
$$
8 m_c^2 + 50 m_t^2 + 50 m_b^2 = 27 m_{\varphi}^2,
$$

\n
$$
2 m_t^2 + 2 m_b^2 = m_{\varphi}^2.
$$
\n(17)

FIZIKA 11 (1979) 3, 121-126 125

System (17) is a dependent set of equations and produces the constraint :

$$
2 m_{\rm T'}^2 - 25 m_{\rm T}^2 + 23 m_{\rm T'}^2 = 0. \tag{18}
$$

This requires $m_{\tau'} \simeq 9.9$ GeV and gives good consistency check of the proposed **vector meson quark structure.**

Introduction of experimental data for the vector meson masses gives the estimate $m_c = 0.8$ GeV, and the assumption $m_t \approx m_b$, based on the existence of isospin doublet containing t and b quarks, gives $m_t \approx m_b \approx 4.8$ GeV.

References

- **1) E. Eichten and K. Gottfried, Phys. Lctt. 66B (1977) 286; Y. J. Ng and S. H. H. Tye, SLAC-PUB-2096 (1978), FERMILAB-PUB-78/70-THY(1978);**
- **2) S. Meshkov,, �ALT 68-65? (1978), Orbis Scicntiae, Coral Gables (1978);**
- **3) C. Quigg and J. L. Rosner, Phys. Lett. 71B (1977) 153; G. Bhanot and S. Rudaz, Phys. Lett. 78B (1978) 1 19 ; M. Machacek and Y. Tomozawa, Ann. Phys. (NY), to be published;**
- **4) E. Eichten et al., Phys. Rev. Lett. 34 (1975) 369;**
- **5) . H. Harari, Phys. Lett. 57B (1975) 265; Ann. Phys. 94 (1975) 391 ;**
- **6) G. E. Baird and L. C. Biedenharn, J. Math. Phys. 5 (1964) 1723 ; V. Rabi, G. Campbell, Jr. and K. C. Wali, J. Math. Phys. 16 (1975) 2494;**
- **7) Z. Stipčcvić, Integrative Conference on Group Theory and Mathematical Physics, The University of Texas at Austin (1978);**
- **8) S. Weinbeig, Pnys. Rev. Lett. 18 (1967) 507;**
- **9) T. Das, V. S. Mathut and S. Okubo, Phys. Rev. Lett. (1967) 470; R. J. Oakes arid J. J. Sakurai, Phys. Rev. Lett. 19 (f967) 1266.**

T' **(10040) KAO VEKTORSKI MEZON SA I** = **1**

S. FAJFER i Z. STIPČEVIĆ

Institut z_a fiziku, Univerzitet u Sarajevu, Sarajevo

i

S. BLATNIK

Teh nološki fakultet, Univerzitet u Tuzli, Tuzla

UDK 539.12

Originalni znanstveni rad

U radu se T' (10040) tretira kao izovektor sastavljen od teških kvark-antikvark pa**rova, suprotno uobičajenom kvarkoniumskom tumačenju ove rezonance kao pobuđenog stanja sistema** *bb.* **Razmatranje se zasniva na modelu šest kvarkova, klasificiranih po** *S U (4)* **- 6 reprezenta�iji, sa nabojima :** *213,* **- T/3, - I, 3,** *513,* **5,'3, 2/3. Primjena proširene vektor-mezonske dominantnosti, uz eksperimentalne mase i** širine raspada u leptonski par, dobro zasićuje prvo Weinbergovo sumaciono pravilo.